## Alison L Van Eenennaam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7928944/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A deletion at the polled PC locus alone is not sufficient to cause a polled phenotype in cattle.<br>Scientific Reports, 2022, 12, 2067.                                                                                   | 1.6 | 5         |
| 2  | Synergistic power of genomic selection, assisted reproductive technologies, and gene editing to drive genetic improvement of cattle. CABI Agriculture and Bioscience, 2022, 3, .                                          | 1.1 | 17        |
| 3  | Ten simple rules to ruin a collaborative environment. PLoS Computational Biology, 2022, 18, e1009957.                                                                                                                     | 1.5 | 1         |
| 4  | Animal Health and Food Safety Analyses of Six Offspring of a Genome-Edited Hornless Bull. , 2022, 1, 192-206.                                                                                                             |     | 3         |
| 5  | LincRNA#1 knockout alone does not affect polled phenotype in cattle heterozygous for the celtic POLLED allele. Scientific Reports, 2022, 12, 7627.                                                                        | 1.6 | 1         |
| 6  | Genetic Engineering of Livestock: The Opportunity Cost of Regulatory Delay. Annual Review of Animal<br>Biosciences, 2021, 9, 453-478.                                                                                     | 3.6 | 34        |
| 7  | One-step generation of a targeted knock-in calf using the CRISPR-Cas9 system in bovine zygotes. BMC Genomics, 2021, 22, 118.                                                                                              | 1.2 | 14        |
| 8  | Comparison of Gene Editing Versus Conventional Breeding to Introgress the POLLED Allele Into the<br>Tropically Adapted Australian Beef Cattle Population. Frontiers in Genetics, 2021, 12, 593154.                        | 1.1 | 12        |
| 9  | Functional annotations of three domestic animal genomes provide vital resources for comparative and agricultural research. Nature Communications, 2021, 12, 1821.                                                         | 5.8 | 105       |
| 10 | Electroporation-Mediated Genome Editing of Livestock Zygotes. Frontiers in Genetics, 2021, 12, 648482.                                                                                                                    | 1.1 | 17        |
| 11 | Animal board invited review: Animal agriculture and alternative meats – learning from past science communication failures. Animal, 2021, 15, 100360.                                                                      | 1.3 | 15        |
| 12 | Etiology and risk factors for bovine respiratory disease in pre-weaned calves on California dairies and calf ranches. Preventive Veterinary Medicine, 2021, 197, 105506.                                                  | 0.7 | 8         |
| 13 | Genomic and phenotypic analyses of six offspring of a genome-edited hornless bull. Nature<br>Biotechnology, 2020, 38, 225-232.                                                                                            | 9.4 | 69        |
| 14 | Preweaning cost of bovine respiratory disease (BRD) and cost-benefit of implementation of<br>preventative measures in calves on California dairies: The BRD 10K study. Journal of Dairy Science,<br>2020, 103, 1583-1597. | 1.4 | 45        |
| 15 | A comparative analysis of chromatin accessibility in cattle, pig, and mouse tissues. BMC Genomics, 2020, 21, 698.                                                                                                         | 1.2 | 43        |
| 16 | Genome editing approaches to augment livestock breeding programs. Journal of Experimental Biology,<br>2020, 223, .                                                                                                        | 0.8 | 44        |
| 17 | Harnessing endogenous repair mechanisms for targeted gene knock-in of bovine embryos. Scientific Reports, 2020, 10, 16031.                                                                                                | 1.6 | 5         |
| 18 | Efficient One-Step Knockout by Electroporation of Ribonucleoproteins Into Zona-Intact Bovine<br>Embryos. Frontiers in Genetics, 2020, 11, 570069.                                                                         | 1.1 | 15        |

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Evaluation of mutation rates, mosaicism and off target mutations when injecting Cas9 mRNA or protein for genome editing of bovine embryos. Scientific Reports, 2020, 10, 22309.                                | 1.6 | 24        |
| 20 | A novel risk assessment tool for bovine respiratory disease in preweaned dairy calves. Journal of<br>Dairy Science, 2020, 103, 9301-9317.                                                                      | 1.4 | 14        |
| 21 | PSX-32 Late-Breaking Abstract: Production of a Gene Knock-In Bull Calf by Embryo-Mediated Genome<br>Editing. Journal of Animal Science, 2020, 98, 358-359.                                                     | 0.2 | 0         |
| 22 | 120 The future of genome editing in food animal species. Journal of Animal Science, 2020, 98, 48-49.                                                                                                           | 0.2 | 0         |
| 23 | Management of lethal recessive alleles in beef cattle through the use of mate selection software.<br>Genetics Selection Evolution, 2019, 51, 36.                                                               | 1.2 | 11        |
| 24 | Management factors associated with bovine respiratory disease in preweaned calves on California dairies: The BRD 100 study. Journal of Dairy Science, 2019, 102, 7288-7305.                                    | 1.4 | 35        |
| 25 | Genome to Phenome: Improving Animal Health, Production, and Well-Being – A New USDA Blueprint<br>for Animal Genome Research 2018–2027. Frontiers in Genetics, 2019, 10, 327.                                   | 1.1 | 118       |
| 26 | Application of genome editing in farm animals: cattle. Transgenic Research, 2019, 28, 93-100.                                                                                                                  | 1.3 | 50        |
| 27 | Epidemiology of bovine respiratory disease (BRD) in preweaned calves on California dairies: The BRD<br>10K study. Journal of Dairy Science, 2019, 102, 7306-7319.                                              | 1.4 | 48        |
| 28 | Bovine respiratory disease (BRD) cause-specific and overall mortality in preweaned calves on<br>California dairies: The BRD 10K study. Journal of Dairy Science, 2019, 102, 7320-7328.                         | 1.4 | 43        |
| 29 | Comparison of gene editing versus conventional breeding to introgress the POLLED allele into the US dairy cattle population. Journal of Dairy Science, 2019, 102, 4215-4226.                                   | 1.4 | 45        |
| 30 | Proposed U.S. regulation of gene-edited food animals is not fit for purpose. Npj Science of Food, 2019, 3, 3.                                                                                                  | 2.5 | 27        |
| 31 | 328 Awardee Talk: The importance of genetic improvement to the sustainability of animal agriculture.<br>Journal of Animal Science, 2019, 97, 52-52.                                                            | 0.2 | 0         |
| 32 | Association of plasma haptoglobin concentration and other biomarkers with bovine respiratory<br>disease status in pre-weaned dairy calves. Journal of Veterinary Diagnostic Investigation, 2019, 31,<br>40-46. | 0.5 | 21        |
| 33 | Regional management practices and prevalence of bovine respiratory disease in California's preweaned dairy calves. Journal of Dairy Science, 2019, 102, 7583-7596.                                             | 1.4 | 37        |
| 34 | Genetic Improvement of Food Animals: Past and Future. , 2019, , 171-180.                                                                                                                                       |     | 1         |
| 35 | Science Breakthroughs to Advance Food and Agricultural Research by 2030. , 2019, , .                                                                                                                           |     | 27        |
| 36 | The use of gene editing techniques in dairy cattle breeding. Burleigh Dodds Series in Agricultural<br>Science, 2019, , 571-602.                                                                                | 0.1 | 0         |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Importance of a Novel Product Risk-Based Trigger for Gene-Editing Regulation in Food Animal Species. CRISPR Journal, 2018, 1, 101-106.                                                                                                | 1.4 | 15        |
| 38 | Simulation of introgression of the POLLED allele into the Jersey breed via conventional breeding vs. gene editing1. Translational Animal Science, 2018, 2, S57-S60.                                                                       | 0.4 | 5         |
| 39 | Comparison of economic returns among genetic evaluation strategies in a 2-tiered Charolais-sired beef cattle production system1,2. Journal of Animal Science, 2018, 96, 4076-4086.                                                        | 0.2 | 1         |
| 40 | Genome-wide identification of tissue-specific long non-coding RNA in three farm animal species. BMC<br>Genomics, 2018, 19, 684.                                                                                                           | 1.2 | 118       |
| 41 | Public Perception of Animal Biotechnology. , 2018, , 275-303.                                                                                                                                                                             |     | 8         |
| 42 | The contribution of transgenic and genome-edited animals to agricultural and industrial applications. OIE Revue Scientifique Et Technique, 2018, 37, 97-112.                                                                              | 0.5 | 4         |
| 43 | The Uses of Biotechnology to Improve Animal Welfare. , 2018, , 51-59.                                                                                                                                                                     |     | 0         |
| 44 | Genome Report: Identification and Validation of Antigenic Proteins from <i>Pajaroellobacter<br/>abortibovis</i> Using <i>De Novo</i> Genome Sequence Assembly and Reverse Vaccinology. G3: Genes,<br>Genomes, Genetics, 2017, 7, 321-331. | 0.8 | 8         |
| 45 | Whole-Genome Sequencing and Concordance Between Antimicrobial Susceptibility Genotypes and Phenotypes of Bacterial Isolates Associated with Bovine Respiratory Disease. G3: Genes, Genomes, Genetics, 2017, 7, 3059-3071.                 | 0.8 | 19        |
| 46 | Genetic modification of food animals. Current Opinion in Biotechnology, 2017, 44, 27-34.                                                                                                                                                  | 3.3 | 54        |
| 47 | Tissue Tropism in Host Transcriptional Response to Members of the Bovine Respiratory Disease<br>Complex. Scientific Reports, 2017, 7, 17938.                                                                                              | 1.6 | 28        |
| 48 | 025 Identification of variants causing early embryonic loss in beef cattle. Journal of Animal Science, 2017, 95, 11-11.                                                                                                                   | 0.2 | 0         |
| 49 | 733 Genetically engineered feed: Impact on animal performance, health and products. Journal of Animal Science, 2017, 95, 357-357.                                                                                                         | 0.2 | 2         |
| 50 | Detection of dietary DNA, protein, and glyphosate in meat, milk, and eggs. Journal of Animal Science, 2017, 95, 3247.                                                                                                                     | 0.2 | 10        |
| 51 | Gene editing: Breeding or GMO?. , 2017, 1, .                                                                                                                                                                                              |     | 0         |
| 52 | P1043 Identification of regulatory elements in 3 domesticated species. Journal of Animal Science, 2016, 94, 35-36.                                                                                                                        | 0.2 | 0         |
| 53 | Rapid Communication: Variance component estimates for Charolais-sired fed cattle and relative economic impact of bovine respiratory disease1. Journal of Animal Science, 2016, 94, 5456-5460.                                             | 0.2 | 9         |
| 54 | P6032 Identification and characterization of a novel pathogen causing bovine abortion. Journal of Animal Science, 2016, 94, 164-165.                                                                                                      | 0.2 | 0         |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Analysis of validated and population-specific single nucleotide polymorphism parentage panels in<br>pedigreed and commercial beef cattle populations. Canadian Journal of Animal Science, 2016, , 231-240.                | 0.7 | 5         |
| 56 | Ten transgenic animal research conferences and counting. Transgenic Research, 2016, 25, 271-272.                                                                                                                          | 1.3 | 0         |
| 57 | Regulate genome-edited products, not genome editing itself. Nature Biotechnology, 2016, 34, 477-479.                                                                                                                      | 9.4 | 34        |
| 58 | Survey of management practices related to bovine respiratory disease in preweaned calves on California dairies. Journal of Dairy Science, 2016, 99, 1483-1494.                                                            | 1.4 | 32        |
| 59 | Sensitivity and specificity of on-farm scoring systems and nasal culture to detect bovine respiratory<br>disease complex in preweaned dairy calves. Journal of Veterinary Diagnostic Investigation, 2016, 28,<br>119-128. | 0.5 | 45        |
| 60 | Identification of Gene Networks for Residual Feed Intake in Angus Cattle Using Genomic Prediction and RNA-seq. PLoS ONE, 2016, 11, e0152274.                                                                              | 1.1 | 106       |
| 61 | Gene Editing: Do not forget about Animal Agriculture. Journal of Advanced Research in<br>Biotechnology, 2016, 1, 1-2.                                                                                                     | 0.4 | 1         |
| 62 | The Current and Future Uses of Biotechnology in Animal Agriculture. Ceiba, 2016, 54, 72-81.                                                                                                                               | 0.2 | 2         |
| 63 | Animal agriculture and the importance of agnostic governance of biotechnology. Agriculture and Food Security, 2015, 4, .                                                                                                  | 1.6 | 5         |
| 64 | Immunological Response to Single Pathogen Challenge with Agents of the Bovine Respiratory Disease<br>Complex: An RNA-Sequence Analysis of the Bronchial Lymph Node Transcriptome. PLoS ONE, 2015, 10,<br>e0131459.        | 1.1 | 51        |
| 65 | A Metagenomics and Case-Control Study To Identify Viruses Associated with Bovine Respiratory Disease. Journal of Virology, 2015, 89, 5340-5349.                                                                           | 1.5 | 181       |
| 66 | Single Pathogen Challenge with Agents of the Bovine Respiratory Disease Complex. PLoS ONE, 2015, 10, e0142479.                                                                                                            | 1.1 | 56        |
| 67 | Evaluation of bull prolificacy on commercial beef cattle ranches using DNA paternity analysis12.<br>Journal of Animal Science, 2014, 92, 2693-2701.                                                                       | 0.2 | 8         |
| 68 | Agreement between bovine respiratory disease scoring systems for pre-weaned dairy calves. Animal<br>Health Research Reviews, 2014, 15, 148-150.                                                                           | 1.4 | 21        |
| 69 | Results of the BRD CAP project: progress toward identifying genetic markers associated with BRD susceptibility. Animal Health Research Reviews, 2014, 15, 157-160.                                                        | 1.4 | 8         |
| 70 | Applied Animal Genomics: Results from the Field. Annual Review of Animal Biosciences, 2014, 2, 105-139.                                                                                                                   | 3.6 | 102       |
| 71 | Prevalence and impacts of genetically engineered feedstuffs on livestock populations1. Journal of Animal Science, 2014, 92, 4255-4278.                                                                                    | 0.2 | 109       |
| 72 | Susceptibility loci revealed for bovine respiratory disease complex in pre-weaned holstein calves. BMC Genomics, 2014, 15, 1164.                                                                                          | 1.2 | 85        |

Alison L Van Eenennaam

| #  | Article                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Development of a novel clinical scoring system for on-farm diagnosis of bovine respiratory disease in pre-weaned dairy calves. PeerJ, 2014, 2, e238.                                                                                                                                  | 0.9 | 126       |
| 74 | Considerations Related to Breed or Biological Type. Veterinary Clinics of North America - Food Animal Practice, 2013, 29, 493-516.                                                                                                                                                    | 0.5 | 6         |
| 75 | GMOs in animal agriculture: time to consider both costs and benefits in regulatory evaluations.<br>Journal of Animal Science and Biotechnology, 2013, 4, 37.                                                                                                                          | 2.1 | 23        |
| 76 | Genome-wide association study of concentrations of iron and other minerals in longissimus muscle of Angus cattle1. Journal of Animal Science, 2013, 91, 3593-3600.                                                                                                                    | 0.2 | 10        |
| 77 | Genetic parameters for concentrations of minerals in longissimus muscle and their associations with palatability traits in Angus cattle1. Journal of Animal Science, 2013, 91, 1067-1075.                                                                                             | 0.2 | 30        |
| 78 | Imputation of microsatellite alleles from dense SNP genotypes for parentage verification across multiple Bos taurus and Bos indicus breeds. Frontiers in Genetics, 2013, 4, 176.                                                                                                      | 1.1 | 29        |
| 79 | Accuracy of genomic breeding values in multibreed beef cattle populations derived from deregressed breeding values and phenotypes1,2. Journal of Animal Science, 2012, 90, 4177-4190.                                                                                                 | 0.2 | 50        |
| 80 | Where in the beef-cattle supply chain might DNA tests generate value?. Animal Production Science, 2012, 52, 185.                                                                                                                                                                      | 0.6 | 18        |
| 81 | Genetic parameters for carnitine, creatine, creatinine, carnosine, and anserine concentration in<br>longissimus muscle and their association with palatability traits in Angus cattle1. Journal of Animal<br>Science, 2012, 90, 4248-4255.                                            | 0.2 | 33        |
| 82 | The accuracies of DNA-based estimates of genetic merit derived from Angus or multibreed beef cattle training populations1,2,3. Journal of Animal Science, 2012, 90, 4191-4202.                                                                                                        | 0.2 | 8         |
| 83 | Genetic polymorphisms in bovine <i>transferrin receptor 2</i> ( <i>TFR2</i> ) and <i>solute carrier family 40</i> ( <i>ironâ€regulated transporter</i> ) <i>, member 1</i> ( <i>SLC40A1</i> ) genes and their association with beef iron content. Animal Genetics, 2012, 43, 115-122. | 0.6 | 13        |
| 84 | Hot topic: Performance of bovine high-density genotyping platforms in Holsteins and Jerseys. Journal of Dairy Science, 2011, 94, 6116-6121.                                                                                                                                           | 1.4 | 82        |
| 85 | The value of using DNA markers for beef bull selection in the seedstock sector1,2. Journal of Animal Science, 2011, 89, 307-320.                                                                                                                                                      | 0.2 | 25        |
| 86 | Reproductive abnormalities in mice expressing omega-3 fatty acid desaturase in their mammary glands.<br>Transgenic Research, 2011, 20, 283-292.                                                                                                                                       | 1.3 | 16        |
| 87 | FLPe functions in zebrafish embryos. Transgenic Research, 2011, 20, 409-415.                                                                                                                                                                                                          | 1.3 | 25        |
| 88 | Transgenic salmon: a final leap to the grocery shelf?. Nature Biotechnology, 2011, 29, 706-710.                                                                                                                                                                                       | 9.4 | 51        |
| 89 | Feedlot efficiency implications on greenhouse gas emissions and sustainability1. Journal of Animal Science, 2011, 89, 2643-2656.                                                                                                                                                      | 0.2 | 43        |
| 90 | Precision genetics for complex objectives in animal agriculture. Journal of Animal Science, 2010, 88, 2530-2539.                                                                                                                                                                      | 0.2 | 48        |

6

| #   | Article                                                                                                                                                                          | IF      | CITATIONS    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------|
| 91  | Complex I-Associated Hydrogen Peroxide Production Is Decreased and Electron Transport Chain Enzyme Activities Are Altered in n-3 Enriched fat-1 Mice. PLoS ONE, 2010, 5, e12696. | 1.1     | 49           |
| 92  | Integrated data-collection system tracks beef cattle from conception to carcass. California Agriculture, 2010, 64, 94-100.                                                       | 0.5     | 2            |
| 93  | Field or lab, risks the same. Genetically modified foods are just as safe as conventional foods. Modern<br>Healthcare, 2009, 39, 24.                                             | 0.0     | Ο            |
| 94  | Transgenic approaches for the reproductive containment of genetically engineered fish. Aquaculture, 2008, 275, 1-12.                                                             | 1.7     | 44           |
| 95  | Manipulation of Milk Fat Composition Through Transgenesis. , 2008, 606, 345-356.                                                                                                 |         | 1            |
| 96  | Neonatal Growth Rate and Development of Mice Raised on Milk Transgenically Enriched With Omega-3<br>Fatty Acids. Pediatric Research, 2007, 62, 412-416.                          | 1.1     | 20           |
| 97  | Validation of commercial DNA tests for quantitative beef quality traits1,2. Journal of Animal Science, 2007, 85, 891-900.                                                        | 0.2     | 173          |
| 98  | DNA-based paternity analysis and genetic evaluation in a large, commercial cattle ranch setting1.<br>Journal of Animal Science, 2007, 85, 3159-3169.                             | 0.2     | 49           |
| 99  | Endogenous Production and Elevated Levels of Long-Chain n-3 Fatty Acids in the Milk of Transgenic<br>Mice. Journal of Dairy Science, 2006, 89, 3195-3201.                        | 1.4     | 26           |
| 100 | Mice raised on milk transgenically enriched with nâ^'3 PUFA have increased brain docosahexaenoic acid.<br>Lipids, 2006, 41, 543-549.                                             | 0.7     | 10           |
| 101 | What is the future of animal biotechnology?. California Agriculture, 2006, 60, 132-139.                                                                                          | 0.5     | 6            |
| 102 | Hot Topic: Endogenous Production of n-3 and n-6 Fatty Acids in Mammalian Cells. Journal of Dairy<br>Science, 2005, 88, 1142-1146.                                                | 1.4     | 20           |
| 103 | Gonadotropin Hormone and Receptor Sequences from Model Teleost Species. Zebrafish, 2004, 1, 203-221.                                                                             | 0.5     | 8            |
| 104 | Elevation of seed α-tocopherol levels using plant-based transcription factors targeted to an endogenous locus. Metabolic Engineering, 2004, 6, 101-108.                          | 3.6     | 38           |
| 105 | Engineering Vitamin E Content: From Arabidopsis Mutant to Soy Oil. Plant Cell, 2003, 15, 3007-3019.                                                                              | 3.1     | 231          |
| 106 | Brief communication. Evidence of female heterogametic genetic sex determination in white sturgeon. ,<br>1999, 90, 231-233.                                                       |         | 73           |
| 107 | INDUCTION AND GONADAL SEX OF MEIOTIC GYNOGENETIC AND POLYPLOID WHITE STURGEON (Acipenser) Tj                                                                                     | ETQq1 1 | 0.784314 rgB |
| 108 | Karyotype of the American Green Sturgeon. Transactions of the American Fisheries Society, 1999, 128, 175-177.                                                                    | 0.6     | 25           |

| #   | Article                                                                                                                                                                                                               | IF               | CITATIONS    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| 109 | Mitotic analysis of the North American white sturgeon, <i>Acipenser transmontanus</i><br>Richardson (Pisces, Acipenseridae), a fish with a very high chromosome number. Genome, 1998, 41,<br>266-271.                 | 0.9              | 23           |
| 110 | Synaptonemal complex analysis in spermatocytes of white sturgeon, <i>Acipenser</i><br><i>transmontanus</i> Richardson (Pisces, Acipenseridae), a fish with a very high chromosome number.<br>Genome, 1998, 41, 51-61. | 0.9              | 16           |
| 111 | Rapid verification of meiotic gynogenesis and polyploidy in white sturgeon (Acipenser transmontanus) Tj ETQq1 1                                                                                                       | 1 0.78431<br>1.7 | 4 rgBT /Over |
| 112 | Financial Analysis of Alternative Treatments for Clinical Mastitis Associated with Environmental<br>Pathogens. Journal of Dairy Science, 1995, 78, 2086-2095.                                                         | 1.4              | 35           |
| 113 | Performance of Various Tests Used to Screen Antibiotic Residues in Milk Samples from Individual<br>Animals. Journal of AOAC INTERNATIONAL, 1994, 77, 862-870.                                                         | 0.7              | 20           |
| 114 | Evaluation of Milk Antibiotic Residue Screening Tests in Cattle with Naturally Occurring Clinical<br>Mastitis. Journal of Dairy Science, 1993, 76, 3041-3053.                                                         | 1.4              | 48           |
| 115 | Efficacy of Intramammary Antibiotic Therapy for Treatment of Clinical Mastitis Caused by<br>Environmental Pathogens. Journal of Dairy Science, 1993, 76, 3437-3444.                                                   | 1.4              | 88           |
| 116 | Differences in Allelic Protein Expression in the Milk of Heterozygous κ-Casein Cows. Journal of Dairy<br>Science, 1991, 74, 1491-1496.                                                                                | 1.4              | 46           |
| 117 | Milk Protein Polymorphisms in California Dairy Cattle. Journal of Dairy Science, 1991, 74, 1730-1742.                                                                                                                 | 1.4              | 77           |
| 118 | Animal Biotechnologies and Agricultural Sustainability. , 0, , 90-121.                                                                                                                                                |                  | 0            |
| 119 | Gene editing in livestock: promise, prospects and policy CAB Reviews: Perspectives in Agriculture,<br>Veterinary Science, Nutrition and Natural Resources, 0, , 1-14.                                                 | 0.6              | 6            |