List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7928523/publications.pdf Version: 2024-02-01

REDT KLUMDEDMAN

#	Article	IF	CITATIONS
1	The contributions of <scp>Prof. Kenneth F. O'Driscoll</scp> to radical copolymerization kinetics. Canadian Journal of Chemical Engineering, 2022, 100, 680-688.	1.7	2
2	Investigation of the 3D Printability of Covalently Cross-Linked Polypeptide-Based Hydrogels. ACS Omega, 2022, 7, 7556-7571.	3.5	3
3	Macrophage-Targeted Hydroxychloroquine Nanotherapeutics for Rheumatoid Arthritis Therapy. ACS Applied Materials & Interfaces, 2022, 14, 8824-8837.	8.0	28
4	Chemical Identity of Poly(<i>N</i> -vinylpyrrolidone) End Groups Impact Shape Evolution During the Synthesis of Ag Nanostructures. Journal of the American Chemical Society, 2021, 143, 184-195.	13.7	21
5	Differences in SMA-like polymer architecture dictate the conformational changes exhibited by the membrane protein rhodopsin encapsulated in lipid nano-particles. Nanoscale, 2021, 13, 13519-13528.	5.6	10
6	Evaluation of Composition Effects on the Physicochemical and Biological Properties of Polypeptide-Based Hydrogels for Potential Application in Wound Healing. Polymers, 2021, 13, 1828.	4.5	5
7	The efficient recovery of Au(III) ions from acidic solutions by a novel scavenger based on functionalized poly(styrene-co-maleimide) nanoparticles. Chemical Engineering Journal, 2021, 414, 128761.	12.7	14
8	Systemic administration of polymersomal oncolytic peptide LTX-315 combining with CpG adjuvant and anti-PD-1 antibody boosts immunotherapy of melanoma. Journal of Controlled Release, 2021, 336, 262-273.	9.9	23
9	Influence of DIBMA Polymer Length on Lipid Nanodisc Formation and Membrane Protein Extraction. Biomacromolecules, 2021, 22, 763-772.	5.4	20
10	Linear Dichroism Activity of Chiral Poly(p-Aryltriazole) Foldamers. ACS Omega, 2021, 6, 33231-33237.	3.5	2
11	Facile Route to Targeted, Biodegradable Polymeric Prodrugs for the Delivery of Combination Therapy for Malaria. ACS Biomaterials Science and Engineering, 2020, 6, 6217-6227.	5.2	8
12	Iterative RAFT-Mediated Copolymerization of Styrene and Maleic Anhydride toward Sequence- and Length-Controlled Copolymers and Their Applications for Solubilizing Lipid Membranes. Biomacromolecules, 2020, 21, 3287-3300.	5.4	27
13	Poly(<i>N</i> -vinylpyrrolidone) Antimalaria Conjugates of Membrane-Disruptive Peptides. Biomacromolecules, 2020, 21, 5053-5066.	5.4	5
14	The solution copolymerization of styrene and maleic anhydride in a continuous stirred tank reactor and its theoretical modelling. Polymer, 2020, 202, 122730.	3.8	3
15	Synthesis, Structure, and Crystallization Behavior of Amphiphilic Heteroarm Molecular Brushes with Crystallizable Poly(ethylene oxide) and n-Alkyl Side Chains. Macromolecules, 2020, 53, 1585-1595.	4.8	18
16	Polymeric siRNA gene delivery – transfection efficiency versus cytotoxicity. Journal of Controlled Release, 2019, 316, 263-291.	9.9	58
17	Degradation of Proteins and Starch by Combined Immobilization of Protease, α-Amylase and β-Galactosidase on a Single Electrospun Nanofibrous Membrane. Molecules, 2019, 24, 508.	3.8	11
18	Advancing membrane biology with poly(styrene-co-maleic acid)-based native nanodiscs. European Polymer Journal, 2019, 110, 63-68.	5.4	16

#	Article	IF	CITATIONS
19	Thermoresponsive behavior of poly(3-methylene-2-pyrrolidone) derivatives. European Polymer Journal, 2019, 112, 714-721.	5.4	4
20	Novel coreâ€sheath antimicrobial nanofibrous mats. Journal of Applied Polymer Science, 2018, 135, 46303.	2.6	2
21	Synthesis and characterization of liquid molecular brush binder for coating applications. European Polymer Journal, 2018, 102, 178-186.	5.4	1
22	Influence of Poly(styrene- <i>co</i> -maleic acid) Copolymer Structure on the Properties and Self-Assembly of SMALP Nanodiscs. Biomacromolecules, 2018, 19, 761-772.	5.4	57
23	Synthesis and Cell Interaction of Statistical l-Arginine–Glycine–l-Aspartic Acid Terpolypeptides. Biomacromolecules, 2018, 19, 3058-3066.	5.4	2
24	Improving the Kinetic Hydrate Inhibition Performance of 3-Methylene-2-pyrrolidone Polymers by N-Alkylation, Ring Expansion, and Copolymerization. Energy & Fuels, 2018, 32, 12337-12344.	5.1	23
25	First Study of Poly(3-methylene-2-pyrrolidone) as a Kinetic Hydrate Inhibitor. Energy & Fuels, 2017, 31, 13572-13577.	5.1	13
26	Simulation studies of the discrete semi-batch RAFT–mediated polymerization of styrene using a RAFT agent with relatively poor leaving group. European Polymer Journal, 2017, 95, 596-605.	5.4	4
27	Synthesis, Characterization, and Evaluation of Cytotoxicity of Poly(3-methylene-2-pyrrolidone). Biomacromolecules, 2016, 17, 1795-1800.	5.4	11
28	Synthesis of α,ï‰-heterotelechelic PVP for bioconjugation, via a one-pot orthogonal end-group modification procedure. Polymer Chemistry, 2016, 7, 6450-6456.	3.9	17
29	Discussion on "Aperiodic Copolymers― ACS Macro Letters, 2016, 5, 1-3.	4.8	21
30	Smart block copolymers of PVP and an alkylated PVP derivative: synthesis, characterization, thermoresponsive behaviour and self-assembly. Polymer Chemistry, 2016, 7, 1138-1146.	3.9	13
31	Advances in biofouling mitigation: A review. Critical Reviews in Environmental Science and Technology, 2016, 46, 535-555.	12.8	76
32	Improved control through a semi-batch process in RAFT-mediated polymerization utilizing relatively poor leaving groups. Polymer Chemistry, 2015, 6, 7945-7948.	3.9	14
33	Determination of the shell growth direction during the formation of silica microcapsules by confocal fluorescence microscopy. Journal of Materials Chemistry B, 2015, 3, 7745-7751.	5.8	6
34	The past, present and future of hydrogels. European Polymer Journal, 2015, 72, 341-343.	5.4	34
35	Compartmentalization of bacteria in microcapsules. Chemical Communications, 2014, 50, 15427-15430.	4.1	23
36	Atom transfer radical polymerization as a powerful tool in the synthesis of molecular brushes. Polymer International, 2014, 63, 824-834.	3.1	31

#	Article	IF	CITATIONS
37	The Rationale Behind Sequence-Controlled Maleimide Copolymers. ACS Symposium Series, 2014, , 213-221.	0.5	4
38	Formation of hybrid poly(styrene- <i>co</i> -maleic anhydride)–silica microcapsules. Journal of Materials Chemistry B, 2014, 2, 4826-4835.	5.8	11
39	Deformation of the Water/Oil Interface during the Adsorption of Sterically Stabilized Particles. Langmuir, 2014, 30, 7327-7333.	3.5	7
40	Self-healing polymers. Polymer Chemistry, 2013, 4, 4832.	3.9	17
41	pH-dependent adhesion of mycobacteria to surface-modified polymer nanofibers. Journal of Materials Chemistry B, 2013, 1, 6608.	5.8	4
42	Modified electrospun polymer nanofibers as affinity membranes: The effect of pre-spinning modification versus post-spinning modification. European Polymer Journal, 2013, 49, 3814-3824.	5.4	11
43	Permanently antimicrobial waterborne coatings based on the dual role of modified poly(styrene-co-maleic anhydride). European Polymer Journal, 2013, 49, 1080-1088.	5.4	21
44	Furanone-containing poly(vinyl alcohol) nanofibers for cell-adhesion inhibition. Water Research, 2013, 47, 1049-1059.	11.3	16
45	Poly(methyl methacrylate)–silica microcapsules synthesized by templating Pickering emulsion droplets. Journal of Materials Chemistry B, 2013, 1, 2394.	5.8	26
46	Self-healing systems based on disulfide–thiol exchange reactions. Polymer Chemistry, 2013, 4, 4955.	3.9	383
47	Reversible Addition–Fragmentation Chain Transfer Synthesis of a Micelle-Forming, Structure Reversible Thermosensitive Diblock Copolymer Based on the <i>N</i> -(2-Hydroxy propyl) Methacrylamide Backbone. ACS Macro Letters, 2013, 2, 403-408.	4.8	39
48	Templated Hierarchical Selfâ€Assembly of Poly(<i>p</i> â€aryltriazole) Foldamers. Angewandte Chemie - International Edition, 2013, 52, 11040-11044.	13.8	32
49	Synthesis, Characterization, and Self-Assembly of Poly(N-vinylpyrrolidone)-block-poly(vinyl acetate). Australian Journal of Chemistry, 2012, 65, 1124.	0.9	18
50	Immobilized Furanone Derivatives as Inhibitors for Adhesion of Bacteria on Modified Poly(styrene- <i>co</i> -maleic anhydride). Biomacromolecules, 2012, 13, 3138-3150.	5.4	10
51	Poly(<i>N</i> -vinylpyrrolidone)- <i>block</i> -poly(vinyl acetate) as a Drug Delivery Vehicle for Hydrophobic Drugs. Biomacromolecules, 2012, 13, 4109-4117.	5.4	71
52	Poly(N-vinylpyrrolidone-b-(γ-benzyl-l-glutamate)) – synthesis and self-assembly into pH-sensitive micelles. Polymer Chemistry, 2012, 3, 2551.	3.9	10
53	Structure of colloidosomes with tunable particle density: Simulation versus experiment. Physical Review E, 2012, 85, 061404.	2.1	19
54	Electrospun Poly(vinyl alcohol) Nanofibres with Biocidal Additives for Application in Filter Media, 1–Properties Affecting Fibre Morphology and Characterisation. Macromolecular Materials and Engineering, 2012, 297, 609-617.	3.6	15

#	Article	IF	CITATIONS
55	Electrospun Poly(vinyl alcohol) Nanofibres with Biocidal Additives for Application in Filter Media, 2–Antimicrobial Activity, Regeneration, Leaching and Water Stability. Macromolecular Materials and Engineering, 2012, 297, 618-626.	3.6	6
56	Terminal Monomer Units in Dormant and Active Copolymer Chains. ACS Symposium Series, 2012, , 47-58.	0.5	1
57	Synthesis and evaluation of combâ€ŧype copolymers prepared via atom transfer radical polymerization as possible cold flow improvers in GTL diesel fuels. Journal of Applied Polymer Science, 2012, 124, 2766-2776.	2.6	8
58	Self-Healing Materials Based on Disulfide Links. Macromolecules, 2011, 44, 2536-2541.	4.8	789
59	In SituNMR and Modeling Studies of Nitroxide Mediated Copolymerization of Styrene andn-Butyl Acrylate. Macromolecules, 2011, 44, 6683-6690.	4.8	30
60	In Situ1H NMR Studies of High-Temperature Nitroxide-Mediated Polymerization ofn-Butyl Acrylate. Macromolecules, 2011, 44, 7100-7108.	4.8	14
61	Application of Gemini Surfactants as Diesel Fuel Wax Dispersants. Energy & amp; Fuels, 2011, 25, 162-171.	5.1	47
62	Synthesis and Self-assembly of Amphiphilic Hetero-arm Molecular Brushes. Australian Journal of Chemistry, 2011, 64, 1100.	0.9	9
63	Reconstruction of the 3D structure of colloidosomes from a single SEM image. Soft Matter, 2011, 7, 2033.	2.7	5
64	Facile immobilization of enzymes on electrospun poly(styrene-alt-maleic anhydride) nanofibres. Polymer Chemistry, 2011, 2, 1479.	3.9	15
65	Reversible Nitroxide Trapping of the Mid-Chain Radical in <i>n</i> Butyl Acrylate Polymerization. Macromolecules, 2011, 44, 5554-5557.	4.8	15
66	Controlling electrical percolation in multicomponent carbon nanotube dispersions. Nature Nanotechnology, 2011, 6, 364-369.	31.5	181
67	Pickering Emulsions: Wetting and Colloidal Stability of Hairy Particles—A Self-Consistent Field Theory. Langmuir, 2011, 27, 6574-6583.	3.5	21
68	Antimicrobial fibers: therapeutic possibilities and recent advances. Future Medicinal Chemistry, 2011, 3, 1821-1847.	2.3	48
69	Novel Glycopolymer Brushes via ATRP: 1. Synthesis and Characterization. Macromolecular Chemistry and Physics, 2011, 212, 2191-2208.	2.2	8
70	Novel Glycopolymer Brushes via ATRP: 2. Thermal and Mechanical Properties. Macromolecular Chemistry and Physics, 2011, 212, 2209-2216.	2.2	4
71	The combination of living radical polymerization and click chemistry for the synthesis of advanced macromolecular architectures. European Polymer Journal, 2011, 47, 1207-1231.	5.4	76
72	Release of Bacteriocins from Nanofibers Prepared with Combinations of Poly(D,L-lactide) (PDLLA) and Poly(Ethylene Oxide) (PEO). International Journal of Molecular Sciences, 2011, 12, 2158-2173.	4.1	79

#	Article	IF	CITATIONS
73	Synthesis of novel glycopolymer brushes via a combination of RAFT-mediated polymerisation and ATRP. South African Journal of Science, 2011, 107, .	0.7	8
74	Use of a Profluorophore for Visualization of the Rupture of Capsules in Selfâ€Healing Coatings. Macromolecular Rapid Communications, 2010, 31, 625-628.	3.9	23
75	RAFTâ€Mediated Polymerization—A Story of Incompatible Data?. Macromolecular Rapid Communications, 2010, 31, 1846-1862.	3.9	55
76	Synthesis of liquidâ€filled nanocapsules via the miniemulsion technique. Journal of Polymer Science Part A, 2010, 48, 5215-5230.	2.3	21
77	Mechanistic considerations on styrene–maleic anhydride copolymerization reactions. Polymer Chemistry, 2010, 1, 558.	3.9	104
78	Probing the Cooperative Nature of the Conductive Components in Polystyrene/Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate)â^'Single-Walled Carbon Nanotube Composites. ACS Nano, 2010, 4, 2242-2248.	14.6	40
79	Steric Stabilization of Pickering Emulsions for the Efficient Synthesis of Polymeric Microcapsules. Langmuir, 2010, 26, 14929-14936.	3.5	27
80	Chain Transfer to Polymer and Branching in Controlled Radical Polymerizations of <i>n</i> â€Butyl Acrylate. Macromolecular Rapid Communications, 2009, 30, 2002-2021.	3.9	136
81	The incorporation of single-walled carbon nanotubes into polymerized high internal phase emulsions to create conductive foams with a low percolation threshold. Composites Science and Technology, 2009, 69, 656-662.	7.8	77
82	Reversible Addition Fragmentation Chain Transfer (RAFT) Mediated Polymerization of N-Vinylpyrrolidone: RAFT agent design. ACS Symposium Series, 2009, , 167-179.	0.5	5
83	Conductive Pickering-poly(high internal phase emulsion) composite foams prepared with low loadings of single-walled carbon nanotubes. Chemical Communications, 2009, , 2738.	4.1	53
84	Triazole-Based Leaving Group for RAFT-Mediated Polymerization Synthesized via the Cu-Mediated Huisgen 1,3-Dipolar Cycloaddition Reaction. Macromolecules, 2009, 42, 3014-3018.	4.8	30
85	Lowering the percolation threshold of single-walled carbon nanotubes using polystyrene/poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) blends. Soft Matter, 2009, 5, 878.	2.7	72
86	Initialization behavior at various target molecular weight RAFTâ€mediated methyl acrylate polymerizations. Journal of Polymer Science Part A, 2008, 46, 2500-2509.	2.3	30
87	Unexpected reactions associated with the xanthateâ€mediated polymerization of <i>N</i> â€vinylpyrrolidone. Journal of Polymer Science Part A, 2008, 46, 6575-6593.	2.3	87
88	Polymer–protein conjugates from ï‰-aldehyde endfunctional poly(N-vinylpyrrolidone) synthesised via xanthate-mediated living radical polymerisation. Chemical Communications, 2008, , 3193.	4.1	89
89	NMR Spectroscopy in the Optimization and Evaluation of RAFT Agents. Macromolecular Symposia, 2007, 248, 141-149.	0.7	11
90	Xanthate-Mediated Copolymerization of Vinyl Monomers for Amphiphilic and Double-Hydrophilic Block Copolymers with Poly(ethylene glycol). Macromolecules, 2007, 40, 8861-8871.	4.8	105

#	Article	IF	CITATIONS
91	SAN <i>-b-</i> P4VP Block Copolymer Synthesis by Chain Extension from RAFT-Functional Poly(4-vinylpyridine) in Solution and in Emulsion. Macromolecules, 2007, 40, 7132-7139.	4.8	66
92	Intermediate Radical Termination in Reversible Addition-Fragmentation Chain Transfer-Mediated Polymerization: Â Identification of Termination Products. Macromolecules, 2007, 40, 3914-3920.	4.8	39
93	RAFT mediated polymerisation in heterogeneous media. Soft Matter, 2006, 2, 45-53.	2.7	127
94	In-Situ NMR Spectroscopy for Probing the Efficiency of RAFT/MADIX Agents. Macromolecules, 2006, 39, 7796-7797.	4.8	89
95	Mechanism and kinetics of dithiobenzoate-mediated RAFT polymerization. I. The current situation. Journal of Polymer Science Part A, 2006, 44, 5809-5831.	2.3	429
96	Triblock copolymer synthesis via controlled radical polymerization in solution usingS-tert-alkyl-N,N-alkoxycarbonylalkyldithiocarbamate RAFT agents. Journal of Polymer Science Part A, 2006, 44, 6419-6434.	2.3	17
97	Surfactant-free artificial latexes from modified styrene–maleic anhydride (SMA) copolymers. Polymer, 2006, 47, 7621-7627.	3.8	29
98	Adhesion on the Nano- and Macroscale: Interaction between Copper and SAN/SMAh Copolymers. ChemPhysChem, 2006, 7, 1912-1916.	2.1	5
99	Styrene/Maleic Anhydride Macro-RAFT-Mediated Encapsulation. Macromolecular Chemistry and Physics, 2006, 207, 861-863.	2.2	13
100	A Mechanistic Interpretation of Initialization Processes in RAFT-Mediated Polymerization. Macromolecular Rapid Communications, 2006, 27, 1233-1240.	3.9	50
101	Investigation into the Initialization Behaviour of RAFT-Mediated Styrene–Maleic Anhydride Copolymerizations. Australian Journal of Chemistry, 2006, 59, 742.	0.9	38
102	Atom Transfer Radical Copolymerization of?-Olefins with Methyl Acrylate: Determination of Activation Rate Parameters. Macromolecular Chemistry and Physics, 2005, 206, 547-552.	2.2	29
103	Synthesis of styrene based liquid-filled polymeric nanocapsules by the use of RAFT-mediated polymerization in miniemulsion. Polymer, 2005, 46, 3607-3615.	3.8	65
104	Synthesis and characterization of telechelic polymethacrylates via RAFT polymerization. Journal of Polymer Science Part A, 2005, 43, 959-973.	2.3	181
105	Chain-end modification of living anionic polybutadiene with diphenylethylenes and styrenes. Journal of Polymer Science Part A, 2005, 43, 2536-2545.	2.3	7
106	A1H NMR Investigation of Reversible Additionâ^'Fragmentation Chain Transfer Polymerization Kinetics and Mechanisms. Initialization with Different Initiating and Leaving Groups. Macromolecules, 2005, 38, 3151-3161.	4.8	114
107	Copolymerization of allyl butyl ether with acrylates via controlled radical polymerization. Journal of Polymer Science Part A, 2004, 42, 3271-3284.	2.3	43
108	Novel Brush Copolymers via Controlled Radical Polymerization. Macromolecular Chemistry and Physics, 2004, 205, 2161-2168.	2.2	65

#	Article	IF	CITATIONS
109	Mass spectrometry of poly(methyl methacrylate) (PMMA) prepared by atom transfer radical polymerization (ATRP). European Polymer Journal, 2004, 40, 159-163.	5.4	38
110	The role of surfactant in controlling particle size and stability in the miniemulsion polymerization of polymeric nanocapsules. European Polymer Journal, 2004, 40, 2717-2725.	5.4	43
111	Olefin copolymerization via reversible addition–fragmentation chain transfer. Chemical Communications, 2004, , 1554-1555.	4.1	39
112	Olefin Copolymerization via Controlled Radical Polymerization:Â Copolymerization of Methyl Methacrylate and 1-Octene. Macromolecules, 2004, 37, 1226-1233.	4.8	78
113	Olefin Copolymerization via Controlled Radical Polymerization: Copolymerization of Acrylate and 1-Octene. Macromolecules, 2004, 37, 4406-4416.	4.8	71
114	Determination of the Free Radical Concentration Ratio in the Copolymerization of Methyl Acrylate and Styrene. Application of Radical Trapping and15N NMR Spectroscopy. Macromolecules, 2004, 37, 9338-9344.	4.8	7
115	Beyond Inhibition:Â A1H NMR Investigation of the Early Kinetics of RAFT-Mediated Polymerization with the Same Initiating and Leaving Groups. Macromolecules, 2004, 37, 2383-2394.	4.8	211
116	Characterization of 3- and 4-Arm Stars from Reactions of Poly(butyl acrylate) RAFT and ATRP Precursors. Macromolecules, 2004, 37, 7906-7917.	4.8	68
117	Peculiarities in Atom Transfer Radical Copolymerization. ACS Symposium Series, 2003, , 180-192.	0.5	15
118	Use of gradient, critical, and two-dimensional chromatography in the analysis of styrene- and methyl methacrylate-grafted epoxidized natural rubber. Journal of Applied Polymer Science, 2003, 88, 2530-2538.	2.6	30
119	Monitoring the grafting of epoxidized natural rubber by size-exclusion chromatography coupled to FTIR spectroscopy. Journal of Applied Polymer Science, 2003, 88, 2539-2549.	2.6	31
120	"Controlled―Synthesis and Characterization of Model Methyl Methacrylate/tert-Butyl Methacrylate Triblock Copolymers via ATRP. Macromolecules, 2003, 36, 3051-3060.	4.8	78
121	Application of Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry in Pulsed Laser Polymerization. Chain-Length-Dependent Propagation Rate Coefficients at High Molecular Weight:  An Artifact Caused by Band Broadening in Size Exclusion Chromatography?. Macromolecules, 2003, 36, 9797-9803	4.8	75
122	Core/Shell Particles Containing Liquid Cores:Â Morphology Prediction, Synthesis, and Characterization. Macromolecules, 2003, 36, 8621-8629.	4.8	55
123	Evidence for Termination of Intermediate Radical Species in RAFT-Mediated Polymerization. Macromolecules, 2003, 36, 9687-9690.	4.8	60
124	15N NMR Spectroscopy of Labeled Alkoxyamines.15N-Labeled Model Compounds for Nitroxide-Trapping Studies in Free-Radical (Co)polymerization. Journal of Organic Chemistry, 2003, 68, 7322-7328.	3.2	11
125	"Controlled―Synthesis and Characterization of High Molecular Weight Methyl Methacrylate/tert-Butyl Methacrylate Diblock Copolymers via ATRP. Macromolecules, 2003, 36, 8304-8311.	4.8	44
126	Kinetics of Heterogeneous Atom Transfer Radical Polymerization of Methyl Methacrylate. Macromolecules, 2002, 35, 4785-4790.	4.8	33

#	Article	IF	CITATIONS
127	Experimental Determination of the Rate Constant of Deactivation of Poly(styrene) and Poly(butyl) Tj ETQq1	1 0.784314 rg 4.8	gBT_/Overloci
128	Synthesis of Anthracene End-Capped Poly(methyl methacrylate)s via Atom Transfer Radical Polymerization and Its Kinetic Analyses. Macromolecules, 2002, 35, 2261-2267.	4.8	51
129	End-group modification of poly(butyl acrylate) prepared by atom transfer radical polymerization: Mechanistic study using gradient polymer elution chromatography. Journal of Polymer Science Part A, 2002, 40, 2350-2359.	2.3	26
130	Effect of the Copper Counterion on the Activation Rate Parameter in Atom Transfer Radical Polymerization. Macromolecules, 2001, 34, 7961-7966.	4.8	34
131	Effect of Cu(II) on the Kinetics of the Homogeneous Atom Transfer Radical Polymerization of Methyl Methacrylate. Macromolecules, 2001, 34, 6169-6173.	4.8	106
132	Synthesis of Poly(ethylene-co-butylene)-block-Poly(methyl methacrylate) by Atom Transfer Radical Polymerization: Determination of the Macroinitiator Conversion. Macromolecular Chemistry and Physics, 2001, 202, 1595-1601.	2.2	14
133	The Effect of Reducing Monosaccharides on the Atom Transfer Radical Polymerization of Butyl Methacrylate. Macromolecular Chemistry and Physics, 2001, 202, 1645-1648.	2.2	34
134	Comments on ?Living Polymerization: Rationale for Uniform Terminology? by Darling et al Journal of Polymer Science Part A, 2000, 38, 1734-1735.	2.3	0
135	Critically evaluated rate coefficients for free-radical polymerization, 3. Propagation rate coefficients for alkyl methacrylates. Macromolecular Chemistry and Physics, 2000, 201, 1355-1364.	2.2	274
136	Controlled radical copolymerization of styrene and maleic anhydride and the synthesis of novel polyolefin-based block copolymers by reversible addition-fragmentation chain-transfer (RAFT) polymerization. Journal of Polymer Science Part A, 2000, 38, 3596-3603.	2.3	240
137	Synthesis of Polyolefin Block and Graft Copolymers. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2000, 40, 167-192.	2.2	50
138	Atom Transfer Radical Copolymerization of Styrene and Butyl Acrylate. ACS Symposium Series, 2000, , 197-210.	0.5	17
139	Effect of Solvent on the Activation Rate Parameters for Polystyrene and Poly(butyl acrylate) Macroinitiators in Atom Transfer Radical Polymerization. Macromolecules, 2000, 33, 4417-4421.	4.8	97
140	Critically evaluated rate coefficients for free-radical polymerization, 3. Propagation rate coefficients for alkyl methacrylates. , 2000, 201, 1355.		1
141	Critically evaluated rate coefficients for free-radical polymerization, 3. Propagation rate coefficients for alkyl methacrylates. , 2000, 201, 1355.		2
142	Dependence of chemical composition of styrene/butyl acrylate copolymers on temperature and molecular weight. Polymer, 1999, 40, 4459-4463.	3.8	22
143	A Mechanistic Perspective on Solvent Effects in Free-Radical Copolymerization. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 1998, 38, 567-593. -	2.2	96
144	Nitroxide-Mediated Controlled Radical Polymerization: Toward Control of Molar Mass. ACS Symposium Series, 1998, , 236-255.	0.5	1

#	Article	IF	CITATIONS
145	Controlled Radical Polymerization in Emulsion. Macromolecules, 1997, 30, 324-326.	4.8	120
146	The effect of benzyl alcohol on pulsed laser polymerization of styrene and methylmethacrylate. Journal of Polymer Science Part A, 1997, 35, 515-520.	2.3	52
147	Copolymerization of Styrene and Methyl Methacrylate in Ternary Oil-in-Water Microemulsions: Comments on a Paper by Gan et al Macromolecules, 1996, 29, 6679-6680.	4.8	7
148	A qualitative study to the influence of molar mass on retention in gradient polymer elution chromatography (GPEC). Macromolecular Symposia, 1996, 110, 1-13.	0.7	8
149	Local monomer concentrations in emulsion polymerization. Macromolecular Symposia, 1996, 111, 107-120.	0.7	3
150	Estimation of activation parameters for the propagation rate constant of styrene. , 1996, 34, 2473-2479.		27
151	Critically evaluated rate coefficients for free-radical polymerization, 1. Propagation rate coefficient for styrene. Macromolecular Chemistry and Physics, 1995, 196, 3267-3280.	2.2	617
152	Solvent effects on the copolymerization of styrene with maleic anhydride: determination of apparent reactivity ratios from the penultimate unit model. European Polymer Journal, 1994, 30, 955-960.	5.4	12
153	Effect of Solvent on the Copolymerization of Styrene and Acrylonitrile. Application of the Bootstrap Effect to the Penultimate Unit Model. Macromolecules, 1994, 27, 1529-1534.	4.8	43
154	Interpreting the copolymerization of styrene with maleic anhydride and with methyl methacrylate in terms of the bootstrap model. Polymer, 1993, 34, 1032-1037.	3.8	68
155	NMR Spectroscopy in the Optimization and Evaluation of RAFT Agents. , 0, , 141-149.		0