Mikhail I Katsnelson

List of Publications by Citations

Source: https://exaly.com/author-pdf/79283/mikhail-i-katsnelson-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

85 264 396 70,447 h-index g-index citations papers 77,637 6.9 8.03 422 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
396	Two-dimensional gas of massless Dirac fermions in graphene. <i>Nature</i> , 2005 , 438, 197-200	50.4	16518
395	Detection of individual gas molecules adsorbed on graphene. <i>Nature Materials</i> , 2007 , 6, 652-5	27	6263
394	The structure of suspended graphene sheets. <i>Nature</i> , 2007 , 446, 60-3	50.4	4019
393	Control of graphene's properties by reversible hydrogenation: evidence for graphane. <i>Science</i> , 2009 , 323, 610-3	33.3	3338
392	Chiral tunnelling and the Klein paradox in graphene. <i>Nature Physics</i> , 2006 , 2, 620-625	16.2	2959
391	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. <i>Nanoscale</i> , 2015 , 7, 4598-810	7.7	2015
390	Field-effect tunneling transistor based on vertical graphene heterostructures. <i>Science</i> , 2012 , 335, 947-5	503.3	1991
389	Chaotic Dirac billiard in graphene quantum dots. Science, 2008, 320, 356-8	33.3	1811
388	Unconventional quantum Hall effect and Berry phase of 20 bilayer graphene. <i>Nature Physics</i> , 2006 , 2, 177-180	16.2	1621
387	Intrinsic ripples in graphene. <i>Nature Materials</i> , 2007 , 6, 858-61	27	1357
386	Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. <i>Nature Physics</i> , 2010 , 6, 30-33	16.2	1317
385	Graphene: carbon in two dimensions. <i>Materials Today</i> , 2007 , 10, 20-27	21.8	1177
384	Fluorographene: a two-dimensional counterpart of Teflon. <i>Small</i> , 2010 , 6, 2877-84	11	979
383	Molecular doping of graphene. <i>Nano Letters</i> , 2008 , 8, 173-7	11.5	907
382	Half-metallic ferromagnets: From band structure to many-body effects. <i>Reviews of Modern Physics</i> , 2008 , 80, 315-378	40.5	701
381	Modeling of graphite oxide. Journal of the American Chemical Society, 2008, 130, 10697-701	16.4	654
380	Graphene: Carbon in Two Dimensions 2012 ,		626

(2016-2014)

379	CommensurateIncommensurate transition in graphene on hexagonal boron nitride. <i>Nature Physics</i> , 2014 , 10, 451-456	16.2	582
378	Electron tunneling through ultrathin boron nitride crystalline barriers. <i>Nano Letters</i> , 2012 , 12, 1707-10	11.5	579
377	Chemical Functionalization of Graphene with Defects. <i>Nano Letters</i> , 2008 , 8, 4373-4379	11.5	536
376	Zitterbewegung, chirality, and minimal conductivity in graphene. <i>European Physical Journal B</i> , 2006 , 51, 157-160	1.2	529
375	Macroscopic graphene membranes and their extraordinary stiffness. <i>Nano Letters</i> , 2008 , 8, 2442-6	11.5	528
374	Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach. <i>Physical Review B</i> , 1998 , 57, 6884-6895	3.3	523
373	Proton transport through one-atom-thick crystals. <i>Nature</i> , 2014 , 516, 227-30	50.4	505
372	Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. <i>Nature Physics</i> , 2009 , 5, 840-844	16.2	4 ⁸ 7
371	Strength of effective Coulomb interactions in graphene and graphite. <i>Physical Review Letters</i> , 2011 , 106, 236805	7.4	369
370	Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. <i>Physical Review Letters</i> , 2009 , 102, 046808	7.4	363
369	Finite-temperature magnetism of transition metals: an ab initio dynamical mean-field theory. <i>Physical Review Letters</i> , 2001 , 87, 067205	7.4	324
368	Effect of a high-kappa environment on charge carrier mobility in graphene. <i>Physical Review Letters</i> , 2009 , 102, 206603	7.4	304
367	Strong Coulomb drag and broken symmetry in double-layer graphene. <i>Nature Physics</i> , 2012 , 8, 896-901	16.2	303
366	Limits on charge carrier mobility in suspended graphene due to flexural phonons. <i>Physical Review Letters</i> , 2010 , 105, 266601	7.4	297
365	Chemical functionalization of graphene. <i>Journal of Physics Condensed Matter</i> , 2009 , 21, 344205	1.8	286
364	Phonon related properties of transition metals, their carbides, and nitrides: A first-principles study. Journal of Applied Physics, 2007 , 101, 123519	2.5	278
363	First-principles studies of water adsorption on graphene: The role of the substrate. <i>Applied Physics Letters</i> , 2008 , 93, 202110	3.4	273
362	Production of Highly Monolayer Enriched Dispersions of Liquid-Exfoliated Nanosheets by Liquid Cascade Centrifugation. <i>ACS Nano</i> , 2016 , 10, 1589-601	16.7	271

361	Antiferromagnetism and d-wave superconductivity in cuprates: A cluster dynamical mean-field theory. <i>Physical Review B</i> , 2000 , 62, R9283-R9286	3.3	264
360	Structural and Electronic Properties of Germanene on MoS_{2}. <i>Physical Review Letters</i> , 2016 , 116, 2568	3 0,4 4	260
359	Resonant scattering by realistic impurities in graphene. <i>Physical Review Letters</i> , 2010 , 105, 056802	7.4	260
358	Spin dynamics in magnets: Equation of motion and finite temperature effects. <i>Physical Review B</i> , 1996 , 54, 1019-1035	3.3	254
357	Dual fermion approach to nonlocal correlations in the Hubbard model. <i>Physical Review B</i> , 2008 , 77,	3.3	252
356	Increasing the elastic modulus of graphene by controlled defect creation. <i>Nature Physics</i> , 2015 , 11, 26-3	B116.2	235
355	Interaction-driven spectrum reconstruction in bilayer graphene. <i>Science</i> , 2011 , 333, 860-3	33.3	226
354	Giant nonlocality near the Dirac point in graphene. Science, 2011, 332, 328-30	33.3	217
353	Exchange interactions and spin-wave stiffness in ferromagnetic metals. <i>Journal of Physics F: Metal Physics</i> , 1984 , 14, L125-L128		212
352	Vacuum polarization and screening of supercritical impurities in graphene. <i>Physical Review Letters</i> , 2007 , 99, 236801	7.4	207
351	Germanene: the germanium analogue of graphene. <i>Journal of Physics Condensed Matter</i> , 2015 , 27, 4430	00:2 8	205
350	Origin of anomalous water permeation through graphene oxide membrane. <i>Nano Letters</i> , 2013 , 13, 393	3 0 -5.5	205
349	Interaction phenomena in graphene seen through quantum capacitance. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 3282-6	11.5	197
348	Ab initio spin dynamics in magnets. <i>Physical Review Letters</i> , 1995 , 75, 729-732	7.4	195
347	Dual origin of defect magnetism in graphene and its reversible switching by molecular doping. <i>Nature Communications</i> , 2013 , 4, 2010	17.4	189
346	Mn+1AXn phases in the TiBi © system studied by thin-film synthesis and ab initio calculations. <i>Physical Review B</i> , 2004 , 70,	3.3	188
345	Atomic collapse and quasi-Rydberg states in graphene. <i>Physical Review Letters</i> , 2007 , 99, 246802	7.4	181
344	Enhancement of Chemical Activity in Corrugated Graphene. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 14176-14178	3.8	173

(2006-2010)

343	Density of states and zero Landau Level probed through capacitance of graphene. <i>Physical Review Letters</i> , 2010 , 105, 136801	7.4	172
342	Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. <i>Nature Electronics</i> , 2018 , 1, 344-349	28.4	167
341	Modeling electronic structure and transport properties of graphene with resonant scattering centers. <i>Physical Review B</i> , 2010 , 82,	3.3	164
340	First-principles calculations of magnetic interactions in correlated systems. <i>Physical Review B</i> , 2000 , 61, 8906-8912	3.3	159
339	Optimal Hubbard models for materials with nonlocal Coulomb interactions: graphene, silicene, and benzene. <i>Physical Review Letters</i> , 2013 , 111, 036601	7.4	155
338	Two-dimensional Mott-Hubbard electrons in an artificial honeycomb lattice. <i>Science</i> , 2011 , 332, 1176-9	33.3	153
337	Toward a realistic description of multilayer black phosphorus: From GW approximation to large-scale tight-binding simulations. <i>Physical Review B</i> , 2015 , 92,	3.3	146
336	Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-exfoliated few-layer graphene nanosheets. <i>Nanoscale</i> , 2016 , 8, 4311-23	7.7	142
335	Pseudomagnetic fields and ballistic transport in a suspended graphene sheet. <i>Physical Review Letters</i> , 2008 , 101, 226804	7.4	127
334	Scaling properties of flexible membranes from atomistic simulations: Application to graphene. <i>Physical Review B</i> , 2009 , 80,	3.3	126
333	Theory of bulk and surface quasiparticle spectra for Fe, Co, and Ni. <i>Physical Review B</i> , 2007 , 76,	3.3	126
332	Ultrafast optical modification of exchange interactions in iron oxides. <i>Nature Communications</i> , 2015 , 6, 8190	17.4	125
331	Nonlinear screening of charge impurities in graphene. <i>Physical Review B</i> , 2006 , 74,	3.3	125
330	Transition-metal adatoms on graphene: Influence of local Coulomb interactions on chemical bonding and magnetic moments. <i>Physical Review B</i> , 2011 , 84,	3.3	122
329	The most incompressible metal osmium at static pressures above 750 gigapascals. <i>Nature</i> , 2015 , 525, 226-9	50.4	121
328	Monte Carlo study of the semimetal-insulator phase transition in monolayer graphene with a realistic interelectron interaction potential. <i>Physical Review Letters</i> , 2013 , 111, 056801	7.4	121
327	Relaxation of moir[patterns for slightly misaligned identical lattices: graphene on graphite. <i>2D Materials</i> , 2015 , 2, 034010	5.9	114
326	High-temperature ferromagnetism of sp electrons in narrow impurity bands: application to CaB6. Journal of Physics Condensed Matter, 2006, 18, 7209-7225	1.8	114

325	Measuring the DzyaloshinskiiMoriya interaction in a weak ferromagnet. <i>Nature Physics</i> , 2014 , 10, 202-20	0 6 6.2	111
324	Limits on gas impermeability of graphene. <i>Nature</i> , 2020 , 579, 229-232	50.4	109
323	Moir[patterns as a probe of interplanar interactions for graphene on h-BN. <i>Physical Review Letters</i> , 2014 , 113, 135504	7.4	105
322	Atomistic simulations of structural and thermodynamic properties of bilayer graphene. <i>Physical Review B</i> , 2010 , 81,	3.3	99
321	Quantum-Hall activation gaps in graphene. <i>Physical Review Letters</i> , 2007 , 99, 206803	7.4	97
320	Intrinsic Charge Carrier Mobility in Single-Layer Black Phosphorus. <i>Physical Review Letters</i> , 2016 , 116, 246401	7.4	95
319	Doping mechanisms in graphene-MoS2 hybrids. <i>Applied Physics Letters</i> , 2013 , 103, 251607	3.4	95
318	Strength of correlation effects in the electronic structure of iron. <i>Physical Review Letters</i> , 2009 , 103, 267203	7.4	95
317	Midgap states in corrugated graphene: Ab initio calculations and effective field theory. <i>Europhysics Letters</i> , 2008 , 84, 17003	1.6	93
316	Efficient perturbation theory for quantum lattice models. <i>Physical Review Letters</i> , 2009 , 102, 206401	7.4	91
315	Dual fermion approach to the two-dimensional Hubbard model: Antiferromagnetic fluctuations and Fermi arcs. <i>Physical Review B</i> , 2009 , 79,	3.3	88
314	Scaling Behavior and Strain Dependence of In-Plane Elastic Properties of Graphene. <i>Physical Review Letters</i> , 2016 , 116, 015901	7.4	87
313	Macroscopic self-reorientation of interacting two-dimensional crystals. <i>Nature Communications</i> , 2016 , 7, 10800	17.4	86
312	Unconventional mass enhancement around the Dirac nodal loop in ZrSiS. <i>Nature Physics</i> , 2018 , 14, 178-	1&8 .2	85
311	Probing Single Vacancies in Black Phosphorus at the Atomic Level. <i>Nano Letters</i> , 2017 , 17, 3607-3612	11.5	84
310	Fermi condensation near van Hove singularities within the Hubbard model on the triangular lattice. <i>Physical Review Letters</i> , 2014 , 112, 070403	7.4	84
309	Graphene as a prototype crystalline membrane. Accounts of Chemical Research, 2013, 46, 97-105	24.3	84
308	Melting of graphene: from two to one dimension. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 20220	2 1.8	78

(2016-2002)

307	Robustness of the Van Hove scenario for high-T(c) superconductors. <i>Physical Review Letters</i> , 2002 , 89, 076401	7.4	76
306	Bending modes, anharmonic effects, and thermal expansion coefficient in single-layer and multilayer graphene. <i>Physical Review B</i> , 2012 , 86,	3.3	75
305	Self-consistent spin-wave theory of layered Heisenberg magnets. <i>Physical Review B</i> , 1999 , 60, 1082-109	9 3.3	75
304	LDA++ approach to the electronic structure of magnets: correlation effects in iron. <i>Journal of Physics Condensed Matter</i> , 1999 , 11, 1037-1048	1.8	74
303	Correlation effects in the total energy, the bulk modulus, and the lattice constant of a transition metal: Combined local-density approximation and dynamical mean-field theory applied to Ni and Mn. <i>Physical Review B</i> , 2009 , 79,	3.3	72
302	Spectral function of ferromagnetic 3d metals: a self-consistent LSDA+DMFT approach combined with the one-step model of photoemission. <i>Physical Review Letters</i> , 2006 , 97, 227601	7.4	72
301	Ferromagnetic two-dimensional crystals: Single layers of K2CuF4. <i>Physical Review B</i> , 2013 , 88,	3.3	71
300	Atomic collapse, Lorentz boosts, Klein scattering, and other quantum-relativistic phenomena in graphene. <i>Solid State Communications</i> , 2009 , 149, 1087-1093	1.6	70
299	Magnetism and local distortions near carbon impurity in gamma-iron. <i>Physical Review Letters</i> , 2007 , 99, 247205	7.4	69
298	Singularities of the electronic structure and pre-martensitic anomalies of lattice properties in Ephases of metals and alloys. <i>Phase Transitions</i> , 1994 , 49, 143-191	1.3	69
297	Effect of Structural Relaxation on the Electronic Structure of Graphene on Hexagonal Boron Nitride. <i>Physical Review Letters</i> , 2015 , 115, 186801	7.4	68
296	Chemical modifications and stability of phosphorene with impurities: a first principles study. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 15209-17	3.6	66
295	Real-space imaging of an orbital Kondo resonance on the Cr(001) surface. <i>Nature</i> , 2002 , 415, 507-9	50.4	66
294	Controlling the Kondo effect in CoCu(n) clusters atom by atom. <i>Physical Review Letters</i> , 2008 , 101, 2668	3 9 3 ₄	65
293	Exchange parameters of strongly correlated materials: Extraction from spin-polarized density functional theory plus dynamical mean-field theory. <i>Physical Review B</i> , 2015 , 91,	3.3	64
292	Electron pumping in graphene mechanical resonators. <i>Nano Letters</i> , 2012 , 12, 850-4	11.5	64
291	Adsorption of cobalt on graphene: Electron correlation effects from a quantum chemical perspective. <i>Physical Review B</i> , 2012 , 86,	3.3	64
2 90	Phonon-Assisted Resonant Tunneling of Electrons in Graphene-Boron Nitride Transistors. <i>Physical Review Letters</i> , 2016 , 116, 186603	7.4	63

289	sp-Electron magnetic clusters with a large spin in graphene. ACS Nano, 2011, 5, 2440-6	16.7	63
288	Ground state and electron-magnon interaction in an itinerant ferromagnet: half-metallic ferromagnets. <i>Journal of Physics Condensed Matter</i> , 1990 , 2, 7151-7171	1.8	63
287	Temperature-dependent resistivity in bilayer graphene due to flexural phonons. <i>Physical Review B</i> , 2011 , 83,	3.3	62
286	Effects of van Hove singularities on magnetism and superconductivity in the tE? Hubbard model: A parquet approach. <i>Physical Review B</i> , 2001 , 64,	3.3	62
285	Many-spin interactions and spin excitations in Mn12. <i>Physical Review B</i> , 1999 , 59, 6919-6926	3.3	62
284	Stable and fast semi-implicit integration of the stochastic Landau-Lifshitz equation. <i>Journal of Physics Condensed Matter</i> , 2010 , 22, 176001	1.8	61
283	Extended Tersoff potential for boron nitride: Energetics and elastic properties of pristine and defective h-BN. <i>Physical Review B</i> , 2017 , 96,	3.3	60
282	Electron correlations and the minority-spin band gap in half-metallic Heusler alloys. <i>Physical Review Letters</i> , 2006 , 96, 137203	7.4	59
281	Spin waves in narrow band ferromagnet. <i>Journal of Physics C: Solid State Physics</i> , 1985 , 18, 4173-4188		59
280	Mild sonochemical exfoliation of bromine-intercalated graphite: a new route towards graphene. <i>Journal Physics D: Applied Physics</i> , 2009 , 42, 112003	3	58
279	Effective Hamiltonians for Rapidly Driven Many-Body Lattice Systems: Induced Exchange Interactions and Density-Dependent Hoppings. <i>Physical Review Letters</i> , 2015 , 115, 075301	7.4	57
278	Exchange interactions and frustrated magnetism in single-side hydrogenated and fluorinated graphene. <i>Physical Review B</i> , 2013 , 88,	3.3	57
277	Beyond extended dynamical mean-field theory: Dual boson approach to the two-dimensional extended Hubbard model. <i>Physical Review B</i> , 2014 , 90,	3.3	56
276	Giant magnetodrag in graphene at charge neutrality. Physical Review Letters, 2013, 111, 166601	7.4	53
275	Two-site Kondo effect in atomic chains. <i>Physical Review Letters</i> , 2011 , 107, 106804	7.4	53
274	Optical properties of graphene: The Fermi-liquid approach. <i>Europhysics Letters</i> , 2008 , 84, 37001	1.6	53
273	Dynamical stability of body center cubic iron at the Earth's core conditions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 9962-4	11.5	52
272	Orbital magnetism in transition metal systems: The role of local correlation effects. <i>Europhysics Letters</i> , 2008 , 82, 37001	1.6	52

(2016-2004)

271	Parity effects in spin decoherence. <i>Physical Review B</i> , 2004 , 70,	3.3	52
270	Quantum Solid-State Physics. Springer Series in Solid-state Sciences, 1989,	0.4	52
269	Dangling bonds and magnetism of grain boundaries in graphene. <i>Physical Review B</i> , 2012 , 85,	3.3	51
268	Quantum oscillations without quantum coherence. <i>Physical Review Letters</i> , 2003 , 90, 210401	7.4	51
267	Ab initio theory of dynamical core-hole screening in graphite from x-ray absorption spectra. <i>Physical Review Letters</i> , 2005 , 94, 167401	7.4	50
266	Importance of correlation effects in hcp iron revealed by a pressure-induced electronic topological transition. <i>Physical Review Letters</i> , 2013 , 110, 117206	7.4	49
265	Dual fermion approach to susceptibility of correlated lattice fermions. <i>Physical Review B</i> , 2008 , 77,	3.3	49
264	Anisotropy of thermal expansion and electronic topological transitions in Zn and Cd under pressure. <i>Physical Review B</i> , 1999 , 59, 4557-4560	3.3	49
263	Microscopic Origin of Heisenberg and Non-Heisenberg Exchange Interactions in Ferromagnetic bcc Fe. <i>Physical Review Letters</i> , 2016 , 116, 217202	7.4	48
262	Dirac points with giant spin-orbit splitting in the electronic structure of two-dimensional transition-metal carbides. <i>Physical Review B</i> , 2015 , 92,	3.3	47
261	Effects of spin-dependent quasiparticle renormalization in Fe, Co, and Ni photoemission spectra:An experimental and theoretical study. <i>Physical Review B</i> , 2012 , 85,	3.3	47
260	Mechanisms of decoherence in weakly anisotropic molecular magnets. <i>Physical Review Letters</i> , 2000 , 84, 3458-61	7.4	47
259	Physical foundations of biological complexity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E8678-E8687	11.5	46
258	Nature of non-magnetic strongly-correlated state in Eplutonium. <i>Europhysics Letters</i> , 2006 , 74, 479-485	1.6	46
257	Standard model of the rare earths analyzed from the Hubbard I approximation. <i>Physical Review B</i> , 2016 , 94,	3.3	45
256	Magnetic susceptibility, exchange interactions and spin-wave spectra in the local spin density approximation. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, 7439-7446	1.8	45
255	Peculiarities of defect structure and mechanical properties of iridium: Results of ab initio electronic structure calculations. <i>Physical Review B</i> , 2000 , 62, 7802-7808	3.3	45
254	Quantum transport in Sierpinski carpets. <i>Physical Review B</i> , 2016 , 93,	3.3	44

253	Correlated band theory of spin and orbital contributions to Dzyaloshinskii-Moriya interactions. <i>Physical Review B</i> , 2010 , 82,	3.3	44
252	Superperturbation solver for quantum impurity models. <i>Europhysics Letters</i> , 2009 , 85, 27007	1.6	43
251	Laser-induced topological transitions in phosphorene with inversion symmetry. <i>Physical Review B</i> , 2016 , 93,	3.3	42
250	Magnetism and Interaction-Induced Gap Opening in Graphene with Vacancies or Hydrogen Adatoms: Quantum Monte Carlo Study. <i>Physical Review Letters</i> , 2015 , 114, 246801	7.4	42
249	Plasmons in strongly correlated systems: spectral weight transfer and renormalized dispersion. <i>Physical Review Letters</i> , 2014 , 113, 246407	7.4	42
248	Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. <i>Nano Letters</i> , 2020 , 20, 62	2 5-6.3 3	442
247	Electronic structure of a Mn12 molecular magnet: Theory and experiment. <i>Physical Review B</i> , 2007 , 75,	3.3	41
246	Role of direct exchange and Dzyaloshinskii-Moriya interactions in magnetic properties of graphene derivatives: C2F and C2H. <i>Physical Review B</i> , 2016 , 94,	3.3	40
245	Theory of plasmonic effects in nonlinear optics: The case of graphene. <i>Physical Review B</i> , 2017 , 95,	3.3	39
244	Scaling picture of magnetism formation in the anomalous f-electron systems: Interplay of the Kondo effect and spin dynamics. <i>Physical Review B</i> , 1997 , 56, 8109-8128	3.3	39
243	Structure, elastic moduli, and thermodynamics of sodium and potassium at ultrahigh pressures. <i>Physical Review B</i> , 2000 , 61, 14420-14424	3.3	39
242	Observing Imperfection in Atomic Interfaces for van der Waals Heterostructures. <i>Nano Letters</i> , 2017 , 17, 5222-5228	11.5	39
241	Many-body orbital paramagnetism in doped graphene sheets. <i>Physical Review Letters</i> , 2010 , 104, 22550	03 _{7.4}	38
240	Density functional based simulations of proton permeation of graphene and hexagonal boron nitride. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 5813-5817	3.6	37
239	Quantum elasticity of graphene: Thermal expansion coefficient and specific heat. <i>Physical Review B</i> , 2016 , 94,	3.3	37
238	Thermodynamics of quantum crystalline membranes. <i>Physical Review B</i> , 2014 , 89,	3.3	36
237	Some types of instabilities in the electron energy spectrum of the polar model of the crystal. I. The maximum-polarity state. <i>Journal of Physics C: Solid State Physics</i> , 1979 , 12, 2043-2053		36
236	Inevitability of the emergence and persistence of genetic parasites caused by evolutionary instability of parasite-free states. <i>Biology Direct</i> , 2017 , 12, 31	7.2	35

(2015-2016)

235	Self-consistent dual boson approach to single-particle and collective excitations in correlated systems. <i>Physical Review B</i> , 2016 , 93,	3.3	35
234	Half-metallic ferromagnetism induced by dynamic electron correlations in VAs. <i>Physical Review Letters</i> , 2006 , 96, 197203	7.4	35
233	A new 2D monolayer BiXene, M2C (M = Mo, Tc, Os). <i>Nanoscale</i> , 2016 , 8, 15753-62	7.7	35
232	Defect-induced ferromagnetism in fullerenes. <i>European Physical Journal B</i> , 2009 , 68, 529-535	1.2	33
231	Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene. <i>Nature Communications</i> , 2020 , 11, 371	17.4	32
230	. Journal of Physics Condensed Matter, 1989 , 1, 5319-5335	1.8	32
229	Dodecagonal bilayer graphene quasicrystal and its approximants. <i>Npj Computational Materials</i> , 2019 , 5,	10.9	32
228	Electronic correlations in nodal-line semimetals. <i>Nature Physics</i> , 2020 , 16, 636-641	16.2	31
227	Phonons and electron-phonon coupling in graphene-h-BN heterostructures. <i>Annalen Der Physik</i> , 2014 , 526, 381-386	2.6	31
226	Dynamical and Reversible Control of Topological Spin Textures. <i>Physical Review Letters</i> , 2017 , 118, 157	2 9 14	31
226	Dynamical and Reversible Control of Topological Spin Textures. <i>Physical Review Letters</i> , 2017 , 118, 157. Lattice expansion in seamless bilayer graphene constrictions at high bias. <i>Nano Letters</i> , 2012 , 12, 4455-	, ,	31
		, ,	
225	Lattice expansion in seamless bilayer graphene constrictions at high bias. <i>Nano Letters</i> , 2012 , 12, 4455-Field-effect control of tunneling barrier height by exploiting graphene's low density of states.	911.5	31
225	Lattice expansion in seamless bilayer graphene constrictions at high bias. <i>Nano Letters</i> , 2012 , 12, 4455-Field-effect control of tunneling barrier height by exploiting graphene's low density of states. <i>Journal of Applied Physics</i> , 2013 , 113, 136502	911.5 2.5	31
225 224 223	Lattice expansion in seamless bilayer graphene constrictions at high bias. <i>Nano Letters</i> , 2012 , 12, 4455-Field-effect control of tunneling barrier height by exploiting graphene's low density of states. <i>Journal of Applied Physics</i> , 2013 , 113, 136502 Cluster dual fermion approach to nonlocal correlations. <i>JETP Letters</i> , 2008 , 86, 677-682	911.5 2.5 1.2	31 31 31
225 224 223 222	Lattice expansion in seamless bilayer graphene constrictions at high bias. <i>Nano Letters</i> , 2012 , 12, 4455-Field-effect control of tunneling barrier height by exploiting graphene's low density of states. <i>Journal of Applied Physics</i> , 2013 , 113, 136502 Cluster dual fermion approach to nonlocal correlations. <i>JETP Letters</i> , 2008 , 86, 677-682 Orbitally-resolved ferromagnetism of monolayer CrI3. <i>2D Materials</i> , 2020 , 7, 025036 Generalization properties of neural network approximations to frustrated magnet ground states.	911.5 2.5 1.2	31 31 31 30
225 224 223 222 221	Lattice expansion in seamless bilayer graphene constrictions at high bias. <i>Nano Letters</i> , 2012 , 12, 4455-Field-effect control of tunneling barrier height by exploiting graphene's low density of states. <i>Journal of Applied Physics</i> , 2013 , 113, 136502 Cluster dual fermion approach to nonlocal correlations. <i>JETP Letters</i> , 2008 , 86, 677-682 Orbitally-resolved ferromagnetism of monolayer CrI3. <i>2D Materials</i> , 2020 , 7, 025036 Generalization properties of neural network approximations to frustrated magnet ground states. <i>Nature Communications</i> , 2020 , 11, 1593	911.5 2.5 1.2 5.9	31 31 31 30 30

217	Conductance quantization in graphene nanoribbons: adiabatic approximation. <i>European Physical Journal B</i> , 2007 , 57, 225-228	1.2	30
216	Chirality-Dependent Transmission of Spin Waves through Domain Walls. <i>Physical Review Letters</i> , 2016 , 116, 147204	7.4	29
215	On the description of the antiferromagnetism without anomalous averages. <i>European Physical Journal B</i> , 1986 , 62, 201-205	1.2	29
214	Quantum theory as the most robust description of reproducible experiments. <i>Annals of Physics</i> , 2014 , 347, 45-73	2.5	28
213	Origin of the Canonical Ensemble: Thermalization with Decoherence. <i>Journal of the Physical Society of Japan</i> , 2009 , 78, 094003	1.5	28
212	Anharmonic magnetic deformation of self-assembled molecular nanocapsules. <i>Physical Review Letters</i> , 2007 , 98, 146101	7.4	28
211	Holographic local quench and effective complexity. <i>Journal of High Energy Physics</i> , 2018 , 2018, 1	5.4	28
210	Band Filling Control of the Dzyaloshinskii-Moriya Interaction in Weakly Ferromagnetic Insulators. <i>Physical Review Letters</i> , 2017 , 119, 167201	7.4	26
209	Mechanics of thermally fluctuating membranes. Npj 2D Materials and Applications, 2017, 1,	8.8	26
208	1/N expansion for critical exponents of magnetic phase transitions in the CPN-1 model for 2. <i>Physical Review B</i> , 1996 , 54, 11953-11956	3.3	26
207	Excitonic Instability and Pseudogap Formation in Nodal Line Semimetal ZrSiS. <i>Physical Review Letters</i> , 2018 , 120, 216401	7.4	26
206	Temperature-driven ⊞o-Фhase transformation in Ti, Zr and Hf from first-principles theory combined with lattice dynamics. <i>Europhysics Letters</i> , 2011 , 96, 66006	1.6	25
205	Approach to Equilibrium in Nano-scale Systems at Finite Temperature. <i>Journal of the Physical Society of Japan</i> , 2010 , 79, 124005	1.5	25
204	A new route towards uniformly functionalized single-layer graphene. <i>Journal Physics D: Applied Physics</i> , 2010 , 43, 175302	3	25
203	Non-spherical shapes of capsules within a fourth-order curvature model. <i>European Physical Journal E</i> , 2010 , 32, 223-8	1.5	25
202	On the microscopic model of Fe and Ni: the possible breakdown of the ferromagnetic fermi-liquid picture. <i>Journal of Physics Condensed Matter</i> , 1993 , 5, 8763-8772	1.8	25
201	Itinerant electron ferromagnetism in narrow energy bands. <i>Journal of Physics C: Solid State Physics</i> , 1988 , 21, 5521-5537		25
200	Large out-of-plane piezoelectricity of oxygen functionalized MXenes for ultrathin piezoelectric cantilevers and diaphragms. <i>Nano Energy</i> , 2019 , 65, 104058	17.1	24

199	Flexuron: A self-trapped state of electron in crystalline membranes. <i>Physical Review B</i> , 2010 , 82,	3.3	24
198	Effect of ligand substitution on the exchange interactions in {Mn(12)}-type single-molecule magnets. <i>Inorganic Chemistry</i> , 2010 , 49, 10902-6	5.1	24
197	Ligand-controlled magnetic interactions in Mn(4) clusters. <i>Inorganic Chemistry</i> , 2009 , 48, 11903-8	5.1	24
196	On the self-consistent spin-wave theory of frustrated Heisenberg antiferromagnets. <i>Journal of Physics Condensed Matter</i> , 1992 , 4, 5227-5237	1.8	24
195	Metal-insulator transition and antiferromagnetism in the ground state of the Hubbard model. Journal of Physics C: Solid State Physics, 1984 , 17, 4291-4308		24
194	Large positive in-plane magnetoresistance induced by localized states at nanodomain boundaries in graphene. <i>Nature Communications</i> , 2017 , 8, 14453	17.4	23
193	Double occupancy in dynamical mean-field theory and the dual boson approach. <i>Physical Review B</i> , 2016 , 93,	3.3	23
192	Enhanced screening in chemically functionalized graphene. <i>Physical Review Letters</i> , 2012 , 109, 156601	7.4	23
191	Scaling theory of magnetic ordering in the Kondo lattices with anisotropic exchange interactions. <i>Physical Review B</i> , 1999 , 59, 9348-9356	3.3	23
190	Resonant optical second harmonic generation in graphene-based heterostructures. <i>Physical Review B</i> , 2019 , 99,	3.3	22
189	Correlation-induced single-flux-quantum penetration in quantum rings. <i>Nature Physics</i> , 2010 , 6, 173-17	7 16.2	22
188	Metal-insulator transition by suppression of spin fluctuations. <i>Europhysics Letters</i> , 2009 , 85, 37006	1.6	22
187	High-Pressure Synthesis of Dirac Materials: Layered van der Waals Bonded BeN_{4} Polymorph. <i>Physical Review Letters</i> , 2021 , 126, 175501	7.4	22
186	Towards the ab initio based theory of phase transformations in iron and steel. <i>Physics of Metals and Metallography</i> , 2017 , 118, 362-388	1.2	21
185	Coulomb interactions and screening effects in few-layer black phosphorus: a tight-binding consideration beyond the long-wavelength limit. <i>2D Materials</i> , 2017 , 4, 025064	5.9	21
184	Quantum Monte Carlo study of electrostatic potential in graphene. <i>Physical Review B</i> , 2018 , 97,	3.3	21
183	Correlated electrons step by step: itinerant-to-localized transition of fe impurities in free-electron metal hosts. <i>Physical Review Letters</i> , 2010 , 104, 117601	7.4	21
182	Initial and final state effects in the x-ray absorption process of La1\(\mathbb{B}\)SrxMnO3. <i>Physical Review B</i> , 2003 , 68,	3.3	21

181	Experimental observation and theoretical description of the pure Fano effect in the valence-band photoemission of ferromagnets. <i>Physical Review Letters</i> , 2005 , 95, 166401	7.4	21
180	Quantum fluctuations in many-spin magnetic molecules. <i>Physical Review B</i> , 1998 , 58, R14733-R14736	3.3	21
179	Stochastic approach to simulation of lattice vibrations in strongly anharmonic crystals: Anomalous frequency dependence of the dynamic structure factor. <i>Physical Review B</i> , 1996 , 54, 3286-3294	3.3	21
178	An orbitally derived single-atom magnetic memory. <i>Nature Communications</i> , 2018 , 9, 3904	17.4	21
177	Precursors of the insulating state in the square-lattice Hubbard model. <i>Physical Review B</i> , 2018 , 97,	3.3	20
176	Competing Coulomb and electronphonon interactions in NbS2. <i>Npj Quantum Materials</i> , 2018 , 3,	5	20
175	Effective Heisenberg Model and Exchange Interaction for Strongly Correlated Systems. <i>Physical Review Letters</i> , 2018 , 121, 037204	7.4	20
174	Many-body renormalization of the minimal conductivity in graphene. <i>Physical Review Letters</i> , 2014 , 112, 116604	7.4	20
173	The Bethe-Slater curve revisited; new insights from electronic structure theory. <i>Scientific Reports</i> , 2017 , 7, 4058	4.9	20
172	Electronic structure and exchange interactions in V15 magnetic molecules: LDA+U results. <i>Journal of Applied Physics</i> , 2003 , 93, 7080-7082	2.5	20
171	Phonon spectra, interatomic interaction potentials and simulation of lattice defects in iridium and rhodium. <i>The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties</i> , 1994 , 69, 1183-1195		20
170	Phonon-pump extreme-ultraviolet-photoemission probe in graphene: anomalous heating of Dirac carriers by lattice deformation. <i>Physical Review Letters</i> , 2015 , 114, 125503	7.4	19
169	Edge Plasmons in Two-Component Electron Liquids in the Presence of Pseudomagnetic Fields. <i>Physical Review Letters</i> , 2016 , 117, 196803	7.4	19
168	From local to nonlocal correlations: The Dual Boson perspective. <i>Physical Review B</i> , 2016 , 94,	3.3	19
167	Pressure-induced phonon softening and electronic topological transition in HgBa2CuO4. <i>Physical Review B</i> , 1996 , 54, 1313-1319	3.3	19
166	On the mean-field theory of magnetically ordered Kondo lattices. <i>Journal of Physics Condensed Matter</i> , 1990 , 2, 8715-8719	1.8	19
165	Strong Electron-Phonon Coupling and its Influence on the Transport and Optical Properties of Hole-Doped Single-Layer InSe. <i>Physical Review Letters</i> , 2019 , 123, 176401	7.4	18
164	Non-quasiparticle effects in half-metallic ferromagnets. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 315201	1.8	18

(2015-2006)

163	Multiplet effects in the electronic structure of heavy rare-earth metals. <i>Journal of Physics Condensed Matter</i> , 2006 , 18, 6329-6335	1.8	18
162	Kondo resonance for orbitally degenerate systems. <i>Physical Review Letters</i> , 2004 , 93, 236403	7.4	18
161	Electron states in the s-f exchange model of a ferromagnetic semiconductor in the spin wave region. <i>Journal of Physics C: Solid State Physics</i> , 1984 , 17, 669-681		18
160	Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. <i>Nature</i> , 2019 , 574, 219-222	50.4	18
159	EMn at the border between weak and strong correlations. European Physical Journal B, 2009, 72, 473-47	781.2	17
158	Symmetry Assumptions, Kramers?Kronig Transformation and Analytical Continuation in Ab Initio Calculations of Optical Conductivities. <i>Physica Scripta</i> , 2004 , T109, 170	2.6	17
157	Relativistic exchange interactions in CrX3 (X=Cl, Br, I) monolayers. <i>Physical Review B</i> , 2020 , 102,	3.3	17
156	Racah materials: role of atomic multiplets in intermediate valence systems. <i>Scientific Reports</i> , 2015 , 5, 15429	4.9	16
155	Peculiarities of phonon spectra and lattice heat capacity in Ir aned Rh. <i>The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties</i> , 1997 , 75, 389-406		16
154	Fluctuation-induced nucleation and dynamics of kinks on dislocation: Soliton and oscillation regimes in the two-dimensional Frenkel-Kontorova model. <i>Physical Review B</i> , 1999 , 60, 1013-1018	3.3	16
153	The Physics of Graphene 2020 ,		16
152	Electron-phonon properties, structural stability, and superconductivity of doped antimonene. <i>Physical Review B</i> , 2019 , 99,	3.3	16
151	Plasmon confinement in fractal quantum systems. <i>Physical Review B</i> , 2018 , 97,	3.3	16
150	Towards physical principles of biological evolution. <i>Physica Scripta</i> , 2018 , 93, 043001	2.6	15
149	Anomalous Magnetothermopower in a Metallic Frustrated Antiferromagnet. <i>Physical Review Letters</i> , 2016 , 116, 087202	7.4	15
148	Exchange interactions in transition metal oxides: the role of oxygen spin polarization. <i>Journal of Physics Condensed Matter</i> , 2017 , 29, 335801	1.8	15
147	Optical conductivity of a quantum electron gas in a Sierpinski carpet. <i>Physical Review B</i> , 2017 , 96,	3.3	15
146	Ultralong-range order in the Fermi-Hubbard model with long-range interactions. <i>Physical Review B</i> , 2015 , 92,	3.3	15

145	Motion of domain walls and the dynamics of kinks in the magnetic Peierls potential. <i>Physical Review Letters</i> , 2014 , 113, 217202	7.4	15
144	Thermodynamics of a two-dimensional Heisenberg ferromagnet with dipolar interaction. <i>Physical Review B</i> , 2005 , 71,	3.3	15
143	Non-Fermi-liquid behavior in Kondo lattices induced by peculiarities of magnetic ordering and spin dynamics. <i>Physical Review B</i> , 2000 , 61, 14640-14646	3.3	15
142	On the Nature of the Rhenium Effect. Peculiarities of the Band Structure and Elastic Moduli of Wand Mo-Based Alloys. <i>Physica Status Solidi (B): Basic Research</i> , 1991 , 164, 185-193	1.3	15
141	On the theory of the Mott transition in the paramagnetic phase. <i>Journal of Physics Condensed Matter</i> , 1991 , 3, 1475-1491	1.8	15
140	Magnetic polaron and antiferromagnetic-ferromagnetic transition in doped bilayer CrI3. <i>Physical Review B</i> , 2020 , 101,	3.3	15
139	Spin-orbit coupling and magnetic interactions in Si(111):{C,Si,Sn,Pb}. <i>Physical Review B</i> , 2016 , 94,	3.3	15
138	Temperature-Induced Lifshitz Transition and Possible Excitonic Instability in ZrSiSe. <i>Physical Review Letters</i> , 2020 , 124, 236601	7.4	14
137	Capturing nonlocal interaction effects in the Hubbard model: Optimal mappings and limits of applicability. <i>Physical Review B</i> , 2016 , 94,	3.3	14
136	Giant magnetic susceptibility of gold nanorods detected by magnetic alignment. <i>Physical Review Letters</i> , 2013 , 111, 127202	7.4	14
135	Anisotropic Two-Dimensional Screening at the Surface of Black Phosphorus. <i>Physical Review Letters</i> , 2019 , 123, 216403	7.4	14
134	Electron correlation effects on exchange interactions and spin excitations in 2D van der Waals materials. <i>Npj Computational Materials</i> , 2021 , 7,	10.9	14
133	Two-particle Fermi liquid parameters at the Mott transition: Vertex divergences, Landau parameters, and incoherent response in dynamical mean-field theory. <i>Physical Review B</i> , 2019 , 99,	3.3	13
132	Quantum theory as a description of robust experiments: Derivation of the Pauli equation. <i>Annals of Physics</i> , 2015 , 359, 166-186	2.5	13
131	Misfit stabilized embedded nanoparticles in metallic alloys. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 27249-57	3.6	13
130	Electronic phase transitions in a one-dimensional spinless fermion model with competing interactions. <i>Physical Review B</i> , 1997 , 56, 12939-12946	3.3	13
129	Pre-transition softening and anomalous pressure dependence of shear constants in alkali and alkaline-earth metals due to band-structure effects. <i>Journal of Physics Condensed Matter</i> , 1991 , 3, 1409-	·1 ¹ 428	13
128	Current carriers in a quantum two-dimensional antiferromagnet. <i>Journal of Physics Condensed Matter</i> , 1991 , 3, 6439-6453	1.8	13

127	Some types of instabilities in the electron energy spectrum of the polar model of the crystal. II. The criterion of stability of a metallic state. <i>Journal of Physics C: Solid State Physics</i> , 1979 , 12, 2055-2056		13
126	Plaquette valence bond theory of high-temperature superconductivity. <i>Physical Review B</i> , 2016 , 94,	3.3	13
125	Hall conductivity of a Sierpi⊠ki carpet. <i>Physical Review B</i> , 2020 , 101,	3.3	12
124	Impact of Many-Body Effects on Landau Levels in Graphene. <i>Physical Review Letters</i> , 2018 , 120, 187701	7.4	12
123	Breakdown of Luttinger liquid state in a one-dimensional frustrated spinless fermion model. <i>Physical Review B</i> , 2000 , 61, 15534-15537	3.3	12
122	Fermi-liquid theory of electronic topological transitions and screening anomalies in metals. <i>Physical Review B</i> , 2000 , 61, 1643-1645	3.3	12
121	Simultaneous loss of interlayer coherence and long-range magnetism in quasi-two-dimensional PdCrO. <i>Nature Communications</i> , 2017 , 8, 15001	17.4	11
120	Quantum capacitance and Landau parameters of massless Dirac fermions in graphene. <i>Annalen Der Physik</i> , 2014 , 526, 359-365	2.6	11
119	Equilibration and thermalization of classical systems. New Journal of Physics, 2013, 15, 033009	2.9	11
118	Dynamical stabilization of the body centered cubic phase in lanthanum and thorium by phonon-phonon interaction. <i>Journal of Physics Condensed Matter</i> , 2009 , 21, 175402	1.8	11
117	Ab initio instanton molecular dynamics for the description of tunneling phenomena. <i>Physical Review A</i> , 1996 , 54, 4802-4809	2.6	11
116	Effective Ising model for correlated systems with charge ordering. <i>Physical Review B</i> , 2019 , 99,	3.3	10
115	Self-induced spin glass state in elemental and crystalline neodymium. Science, 2020, 368,	33.3	10
114	Energetics, barriers and vibrational spectra of partially and fully hydrogenated hexagonal boron nitride. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 19359-67	3.6	10
113	Electron spectrum, thermodynamics, and transport in antiferromagnetic metals at low temperatures. <i>Physical Review B</i> , 2000 , 62, 5647-5656	3.3	10
112	High-resistivity alloys as highly correlated disordered systems. <i>The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties</i> , 1982 , 46, 357-3	364	10
111	Dynamical control of electron-phonon interactions with high-frequency light. <i>Physical Review B</i> , 2017 , 95,	3.3	9
110	Power-law energy level spacing distributions in fractals. <i>Physical Review B</i> , 2019 , 99,	3.3	9

109	Stripe glasses in ferromagnetic thin films. <i>Physical Review B</i> , 2016 , 93,	3.3	9
108	Polarization of graphene in a strong magnetic field beyond the Dirac cone approximation. <i>Solid State Communications</i> , 2012 , 152, 1446-1455	1.6	9
107	Electronic, magnetic and transport properties of graphene ribbons terminated by nanotubes. <i>New Journal of Physics</i> , 2012 , 14, 123012	2.9	9
106	Solvent-driven formation of bolaamphiphilic vesicles. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 30-2	3.4	9
105	Non-quasiparticle states in the core level spectra of ferromagnetic semiconductors and half-metallic ferromagnets. <i>European Physical Journal B</i> , 2005 , 43, 479-487	1.2	9
104	Pseudo-marginal-Fermi-liquid behavior in antiferromagnetic metals. <i>Physical Review B</i> , 1995 , 52, 6181-6	51 585 1	9
103	On the Possibility of Describing Lattice Properties of Iridium in Terms of Pseudopotential Theory. <i>Physica Status Solidi (B): Basic Research</i> , 1990 , 158, 441-455	1.3	9
102	Thermodynamics of evolution and the origin of life <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	11.5	9
101	Self-Induced Glassiness and Pattern Formation in Spin Systems Subject to Long-Range Interactions. <i>Physical Review Letters</i> , 2016 , 117, 137201	7.4	8
100	Chemistry. Just add water. <i>Science</i> , 2010 , 329, 1157-8	33.3	8
100 99	Chemistry. Just add water. <i>Science</i> , 2010 , 329, 1157-8 Spectroscopic observation of polaron-lattice band structure in the conducting polymer polyaniline. <i>Journal of Physics Condensed Matter</i> , 2001 , 13, 3907-3912	33.3	8
	Spectroscopic observation of polaron-lattice band structure in the conducting polymer polyaniline.		
99	Spectroscopic observation of polaron-lattice band structure in the conducting polymer polyaniline. Journal of Physics Condensed Matter, 2001, 13, 3907-3912 Real-space first-principles electronic structure of edge dislocations: NiAl. Philosophical Magazine	1.8	8
99 98	Spectroscopic observation of polaron-lattice band structure in the conducting polymer polyaniline. Journal of Physics Condensed Matter, 2001, 13, 3907-3912 Real-space first-principles electronic structure of edge dislocations: NiAl. Philosophical Magazine Letters, 1998, 78, 427-433 Pseudo-Kondo Lattice State in YBa 2 Cu 3 O 7-IDwing to Strong Anharmonicity of Oxygen	1.8	8
99 98 97	Spectroscopic observation of polaron-lattice band structure in the conducting polymer polyaniline. Journal of Physics Condensed Matter, 2001, 13, 3907-3912 Real-space first-principles electronic structure of edge dislocations: NiAl. Philosophical Magazine Letters, 1998, 78, 427-433 Pseudo-Kondo Lattice State in YBa 2 Cu 3 O 7-IDwing to Strong Anharmonicity of Oxygen Potentials. Europhysics Letters, 1991, 15, 649-654	1.8	8 8 8
99 98 97 96	Spectroscopic observation of polaron-lattice band structure in the conducting polymer polyaniline. <i>Journal of Physics Condensed Matter</i> , 2001 , 13, 3907-3912 Real-space first-principles electronic structure of edge dislocations: NiAl. <i>Philosophical Magazine Letters</i> , 1998 , 78, 427-433 Pseudo-Kondo Lattice State in YBa 2 Cu 3 O 7-IDwing to Strong Anharmonicity of Oxygen Potentials. <i>Europhysics Letters</i> , 1991 , 15, 649-654 Scaling behavior of crystalline membranes: An Expansion approach. <i>Nuclear Physics B</i> , 2020 , 956, 11504 Decoherence wave in magnetic systems and creation of NBI antiferromagnetic state by	1.8	8 8 8 7
99 98 97 96	Spectroscopic observation of polaron-lattice band structure in the conducting polymer polyaniline. <i>Journal of Physics Condensed Matter</i> , 2001 , 13, 3907-3912 Real-space first-principles electronic structure of edge dislocations: NiAl. <i>Philosophical Magazine Letters</i> , 1998 , 78, 427-433 Pseudo-Kondo Lattice State in YBa 2 Cu 3 O 7-IDwing to Strong Anharmonicity of Oxygen Potentials. <i>Europhysics Letters</i> , 1991 , 15, 649-654 Scaling behavior of crystalline membranes: An Expansion approach. <i>Nuclear Physics B</i> , 2020 , 956, 11504 Decoherence wave in magnetic systems and creation of NBI antiferromagnetic state by measurement. <i>Physical Review B</i> , 2016 , 93, On the feasibility of saltational evolution. <i>Proceedings of the National Academy of Sciences of the</i>	1.8 1 1.6 40.8	8 8 8 7 7

(2013-2000)

91	Many-spin effects and tunneling properties of magnetic molecules. <i>Journal of Applied Physics</i> , 2000 , 87, 6268-6270	2.5	7
90	Correlation effects at the surface of an itinerant electron ferromagnet. <i>Journal of Physics Condensed Matter</i> , 1992 , 4, 3289-3294	1.8	7
89	Pseudogap formation and coexistence of localised and extended states in disordered transition metal alloys. <i>Journal of Physics C: Solid State Physics</i> , 1986 , 19, 5173-5185		7
88	Energy gap in intermediate valence compounds. <i>Journal of Physics C: Solid State Physics</i> , 1984 , 17, L699-	-L703	7
87	Quantifying the interplay between fine structure and geometry of an individual molecule on a surface. <i>Physical Review B</i> , 2021 , 103,	3.3	7
86	Gate-tunable infrared plasmons in electron-doped single-layer antimony. <i>Physical Review B</i> , 2018 , 98,	3.3	7
85	First-order metal-insulator transitions in the extended Hubbard model due to self-consistent screening of the effective interaction. <i>Physical Review B</i> , 2018 , 97,	3.3	6
84	Effects of structural and chemical disorders on the vis/UV spectra of carbonaceous interstellar grains. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 432, 2962-2974	4.3	6
83	Theory of optically forbidden d-d transitions in strongly correlated crystals. <i>Journal of Physics Condensed Matter</i> , 2010 , 22, 382201	1.8	6
82	Thermal expansion and the equation of state of Ir and Rh. <i>The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties</i> , 1997 , 75, 407-418	3	6
81	Intrinsic nanoscale inhomogeneity in ordering systems due to elastic-mediated interactions. <i>Europhysics Letters</i> , 2007 , 80, 66001	1.6	6
80	Self-consistent spin-wave theory of two-dimensional magnets with impurities. <i>Physical Review B</i> , 1999 , 60, 14779-14786	3.3	6
79	Many-spin model and the spin Hamiltonian of Mn12 clusters. <i>Journal of Applied Physics</i> , 1999 , 85, 4533-	4 53 5	6
78	A scaling approach to the theory of magnetic Kondo lattices. <i>Journal of Physics Condensed Matter</i> , 1992 , 4, 9661-9672	1.8	6
77	Toward a theory of evolution as multilevel learning <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	11.5	6
76	Pressure and electric field dependence of quasicrystalline electronic states in 30? twisted bilayer graphene. <i>Physical Review B</i> , 2020 , 102,	3.3	5
75	Logical inference derivation of the quantum theoretical description of Stern©erlach and EinsteinPodolskyRosenBohm experiments. <i>Annals of Physics</i> , 2018 , 396, 96-118	2.5	5
74	Effect of magnetism on kinetics of transformation and pattern formation in iron. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 135401	1.8	5

73	Close packing of atoms, geometric frustrations and the formation of heterogeneous states in crystals. <i>Journal of Physics Condensed Matter</i> , 1997 , 9, 7837-7844	1.8	5
72	Multiscale structural complexity of natural patterns. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 30241-30251	11.5	5
71	Origin of the vortex displacement field in twisted bilayer graphene. <i>Physical Review B</i> , 2020 , 102,	3.3	5
70	Nonequilibrium itinerant-electron magnetism: A time-dependent mean-field theory. <i>Physical Review B</i> , 2016 , 94,	3.3	5
69	Atom-by-atom construction of attractors in a tunable finite size spin array. <i>New Journal of Physics</i> , 2020 , 22, 023038	2.9	4
68	Topological Matter: Graphene and Superfluid (^3)He. <i>Journal of Low Temperature Physics</i> , 2014 , 175, 655-666	1.3	4
67	In-plane magnetic textures at the surface of topological insulators. <i>Europhysics Letters</i> , 2013 , 104, 1700	11.6	4
66	The effect of electronic localized states at dislocations on the Ehemicallimpurity-dislocation interaction. <i>The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties</i> , 1996 , 73, 845-860		4
65	Electronic contributions to spin-wave characteristics in antiferromagnetic metals. <i>Physical Review B</i> , 1996 , 53, 14008-14011	3.3	4
64	Non-Heisenberg covalent magnetism in iron oxide clusters. <i>Physical Review Materials</i> , 2018 , 2,	3.2	4
63	Direct Observation of Incommensurate-Commensurate Transition in Graphene-hBN Heterostructures via Optical Second Harmonic Generation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 27758-27764	9.5	4
62	Nanoskyrmion engineering with sp-electron materials: Sn monolayer on a SiC(0001) surface. <i>Physical Review B</i> , 2018 , 98,	3.3	4
61	Unconventional magnetism and electronic state in the frustrated layered system PdCrO2. <i>Physical Review B</i> , 2020 , 102,	3.3	3
60	Exactly solvable model of strongly correlated d-wave superconductivity. <i>Physical Review B</i> , 2020 , 101,	3.3	3
59	Role of the d-f Coulomb interaction in intermediate valence and Kondo systems: a numerical renormalization group study. <i>European Physical Journal B</i> , 2007 , 55, 377-382	1.2	3
58	Thermodynamics of the metal-insulator transition in the extended Hubbard model. <i>SciPost Physics</i> , 2019 , 6,	6.1	3
57	Random phase approximation for gapped systems: Role of vertex corrections and applicability of the constrained random phase approximation. <i>Physical Review B</i> , 2021 , 104,	3.3	3
56	Heisenberg-exchange-free nanoskyrmion mosaic. <i>Journal of Physics Condensed Matter</i> , 2019 , 31, 17LTO	11.8	3

55	Separation of conditions as a prerequisite for quantum theory. <i>Annals of Physics</i> , 2019 , 403, 112-135	2.5	2
54	Thermal ripples in bilayer graphene. <i>Physical Review B</i> , 2020 , 102,	3.3	2
53	Nonequilibrium dual-boson approach. <i>Physical Review B</i> , 2020 , 101,	3.3	2
52	Antiferromagnetic order without recourse to staggered fields. <i>Physical Review B</i> , 2018 , 98,	3.3	2
51	Quantum Transport via Evanescent Waves in Undoped Graphene. <i>Journal of Computational and Theoretical Nanoscience</i> , 2011 , 8, 912-918	0.3	2
50	Nonperturbative anharmonic phenomena in crystal lattice dynamics. <i>AIP Conference Proceedings</i> , 2004 ,	Ο	2
49	Polar magneto-optical Kerr effect for low-symmetric ferromagnets. <i>Physical Review B</i> , 2005 , 72,	3.3	2
48	Quantum fluctuations in the vicinity of the spinflop transition in large-spin clusters. <i>Journal of Applied Physics</i> , 1999 , 85, 4530-4532	2.5	2
47	On the Effect of Three-Body Interactions and Proximity of the Fermi Level to the Brillouin Zone Faces on Elastic Modules of Simple Metals. <i>Physica Status Solidi (B): Basic Research</i> , 1990 , 161, 153-164	1.3	2
46	Towards physical principles of biological evolution		2
45	Thermal fluctuations in crystalline membranes with long-range dipole interactions. <i>Annals of Physics</i> , 2020 , 412, 168016	2.5	2
44	Dual fermion method as a prototype of generic reference-system approach for correlated fermions. <i>Annals of Physics</i> , 2020 , 422, 168310	2.5	2
43	Electronic structure of 30? twisted double bilayer graphene. <i>Physical Review B</i> , 2020 , 102,	3.3	2
42	Detecting quantum critical points in the t-[Formula: see text] Fermi-Hubbard model via complex network theory. <i>Scientific Reports</i> , 2020 , 10, 20470	4.9	2
41	Evolution in the weak-mutation limit: Stasis periods punctuated by fast transitions between saddle points on the fitness landscape. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	2
40	Probing the topology of the quantum analog of a classical skyrmion. <i>Physical Review B</i> , 2021 , 103,	3.3	2
39	Scale without conformal invariance in membrane theory. <i>Nuclear Physics B</i> , 2021 , 969, 115482	2.8	2
38	Emergent Quantumness in Neural Networks. <i>Foundations of Physics</i> , 2021 , 51, 1	1.2	2

37	Racah Materials: Role of Atomic Multiplets and Intermediate Valence in f-Electron Systems. <i>MRS Advances</i> , 2016 , 1, 2967-2974	0.7	1
36	Diamagnetism of metallic nanoparticles as a result of strong spin-orbit interaction. <i>Physical Review B</i> , 2019 , 100,	3.3	1
35	Effect of impurities on the growth and morphology of cementite nanowires. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 395001	1.8	1
34	Many-spin calculation of tunneling splittings in Mn12 magnetic molecules. <i>Journal of Applied Physics</i> , 2002 , 91, 7152	2.5	1
33	Linearized spectral decimation in fractals. <i>Physical Review B</i> , 2020 , 102,	3.3	1
32	No waves of intelligent design. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 19639-19640	11.5	1
31	Electron states in a magnetic field 2020 , 24-62		O
30	Phonon-mediated superconductivity in strongly correlated electron systems: A Luttinger Ward functional approach. <i>Annals of Physics</i> , 2020 , 417, 168100	2.5	О
29	Bandwidth renormalization due to the intersite Coulomb interaction. <i>Journal of Physics Condensed Matter</i> , 2019 , 31, 465603	1.8	O
28	Spectrum of Oscillations of the Inhomogeneous Electronic Plasma. <i>Physica Status Solidi (B): Basic Research</i> , 1981 , 104, K75-K78	1.3	О
27	Control of magnetic interactions between surface adatoms via orbital repopulation. <i>2D Materials</i> , 2020 , 7, 045007	5.9	O
26	Quantum dot-like plasmonic modes in twisted bilayer graphene supercells. 2D Materials, 2022, 9, 01400)4 .9	О
25	A DMI Guide to Magnets Micro-World. <i>Journal of Experimental and Theoretical Physics</i> , 2021 , 132, 506-5	16	O
24	Gauge invariance and Ward identities in nonlinear response theory. <i>Annals of Physics</i> , 2021 , 431, 16852	32.5	О
23	Dislocation structure and mobility in the layered semiconductor InSe: a first-principles study. <i>2D Materials</i> , 2021 , 8, 045028	5.9	O
22	Gating Orbital Memory with an Atomic Donor <i>Physical Review Letters</i> , 2022 , 128, 106801	7.4	О
21	The electronic structure of ideal graphene 2020 , 1-23		
20	Quantum transport via evanescent waves 2020 , 63-76		

(1985-2020)

19	The Klein paradox and chiral tunneling 2020 , 77-107	
18	Edges, nanoribbons, and quantum dots 2020 , 108-140	
17	Point defects 2020 , 141-167	
16	Optics and response functions 2020 , 168-192	
15	The Coulomb problem 2020 , 193-212	
14	Crystal lattice dynamics, structure, and thermodynamics 2020 , 213-256	
13	Gauge fields and strain engineering 2020 , 257-278	
12	Scattering mechanisms and transport properties 2020 , 279-325	
11	Spin effects and magnetism 2020 , 326-350	
10	Graphene on hexagonal boron nitride 2020 , 351-378	
10	Graphene on hexagonal boron nitride 2020 , 351-378 Twisted bilayer graphene 2020 , 379-388	
9	Twisted bilayer graphene 2020 , 379-388	1.8
9	Twisted bilayer graphene 2020 , 379-388 Many-body effects in graphene 2020 , 389-400	1.8
9 8 7	Twisted bilayer graphene 2020 , 379-388 Many-body effects in graphene 2020 , 389-400 Structure and magnetism of disordered carbon. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 255301 Topological defects and shape of aromatic self-assembled vesicles. <i>Journal of Physical Chemistry B</i> ,	
9 8 7	Twisted bilayer graphene 2020, 379-388 Many-body effects in graphene 2020, 389-400 Structure and magnetism of disordered carbon. <i>Journal of Physics Condensed Matter</i> , 2013, 25, 255301 Topological defects and shape of aromatic self-assembled vesicles. <i>Journal of Physical Chemistry B</i> , 2009, 113, 10549-51 Reply to the Comment by O. Eriksson and J. M. Wills on Nature of non-magnetic	3.4
9 8 7 6	Twisted bilayer graphene 2020, 379-388 Many-body effects in graphene 2020, 389-400 Structure and magnetism of disordered carbon. <i>Journal of Physics Condensed Matter</i> , 2013, 25, 255301 Topological defects and shape of aromatic self-assembled vesicles. <i>Journal of Physical Chemistry B</i> , 2009, 113, 10549-51 Reply to the Comment by O. Eriksson and J. M. Wills on Nature of non-magnetic strongly-correlated state in Eplutonium Leurophysics Letters, 2006, 76, 172-173 Spin-wave contributions to nuclear magnetic relaxation in magnetic metals. <i>Physical Review B</i> , 1999	3.4 1.6

Two-dimensional dispersion of magnetostatic volume spin waves. *Journal of Physics Condensed Matter*, **2018**, 30, 255803

1.8