Guylene Costentin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7927754/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the Comprehensive Precipitation of Hydroxyapatites Unraveled by a Combined Kinetic–Thermodynamic Approach. Inorganic Chemistry, 2022, 61, 3296-3308.	4.0	7
2	Characterisation and reactivity of oxygen species at the surface of metal oxides. Journal of Catalysis, 2021, 393, 259-280.	6.2	70
3	Development of a thermodynamic approach to assist the control of the precipitation of hydroxyapatites and associated calcium phosphates in open systems. CrystEngComm, 2021, 23, 4857-4870.	2.6	7
4	The Concentration of Bone-Related Organic Additives Drives the Pathway of Apatite Formation. Crystal Growth and Design, 2021, 21, 3994-4004.	3.0	5
5	Synergistic Effect Between Ca 4 V 4 O 14 and Vanadiumâ€Substituted Hydroxyapatite in the Oxidative Dehydrogenation of Propane. ChemCatChem, 2021, 13, 3995-4009.	3.7	3
6	Unraveling the Direct Decomposition of NO <i>_x</i> over Keggin Heteropolyacids and Their Deactivation Using a Combination of Gas-IR/MS and In Situ DRIFT Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 22459-22470.	3.1	7
7	Insights into OCP identification and quantification in the context of apatite biomineralization. CrystEngComm, 2020, 22, 2728-2742.	2.6	20
8	Acidic Properties of Alkaline-Earth Phosphates Determined by an Experimental-Theoretical Approach. Journal of Physical Chemistry C, 2020, 124, 2013-2023.	3.1	3
9	Activation of Câ^'H Bond of Propane by Strong Basic Sites Generated by Bulk Proton Conduction on Vâ€Modified Hydroxyapatites for the Formation of Propene ChemCatChem, 2020, 12, 2506-2521.	3.7	14
10	Comment on "Direct Decomposition of NO _{<i>x</i>} over TiO ₂ Supported Transition Metal Oxides at Low Temperatures― Industrial & Engineering Chemistry Research, 2020, 59, 4835-4837.	3.7	1
11	Controlled Formation of Native Defects in Ultrapure ZnO for the Assignment of Green Emissions to Oxygen Vacancies. Journal of Physical Chemistry C, 2020, 124, 12696-12704.	3.1	39
12	Defect-related multicolour emissions in ZnO smoke: from violet, over green to yellow. Nanoscale, 2019, 11, 5102-5115.	5.6	45
13	Importance of the Nature of the Active Acid/Base Pairs of Hydroxyapatite Involved in the Catalytic Transformation of Ethanol to <i>n</i> â€Butanol Revealed by <i>Operando</i> DRIFTS. ChemCatChem, 2019, 11, 1765-1778.	3.7	31
14	Combined effect of magnesium and amino glutamic acid on the structure of hydroxyapatite prepared by hydrothermal method. Materials Chemistry and Physics, 2018, 212, 21-29.	4.0	15
15	Incorporation of vanadium into the framework of hydroxyapatites: importance of the vanadium content and pH conditions during the precipitation step. Physical Chemistry Chemical Physics, 2017, 19, 9630-9640.	2.8	21
16	Molecular Understanding of the Bulk Composition of Crystalline Nonstoichiometric Hydroxyapatites: Application to the Rationalization of Structure–Reactivity Relationships. European Journal of Inorganic Chemistry, 2016, 2016, 2709-2720.	2.0	19
17	Control of calcium accessibility over hydroxyapatite by post-precipitation steps: influence on the catalytic reactivity toward alcohols. Physical Chemistry Chemical Physics, 2016, 18, 27837-27847.	2.8	30
18	Discrimination of Surface and Bulk Structure of Crystalline Hydroxyapatite Nanoparticles by NMR. Journal of Physical Chemistry C. 2015, 119, 23008-23020.	3.1	55

#	Article	IF	CITATIONS
19	Exploring an alternative route for meixnerite synthesis. The impact of the gaseous environment on the reconstruction of the lamellar structure and the catalytic performances. Applied Clay Science, 2015, 104, 59-65.	5.2	6
20	The genesis of a heterogeneous catalyst: in situ observation of a transition metal complex adsorbing onto an oxide surface in solution. Chemical Communications, 2014, 50, 2409-2411.	4.1	4
21	How Surface Hydroxyls Enhance MgO Reactivity in Basic Catalysis: The Case of Methylbutynol Conversion. ACS Catalysis, 2014, 4, 4004-4014.	11.2	34
22	Insights into the influence of the Ag loading on Al2O3 in the H2-assisted C3H6-SCR of NO. Applied Catalysis B: Environmental, 2014, 156-157, 192-201.	20.2	30
23	In-situ monitoring of transition metal complex adsorption on oxide surfaces during the first stages of supported metal catalyst preparation. Catalysis Today, 2014, 235, 245-249.	4.4	2
24	Identification of Surface Basic Sites and Acid–Base Pairs of Hydroxyapatite. Journal of Physical Chemistry C, 2014, 118, 12744-12757.	3.1	107
25	Influence of natural adsorbates of magnesium oxide on its reactivity in basic catalysis. Physical Chemistry Chemical Physics, 2013, 15, 19870.	2.8	15
26	Role of oxygen vacancies in the basicity of ZnO: From the model methylbutynol conversion to the ethanol transformation application. Applied Catalysis A: General, 2013, 453, 121-129.	4.3	49
27	Origins of the deactivation process in the conversion of methylbutynol on zinc oxide monitored by operando DRIFTS. Catalysis Today, 2013, 205, 67-75.	4.4	18
28	ZnO Oxygen Vacancies Formation and Filling Followed by in Situ Photoluminescence and in Situ EPR. Journal of Physical Chemistry C, 2012, 116, 21297-21307.	3.1	164
29	How to determine IR molar absorption coefficients of co-adsorbed species? Application to methanol adsorption for quantification of MgO basic sites. Physical Chemistry Chemical Physics, 2011, 13, 10797.	2.8	26
30	Identification and Distribution of Surface Ions in Low Coordination of CaO Powders with Photoluminescence Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 751-756.	3.1	3
31	Influence of Magnesium Substitution on the Basic Properties of Hydroxyapatites. Journal of Physical Chemistry C, 2011, 115, 24317-24327.	3.1	52
32	Microcalorimetric and thermodynamic studies of CO2 and methanol adsorption on magnesium oxide. Applied Surface Science, 2011, 257, 6952-6962.	6.1	28
33	Basic reactivity of CaO: investigating active sites under operating conditions. Physical Chemistry Chemical Physics, 2010, 12, 14740.	2.8	27
34	Quantitative Investigation of MgO BrÃ,nsted Basicity: DFT, IR, and Calorimetry Study of Methanol Adsorption. Journal of Physical Chemistry C, 2010, 114, 3008-3016.	3.1	45
35	Mechanism and deactivation process of the conversion of methylbutynol on basic faujasite monitored by operando DRIFTS. Physical Chemistry Chemical Physics, 2010, 12, 937-946.	2.8	15
36	Identification of the OH groups responsible for kinetic basicity on MgO surfaces by 1H MAS NMR. Journal of Catalysis, 2009, 268, 175-179.	6.2	36

#	Article	IF	CITATIONS
37	Insights into the Geometry, Stability and Vibrational Properties of OH Groups on γ-Al2O3, TiO2-Anatase and MgO from DFT Calculations. Topics in Catalysis, 2009, 52, 1005-1016.	2.8	34
38	An EPR study of physi- and chemisorption of NO on MgO: Effect of outgassing temperature and nature of surface sites. Applied Catalysis B: Environmental, 2008, 84, 58-64.	20.2	9
39	The activity of Mg/Al reconstructed hydrotalcites by "memory effect―in the cyanoethylation reaction. Catalysis Communications, 2008, 9, 1974-1978.	3.3	50
40	Assignment of Photoluminescence Spectra of MgO Powders: TD-DFT Cluster Calculations Combined to Experiments. Part I: Structure Effects on Dehydroxylated Surfaces. Journal of Physical Chemistry C, 2008, 112, 16629-16637.	3.1	40
41	Assignment of Photoluminescence Spectra of MgO Powders: TD-DFT Cluster Calculations Combined to Experiments. Part II. Hydroxylation Effects. Journal of Physical Chemistry C, 2008, 112, 19710-19717.	3.1	25
42	Probing the strength, concentration and environment of basic sites in zeolites by IR spectroscopy. Studies in Surface Science and Catalysis, 2008, 174, 861-864.	1.5	2
43	Infrared Characterization of Hydroxyl Groups on MgO:  A Periodic and Cluster Density Functional Theory Study. Journal of the American Chemical Society, 2007, 129, 6442-6452.	13.7	125
44	Study of the Structure of OH Groups on MgO by 1D and 2D ¹ H MAS NMR Combined with DFT Cluster Calculations. Journal of Physical Chemistry C, 2007, 111, 18279-18287.	3.1	38
45	Revisiting Acido-basicity of the MgO Surface by Periodic Density Functional Theory Calculations:Â Role of Surface Topology and Ion Coordination on Water Dissociation. Journal of Physical Chemistry B, 2006, 110, 15878-15886.	2.6	125
46	Role of Hydroxyl Groups in the Basic Reactivity of MgO: a Theoretical and Experimental Study. Oil and Gas Science and Technology, 2006, 61, 479-488.	1.4	31
47	Solid base catalysts obtained from hydrotalcite precursors, for Knoevenagel synthesis of cinamic acid and coumarin derivatives. Applied Catalysis A: General, 2006, 308, 13-18.	4.3	45
48	Thermodynamic brÃ,nsted basicity of clean MgO surfaces determined by their deprotonation ability: Role of Mg2+–O2â~' pairs. Catalysis Today, 2006, 116, 196-205.	4.4	54
49	1H MAS NMR study of the coordination of hydroxyl groups generated upon adsorption of H2O and CD3OH on clean MgO surfaces. Applied Catalysis A: General, 2006, 307, 239-244.	4.3	16
50	Kinetic Model of Energy Transfer Processes Between Low-Coordinated Ions on MgO by Photoluminescence Decay Measurements. ChemPhysChem, 2006, 7, 904-911.	2.1	16
51	Rare-earth elements modified hydrotalcites and corresponding mesoporous mixed oxides as basic solid catalysts. Applied Catalysis A: General, 2005, 288, 185-193.	4.3	106
52	A spectroscopy and catalysis study of the nature of active sites of MgO catalysts: Thermodynamic BrĀ,nsted basicity versus reactivity of basic sites. Journal of Catalysis, 2005, 235, 413-422.	6.2	127
53	Evidence for emission and transfer of energy from excited edge sites of MgO smokes by photoluminescence experiments. Surface Science, 2005, 595, 172-182.	1.9	48
54	Physicochemical and in Situ Photoluminescence Study of the Reversible Transformation of Oxide Ions of Low Coordination into Hydroxyl Groups upon Interaction of Water and Methanol with MgOâ€,‖. Journal of Physical Chemistry B, 2005, 109, 2404-2413.	2.6	92

#	Article	IF	CITATIONS
55	Discrimination of MgO lons by Means of an Improved In Situ Photoluminescence Cell and of Propyne as Probe Molecule. Catalysis Letters, 2004, 92, 101-105.	2.6	21
56	Ethylene selective dimerization on polymer complex catalyst of Ni(4,4′-bipyridine)Cl2 coactivated with AlCl(C2H5)2. Journal of Molecular Catalysis A, 2004, 219, 13-19.	4.8	11
57	Cyanoethylation of ethanol on Mg–Al hydrotalcites promoted by Y3+ and La3+. Catalysis Communications, 2004, 5, 647-651.	3.3	55
58	Mo Oxidation State of Cd, Fe, and Ag Catalysts Under Propane Mild Oxidation Reaction Conditions. Journal of Catalysis, 2001, 200, 360-369.	6.2	3
59	A correlation between crystal structure and catalytic activity in the solid solutions CdMoxW1â^'xO4. Catalysis Today, 2000, 61, 231-236.	4.4	14
60	Study of H2S selective oxidation on new model catalysts. Catalysis Today, 2000, 61, 149-155.	4.4	19
61	Reduction of sulfate species by H2S on different metal oxides and promoted aluminas. Applied Catalysis B: Environmental, 2000, 26, 71-80.	20.2	26
62	Evidence of the reverse Claus reaction on metal oxides. Applied Catalysis B: Environmental, 2000, 27, 137-142.	20.2	12
63	Selective Oxidation of H2S over CuO/Al2O3: Identification and Role of the Sulfurated Species formed on the Catalyst during the Reaction. Journal of Catalysis, 2000, 189, 63-69.	6.2	44
64	New Catalysts Active for the Mild Oxidation of Hydrogen Sulfide to Sulfur. Journal of Catalysis, 1999, 187, 385-391.	6.2	8
65	Comparative study of CS2 hydrolysis catalyzed by alumina and titania. Applied Catalysis B: Environmental, 1998, 17, 167-173.	20.2	52
66	Structural Effects on Propane Mild Oxidation from Comparative Performances of Molybdenum and Vanadium Phosphate Model Catalysts. Chemistry of Materials, 1998, 10, 59-64.	6.7	15
67	Characterization of AgMo3P2O14Catalyst Active in Propane Mild Oxidation. Journal of Catalysis, 1997, 169, 287-300.	6.2	14
68	Modifications of the AgMo3P2O14Catalyst in the Oxidation of Propane. European Physical Journal Special Topics, 1997, 7, C2-893-C2-894.	0.2	0
69	Structure-sensitivity study of partial propene oxidation over AV2P2O10 vanadium phosphate compounds. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 1423.	1.7	6
70	Role of the nature of the acid sites in the oxydehydrogenation of propane on a VPO/TiO2 catalyst. An in situ FT-IR spectroscopy investigation. Catalysis Letters, 1996, 38, 197-201.	2.6	15
71	On the partial oxidation of propane and propylene on mixed metal oxide catalysts. Applied Catalysis A: General, 1996, 145, 1-48.	4.3	358
72	Propane oxydehydrogenation reaction on a VPO/TiO2 catalyst. Role of the nature of acid sites determined by dynamic in-situ IR studies. Catalysis Today, 1996, 32, 57-61.	4.4	38

#	Article	IF	CITATIONS
73	Effects of the structural and cationic properties of AV2P2O10 solids on propane selective oxidation. Catalysis Today, 1996, 32, 305-309.	4.4	6
74	EPR studies on molybdenum phosphates Mo2P4O15, NaMo3P3O16 and BaMo2P4O16 in the temperature range 300–4·2K. Bulletin of Materials Science, 1995, 18, 125-131.	1.7	2
75	Molybdenum (V) Phosphates: Structural Relationships and Classification. Reviews in Inorganic Chemistry, 1993, 13, 77-102.	4.1	51
76	Determination of the crystal structure of Mo2VP4O15. Zeitschrift Für Kristallographie, 1992, 201, 53-58.	1.1	16
77	A niobium phosphate with a tunnel structure: Ca0.5+xCs2Nb6P3O24. Journal of Solid State Chemistry, 1991, 90, 279-284.	2.9	7
78	BaNb7P6O33: A niobium monophosphate with a tunnel structure related to HTBs and ITBs. Journal of Solid State Chemistry, 1991, 93, 46-52.	2.9	8
79	A molybdenophosphate with a mixed valence of molybdenum, Mo(VI)î—,Mo(V): NaMo3P3O16. Journal of Solid State Chemistry, 1991, 95, 168-175.	2.9	13
80	A large family of niobium phosphates with the Ca0.5Cs2Nb6P3O24 structure. Materials Research Bulletin, 1991, 26, 301-307.	5.2	6
81	Phosphate niobium bronzes and bronzoids with the MPTBp structure: Na4Nb8P4O32 and Na4â^xAxNb7MP4O32 fourth members of the series Ax(PO2)4(NbO3)2m. Materials Research Bulletin, 1991, 26, 1051-1057.	5.2	24
82	Structure of β-TlMo2P3O13. Acta Crystallographica Section C: Crystal Structure Communications, 1991, 47, 1136-1138.	0.4	2
83	A new series of bronzes and bronzoids with KNb3P3O15 structure. Materials Research Bulletin, 1990, 25, 1155-1160.	5.2	3
84	ζ-NaMo2P3O13, a second form of pentavalent molybdenum sodium phosphate. Journal of Solid State Chemistry, 1990, 89, 31-38.	2.9	12
85	A molybdenum V diphosphate, BaMo2P4O16. Journal of Solid State Chemistry, 1990, 89, 83-87.	2.9	33