Geraldo W Fernandes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7927710/publications.pdf

Version: 2024-02-01

352 papers

13,135 citations

28274 55 h-index 97 g-index

367 all docs

367 docs citations

times ranked

367

10560 citing authors

#	Article	IF	CITATIONS
1	Adaptive Nature of Insect Galls. Environmental Entomology, 1987, 16, 15-24.	1.4	479
2	Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant and Soil, 2016, 403, 129-152.	3.7	467
3	Toward an oldâ€growth concept for grasslands, savannas, and woodlands. Frontiers in Ecology and the Environment, 2015, 13, 154-162.	4.0	349
4	A global method for calculating plant <scp>CSR</scp> ecological strategies applied across biomes worldâ€wide. Functional Ecology, 2017, 31, 444-457.	3.6	330
5	Ants on plants: a meta-analysis of the role of ants as plant biotic defenses. Oecologia, 2009, 160, 537-549.	2.0	321
6	Biogeographical gradients in galling species richness. Oecologia, 1988, 76, 161-167.	2.0	313
7	Where Tree Planting and Forest Expansion are Bad for Biodiversity and Ecosystem Services. BioScience, 2015, 65, 1011-1018.	4.9	298
8	Biodiversity recovery of Neotropical secondary forests. Science Advances, 2019, 5, eaau3114.	10.3	291
9	Succession and management of tropical dry forests in the Americas: Review and new perspectives. Forest Ecology and Management, 2009, 258, 1014-1024.	3.2	260
10	The adaptive significance of insect gall distribution: survivorship of species in xeric and mesic habitats. Oecologia, 1992, 90, 14-20.	2.0	254
11	Global patterns in local number of insect galling species. Journal of Biogeography, 1998, 25, 581-591.	3.0	239
12	Deep into the mud: ecological and socio-economic impacts of the dam breach in Mariana, Brazil. Natureza A Conservacao, 2016, 14, 35-45.	2.5	226
13	Resilience and restoration of tropical and subtropical grasslands, savannas, and grassy woodlands. Biological Reviews, 2019, 94, 590-609.	10.4	205
14	Caatinga: The Scientific Negligence Experienced by a Dry Tropical Forest. Tropical Conservation Science, 2011, 4, 276-286.	1.2	199
15	Comment on "The global tree restoration potential― Science, 2019, 366, .	12.6	185
16	Size does matter: variation in herbivory between and within plants and the plant vigor hypothesis. Oikos, 2008, 117, 1121-1130.	2.7	170
17	Multidimensional tropical forest recovery. Science, 2021, 374, 1370-1376.	12.6	165
18	Tyranny of trees in grassy biomes. Science, 2015, 347, 484-485.	12.6	140

#	Article	IF	CITATIONS
19	Integrating ecosystem functions into restoration ecologyâ€"recent advances and future directions. Restoration Ecology, 2016, 24, 722-730.	2.9	140
20	Title is missing!. Biodiversity and Conservation, 2001, 10, 79-98.	2.6	138
21	Hypersensitivity: A Neglected Plant Resistance Mechanism Against Insect Herbivores. Environmental Entomology, 1990, 19, 1173-1182.	1.4	136
22	The mosaic of habitats in the high-altitude Brazilian rupestrian fields is a hotspot for arbuscular mycorrhizal fungi. Applied Soil Ecology, 2012, 52, 9-19.	4.3	133
23	Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds. Journal of Insect Physiology, 2016, 84, 103-113.	2.0	133
24	Changes in tree and liana communities along a successional gradient in a tropical dry forest in south-eastern Brazil. Plant Ecology, 2009, 201, 291-304.	1.6	130
25	Reproductive phenology of sympatric taxa of Chamaecrista (Leguminosae) in Serra do Cip \tilde{A}^3 , Brazil. Journal of Tropical Ecology, 1999, 15, 463-479.	1.1	124
26	Are gall midge species (Diptera, Cecidomyiidae) host-plant specialists?. Revista Brasileira De Entomologia, 2009, 53, 365-378.	0.4	124
27	Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nature Ecology and Evolution, 2019, 3, 928-934.	7.8	120
28	Differential Mechanical Defense: Herbivory, Evapotranspiration, and Leaf-Hairs. Oikos, 1991, 60, 11.	2.7	110
29	Legume abundance along successional and rainfall gradients in Neotropical forests. Nature Ecology and Evolution, 2018, 2, 1104-1111.	7.8	107
30	CSR analysis of plant functional types in highly diverse tropical grasslands of harsh environments. Plant Ecology, 2014, 215, 379-388.	1.6	103
31	Dung Beetles along a Tropical Altitudinal Gradient: Environmental Filtering on Taxonomic and Functional Diversity. PLoS ONE, 2016, 11, e0157442.	2.5	97
32	Ecological restoration as a strategy for mitigating and adapting to climate change: lessons and challenges from Brazil. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 1249-1270.	2.1	93
33	Sexual Differences in Reproductive Phenology and their Consequences for the Demography of Baccharis dracunculifolia (Asteraceae), a Dioecious Tropical Shrub. Annals of Botany, 2003, 91, 13-19.	2.9	90
34	The occurrence and effectiveness of hypersensitive reaction against galling herbivores across host taxa. Ecological Entomology, 2001, 26, 46-55.	2.2	86
35	Distribution of non-native invasive species and soil properties in proximity to paved roads and unpaved roads in a quartzitic mountainous grassland of southeastern Brazil (rupestrian fields). Biological Invasions, 2010, 12, 3745-3755.	2.4	86
36	Restoration of <scp>N</scp> eotropical grasslands degraded by quarrying using hay transfer. Applied Vegetation Science, 2014, 17, 482-492.	1.9	86

#	Article	IF	CITATIONS
37	Challenges for the conservation of vanishing megadiverse rupestrian grasslands. Natureza A Conservacao, 2014, 12, 162-165.	2.5	84
38	Plant architecture and meristem dynamics as the mechanisms determining the diversity of gall-inducing insects. Oecologia, 2007, 153, 353-364.	2.0	83
39	Relationships between endophyte diversity and leaf optical properties. Trees - Structure and Function, 2012, 26, 291-299.	1.9	81
40	Why Brazil needs its Legal Reserves. Perspectives in Ecology and Conservation, 2019, 17, 91-103.	1.9	81
41	Diversity of germination strategies and seed dormancy in herbaceous species of <i>campo rupestre</i> grasslands. Austral Ecology, 2015, 40, 537-546.	1.5	7 5
42	Patterns of abundance of a narrow endemic species in a tropical and infertile montane habitat. Plant Ecology, 2000, 147, 205-217.	1.6	73
43	The deadly route to collapse and the uncertain fate of Brazilian rupestrian grasslands. Biodiversity and Conservation, 2018, 27, 2587-2603.	2.6	72
44	Hypersensitivity as a Phenotypic Basis of Plant Induced Resistance against a Galling Insect (Diptera:) Tj ETQq0 C	0 0 rgBT /O	verlock 10 Tf
45	Insetos indutores de galhas da porção sul da Cadeia do Espinhaço, Minas Gerais, Brasil. Revista Brasileira De Entomologia, 2009, 53, 570-592.	0.4	70
46	Photosynthesis of mistletoes in relation to their hosts at various sites in tropical Brazil. Trees - Structure and Function, 1998, 12, 167.	1.9	69
47	Changes in species composition, vegetation structure, and life forms along an altitudinal gradient of rupestrian grasslands in south-eastern Brazil. Flora: Morphology, Distribution, Functional Ecology of Plants, 2018, 238, 32-42.	1.2	69
48	Variation of arbuscular mycorrhizal fungal communities along an altitudinal gradient in rupestrian grasslands in Brazil. Mycorrhiza, 2015, 25, 627-638.	2.8	68
49	The Highest Diversity of Galling Insects: Serra do Cipo, Brazil. Biodiversity Letters, 1996, 3, 111.	0.5	64
50	Tests of hypotheses on patterns of gall distribution along an altitudinal gradient. Tropical Zoology, 2002, 15, 219-232.	0.6	64
51	POLLINATOR PREFERENCES FOR NICOTIANA ALATA, N. FORGETIANA, AND THEIR F1HYBRIDS. Evolution; International Journal of Organic Evolution, 2004, 58, 2634-2644.	2.3	64
52	Distinguishing intrapopulational categories of plants by their insect faunas: galls on rabbitbrush. Oecologia, 1996, 105, 221-229.	2.0	63
53	Insect Herbivores and Leaf Damage along Successional and Vertical Gradients in a Tropical Dry Forest. Biotropica, 2014, 46, 14-24.	1.6	62
54	Vigour of a dioecious shrub and attack by a galling herbivore. Ecological Entomology, 2001, 26, 37-45.	2.2	61

#	Article	IF	CITATIONS
55	Comunidades de insetos galhadores (Insecta) em diferentes fisionomias do cerrado em Minas Gerais, Brasil. Revista Brasileira De Zoologia, 2001, 18, 289-305.	0.5	60
56	Dismantling Brazil's science threatens global biodiversity heritage. Perspectives in Ecology and Conservation, 2017, 15, 239-243.	1.9	60
57	Canopy Herbivory and Insect Herbivore Diversity in a Dry Forest–Savanna Transition in Brazil. Biotropica, 2010, 42, 112-118.	1.6	56
58	Vegetation composition and structure of some Neotropical mountain grasslands in Brazil. Journal of Mountain Science, 2015, 12, 864-877.	2.0	56
59	Neglect of ecosystems services by mining, and the worst environmental disaster in Brazil. Natureza A Conservacao, 2016, 14, 24-27.	2.5	56
60	Direct and indirect interactions involving ants, insect herbivores, parasitoids, and the host plant Baccharis dracunculifolia (Asteraceae). Ecological Entomology, 2005, 30, 28-35.	2.2	54
61	Evolution of physiological dormancy multiple times in Melastomataceae from Neotropical montane vegetation. Seed Science Research, 2012, 22, 37-44.	1.7	53
62	Biodiversity of endophytic fungi in different leaf ages of Calotropis procera and their antimicrobial activity. Fungal Ecology, 2015, 14, 79-86.	1.6	53
63	Richness of gall-inducing insects in the tropical dry forest (caatinga) of Pernambuco. Revista Brasileira De Entomologia, 2011, 55, 45-54.	0.4	52
64	Long term oviposition preference and larval performance of Schizomyia macrocapillata (Diptera:) Tj ETQq0 0 0 2008, 22, 123-137.	rgBT /Overl 1.2	lock 10 Tf 50 3
65	Successional and Seasonal Changes in a Community of Dung Beetles (Coleoptera: Scarabaeinae) in a Brazilian Tropical Dry Forest. Natureza A Conservacao, 2010, 08, 160-164.	2.5	51
66	Sustainability of tropical dry forests: Two case studies in southeastern and central Brazil. Forest Ecology and Management, 2009, 258, 922-930.	3.2	50
67	Plant Family Size and Age Effects on Insular Gall-Forming Species Richness. Global Ecology and Biogeography Letters, 1992, 2, 71.	0.6	49
68	Patterns of herbivory and fluctuating asymmetry in Solanum lycocarpum St. Hill (Solanaceae) along an urban gradient in Brazil. Ecological Indicators, 2013, 24, 557-561.	6.3	49
69			
	Abundance of Neopelma baccharidis (Homoptera: Psyllidae) Galls on the Dioecious Shrub Baccharis dracunculifolia (Asteraceae). Environmental Entomology, 1998, 27, 870-876.	1.4	47
70	Abundance of Neopelma baccharidis (Homoptera: Psyllidae) Galls on the Dioecious Shrub Baccharis dracunculifolia (Asteraceae). Environmental Entomology, 1998, 27, 870-876. Effects of Brazil's Political Crisis on the Science Needed for Biodiversity Conservation. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	47
70 71	dracunculifolia (Asteraceae). Environmental Entomology, 1998, 27, 870-876. Effects of Brazil's Political Crisis on the Science Needed for Biodiversity Conservation. Frontiers in		

#	Article	IF	CITATIONS
73	The role of native woody species in the restoration of <scp><i>Campos Rupestres</i></scp> in quarries. Applied Vegetation Science, 2014, 17, 109-120.	1.9	44
74	Patterns of Leaf Biochemical and Structural Properties of Cerrado Life Forms: Implications for Remote Sensing. PLoS ONE, 2015, 10, e0117659.	2.5	44
75	Afforestation of savannas: an impending ecological disaster. Natureza A Conservacao, 2016, 14, 146-151.	2.5	44
76	The Megadiverse Rupestrian Grassland. , 2016, , 3-14.		42
77	Tropical mountains as natural laboratories to study global changes: A long-term ecological research project in a megadiverse biodiversity hotspot. Perspectives in Plant Ecology, Evolution and Systematics, 2019, 38, 64-73.	2.7	42
78	Defence, growth and nutrient allocation in the tropical shrub Bauhinia brevipes (Leguminosae). Austral Ecology, 2001, 26, 246-253.	1.5	41
79	Seed and Seedling Ecophysiology of Neotropical Melastomataceae: Implications for Conservation and Restoration of Savannas and Rainforests ¹ . Annals of the Missouri Botanical Garden, 2013, 99, 82-99.	1.3	41
80	Litterfall dynamics along a successional gradient in a Brazilian tropical dry forest. Forest Ecosystems, 2019, 6, .	3.1	41
81	Ant effects on three-trophic level interactions: plant, galls, and parasitoids. Ecological Entomology, 1999, 24, 411-415.	2.2	40
82	Seedling growth and biomass allocation of endemic and threatened shrubs of rupestrian fields. Acta Oecologica, 2009, 35, 301-310.	1.1	40
83	Unexpected High Diversity of Galling Insects in the Amazonian Upper Canopy: The Savanna Out There. PLoS ONE, 2014, 9, e114986.	2.5	40
84	A Humboldtian Approach to Mountain Conservation and Freshwater Ecosystem Services. Frontiers in Environmental Science, 2019, 7, .	3.3	39
85	Tropical dry forest succession and the contribution of lianas to wood area index (WAI). Forest Ecology and Management, 2009, 258, 941-948.	3.2	38
86	Effects of a Possible Pollinator Crisis on Food Crop Production in Brazil. PLoS ONE, 2016, 11, e0167292.	2.5	38
87	Physiological ecology of photosynthesis of five sympatric species of Velloziaceae in the rupestrian fields of Serra do Cip \tilde{A}^3 , Minas Gerais, Brazil. Flora: Morphology, Distribution, Functional Ecology of Plants, 2007, 202, 637-646.	1.2	37
88	Herbivory by Chewing and Sucking Insects on Tabebuia ochracea. Biotropica, 1994, 26, 302.	1.6	35
89	Processes Driving Ontogenetic Succession of Galls in a Canopy Tree1. Biotropica, 2006, 38, 514-521.	1.6	35
90	Estádio de adaptação de Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) em hospedeiros alternativos. Bragantia, 2013, 72, 61-70.	1.3	35

#	Article	IF	CITATIONS
91	A relict species restricted to a quartzitic mountain in tropical America: an example of microrefugium?. Acta Botanica Brasilica, 2015, 29, 299-309.	0.8	34
92	Biodiversity and ecosystem services in the Campo Rupestre: A road map for the sustainability of the hottest Brazilian biodiversity hotspot. Perspectives in Ecology and Conservation, 2020, 18, 213-222.	1.9	34
93	Functional recovery of secondary tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	34
94	Tadpole distribution within montane meadow streams at the Serra do Cip \tilde{A}^3 , southeastern Brazil: ecological or phylogenetic constraints?. Journal of Tropical Ecology, 2001, 17, 683-693.	1.1	33
95	Gall-Inducing Insect Species Richness as Indicators of Forest Age and Health. Environmental Entomology, 2010, 39, 1134-1140.	1.4	33
96	Global Biodiversity Threatened by Science Budget Cuts in Brazil. BioScience, 2018, 68, 11-12.	4.9	33
97	Beta diversity of aquatic invertebrates increases along an altitudinal gradient in a Neotropical mountain. Biotropica, 2019, 51, 399-411.	1.6	33
98	Impacts of mining activities on the potential geographic distribution of eastern Brazil mountaintop endemic species. Perspectives in Ecology and Conservation, 2017, 15, 172-178.	1.9	33
99	Diversity of Indonesian Gall-Forming Herbivores along Altitudinal Gradients. Biodiversity Letters, 1993, 1, 186.	0.5	32
100	Patterns of taxonomic and functional diversity of termites along a tropical elevational gradient. Biotropica, 2017, 49, 186-194.	1.6	32
101	Environmental drivers of taxonomic and functional diversity of ant communities in a tropical mountain. Insect Conservation and Diversity, 2020, 13, 393-403.	3.0	32
102	Hypersensitivity of Fagus sylvatica L. against leaf galling insects. Trees - Structure and Function, 2003, 17, 407-411.	1.9	31
103	Contrasting herbivory patterns and leaf fluctuating asymmetry in <i>Heliocarpus pallidus</i> between different habitat types within a Mexican tropical dry forest. Journal of Tropical Ecology, 2011, 27, 383-391.	1.1	31
104	The role of pectic composition of cell walls in the determination of the new shape-functional design in galls of Baccharis reticularia (Asteraceae). Protoplasma, 2013, 250, 899-908.	2.1	31
105	Variation in the Degree of Pectin Methylesterification during the Development of Baccharis dracunculifolia Kidney-Shaped Gall. PLoS ONE, 2014, 9, e94588.	2.5	31
106	Longâ€ŧerm monitoring of shrub species translocation in degraded Neotropical mountain grassland. Restoration Ecology, 2018, 26, 91-96.	2.9	31
107	Fragmentation and spatial genetic structure in Tabebuia ochracea (Bignoniaceae) a seasonally dry Neotropical tree. Forest Ecology and Management, 2009, 258, 2690-2695.	3.2	30
108	Cerrado to Rupestrian Grasslands: Patterns of Species Distribution and the Forces Shaping Them Along an Altitudinal Gradient., 2016,, 345-377.		30

#	Article	IF	CITATIONS
109	Reproductive phenology of two coâ€occurring Neotropical mountain grasslands. Journal of Vegetation Science, 2018, 29, 15-24.	2.2	29
110	Insetos galhadores associados a duas espécies de plantas invasoras de áreas urbanas e peri-urbanas. Revista Brasileira De Entomologia, 2005, 49, 97-106.	0.4	28
111	The effect of fluctuating asymmetry and leaf nutrients on gall abundance and survivorship. Basic and Applied Ecology, 2013, 14, 489-495.	2.7	28
112	Nurse plant size and biotic stress determine quantity and quality of plant facilitation in oak savannas. Forest Ecology and Management, 2019, 437, 435-442.	3.2	28
113	Plant Phenology and Absence of Sex-Biased Gall Attack on Three Species of Baccharis. PLoS ONE, 2012, 7, e46896.	2.5	28
114	Patterns of attack by herbivores on the tropical shrub Bauhinia brevipes (Leguminosae): Vigour or chance?. European Journal of Entomology, 2001, 98, 37-40.	1.2	28
115	Severe airport sanitarian control could slow down the spreading of COVID-19 pandemics in Brazil. Peerl, 2020, 8, e9446.	2.0	28
116	Efeitos do sexo, do vigor e do tamanho da planta hospedeira sobre a distribuição de insetos indutores de galhas em Baccharis pseudomyriocephala Teodoro (Asteraceae). Revista Brasileira De Entomologia, 2003, 47, 483-490.	0.4	27
117	Gall-inducing insects from Serra do Cabral, Minas Gerais, Brazil. Biota Neotropica, 2013, 13, 102-109.	1.0	27
118	Distribution of the endophytic fungi community in leaves of Bauhinia brevipes (Fabaceae). Acta Botanica Brasilica, 2011, 25, 815-821.	0.8	26
119	Effects of generalist and specialist parasitic plants (Loranthaceae) on the fluctuating asymmetry patterns of ruprestrian host plants. Basic and Applied Ecology, 2011, 12, 449-455.	2.7	26
120	Relationship between physical and chemical soil attributes and plant species diversity in tropical mountain ecosystems from Brazil. Journal of Mountain Science, 2014, 11, 875-883.	2.0	26
121	No recovery of <i>campo rupestre</i> grasslands after gravel extraction: implications for conservation and restoration. Restoration Ecology, 2018, 26, S151.	2.9	26
122	NEOTROPICAL CARNIVORES: a data set on carnivore distribution in the Neotropics. Ecology, 2020, 101, e03128.	3.2	26
123	Natural History of a Gall-Inducing Weevil Collabismus clitellae (Coleoptera: Curculionidae) and Some Effects on its Host Plant Solanum lycocarpum (Solanaceae) in Southeastern Brazil. Annals of the Entomological Society of America, 1998, 91, 404-409.	2.5	25
124	Within tree distribution of a gall-inducing Eurytoma (Hymenoptera, Eurytomidae) on Caryocar brasiliense (Caryocaraceae). Revista Brasileira De Entomologia, 2009, 53, 643-648.	0.4	25
125	Habitat Complexity and <i>Caryocar brasiliense </i> Herbivores (Insecta: Arachnida: Araneae). Florida Entomologist, 2012, 95, 819-830.	0.5	25
126	Title is missing!. Journal of Insect Conservation, 1998, 2, 107-118.	1.4	24

#	Article	IF	CITATIONS
127	Host plant effects on the development and survivorship of the galling insect Neopelma baccharidis (Homoptera: Psyllidae). Austral Ecology, 2002, 27, 249-257.	1.5	24
128	Influência da luz e da temperatura na germinação de sementes de Marcetia taxifolia (A. StHil.) DC. (Melastomataceae). Acta Botanica Brasilica, 2004, 18, 847-851.	0.8	24
129	Parasitoid attack and its consequences to the development of the galling psyllid Baccharopelma dracunculifoliae. Basic and Applied Ecology, 2004, 5, 475-484.	2.7	24
130	Sclerophylly in Qualea Parviflora (Vochysiaceae): Influence of Herbivory, Mineral Nutrients, and Water Status. Plant Ecology, 2006, 187, 153-162.	1.6	24
131	Relationships between host plant architecture and gall abundance and survival. Revista Brasileira De Entomologia, 2008, 52, 78-81.	0.4	24
132	Anatomical and developmental aspects of leaf galls induced by Schizomyia macrocapillata Maia (Diptera: Cecidomyiidae) on Bauhinia brevipes Vogel (Fabaceae). Revista Brasileira De Botanica, 2009, 32, 319-327.	1.3	24
133	Spatial genetic structure of Coccoloba cereifera (Polygonaceae), a critically endangered microendemic species of Brazilian rupestrian fields. Conservation Genetics, 2010, 11, 1247-1255.	1.5	24
134	Hail impact on leaves and endophytes of the endemic threatened Coccoloba cereifera (Polygonaceae). Plant Ecology, 2011, 212, 1687-1697.	1.6	24
135	Experimentally reducing species abundance indirectly affects food web structure and robustness. Journal of Animal Ecology, 2017, 86, 327-336.	2.8	24
136	Connection between tree functional traits and environmental parameters in an archipelago of montane forests surrounded by rupestrian grasslands. Flora: Morphology, Distribution, Functional Ecology of Plants, 2018, 238, 51-59.	1.2	24
137	Forest archipelagos: A natural model of metacommunity under the threat of fire. Flora: Morphology, Distribution, Functional Ecology of Plants, 2018, 238, 244-249.	1.2	24
138	Gall-inducing insects from Atlantic Forest of Pernambuco, Northeastern Brazil. Biota Neotropica, 2012, 12, 196-212.	1.0	24
139	Insect Herbivores of <i>Coccoloba cereifera </i> Do Not Select Asymmetric Plants. Environmental Entomology, 2010, 39, 849-855.	1.4	23
140	Uneven conservation efforts compromise Brazil to meet the Target 11 of Convention on Biological Diversity. Perspectives in Ecology and Conservation, 2018, 16, 43-48.	1.9	23
141	Germinação de sementes de Lavoisiera cordata Cogn. e Lavoisiera francavillana Cogn. (Melastomataceae), espécies simpátricas da Serra do Cipó, Brasil. Acta Botanica Brasilica, 2003, 17, 523-530.	0.8	22
142	Phenology of riparian tree species in a transitional region in southeastern Brazil. Revista Brasileira De Botanica, 2014, 37, 47-59.	1.3	22
143	Linking Biodiversity, the Environment and Ecosystem Functioning: Ecological Functions of Dung Beetles Along a Tropical Elevational Gradient. Ecosystems, 2018, 21, 1244-1254.	3.4	22
144	Relationships between four Neotropical species of galling insects and shoot vigor. Neotropical Entomology, 1999, 28, 147-155.	0.2	21

#	Article	IF	CITATIONS
145	Induced defences in the neotropical tree Bauhinia brevipes (Vog.) to herbivory: effects of damage-induced changes on leaf quality and insect attack. Trees - Structure and Function, 2001, 15, 236-241.	1.9	21
146	Leaf Gall Abundance on Avicennia germinans (Avicenniaceae) along an Interstitial Salinity Gradient1. Biotropica, 2001, 33, 69.	1.6	21
147	Effects of Genetic Variability and Habitat of Qualea parviflora (Vochysiaceae) on Herbivory by Free-feeding and Gall-forming Insects. Annals of Botany, 2004, 94, 259-268.	2.9	21
148	Species-specific outcomes of avian gut passage on germination of Melastomataceae seeds. Plant Ecology and Evolution, 2012, 145, 350-355.	0.7	21
149	Patterns of herbivory and leaf morphology in two Mexican hybrid oak complexes: Importance of fluctuating asymmetry as indicator of environmental stress in hybrid plants. Ecological Indicators, 2018, 90, 164-170.	6.3	21
150	Species turnover drives \hat{l}^2 -diversity patterns across multiple spatial scales of plant-galling interactions in mountaintop grasslands. PLoS ONE, 2018, 13, e0195565.	2.5	21
151	Host plant response and phenotypic plasticity of a galling weevil (Collabismus clitellae:) Tj ETQq1 1 0.784314 rgBT	/Overlock	R 10 Tf 50 5
152	Ants and their effects on an insect herbivore community associated with the inflorescences of Byrsonima crassifolia (Linnaeus) H.B.K. (Malpighiaceae). Revista Brasileira De Entomologia, 2005, 49, 264-269.	0.4	20
153	Abundance of gall-inducing insect species in sclerophyllous savanna: understanding the importance of soil fertility using an experimental approach. Journal of Tropical Ecology, 2011, 27, 631-640.	1.1	20
154	Diversity of fruit-feeding butterflies in a mountaintop archipelago of rainforest. PLoS ONE, 2017, 12, e0180007.	2.5	20
155	Selective Fruit Abscission by Juniperus monosperma as an Induced Defense against Predators. American Midland Naturalist, 1989, 121, 389.	0.4	19
156	Effects of Hygrothermal Stress, Plant Richness, and Architecture on Mining Insect Diversity. Biotropica, 2004, 36, 240-247.	1.6	19
157	Two new species of Asphondyliini (Diptera: Cecidomyiidae) Âassociated with Bauhinia brevipes (Fabaceae) in Brazil. Zootaxa, 2005, 1091, 27–40.	0.5	19
158	Influence of Brazilian herbal regulations on the use and conservation of native medicinal plants. Environmental Monitoring and Assessment, 2010, 164, 369-377.	2.7	19
159	Seasonal Abundance of Hemipterans on <i>Caryocar brasiliense</i> (Malpighiales: Caryocaraceae) Trees in the Cerrado. Florida Entomologist, 2012, 95, 862-872.	0.5	19
160	Nematode-induced galls in Miconia albicans: effect of host plant density and correlations with performance. Plant Species Biology, 2013, 28, 63-69.	1.0	19
161	Fenologia reprodutiva e vegetativa de arbustos endêmicos de campo rupestre na Serra do Cipó, Sudeste do Brasil. Rodriguesia, 2013, 64, 817-828.	0.9	19
162	Spatioâ€ŧemporal variation of biotic and abiotic stress agents determines seedling survival in assisted oak regeneration. Journal of Applied Ecology, 2019, 56, 2663-2674.	4.0	19

#	Article	IF	Citations
163	Effects of Hygrothermal Stress, Plant Richness, and Architecture on Mining Insect Diversity 1. Biotropica, 2004, 36, 240.	1.6	18
164	Sex-mediated herbivory by galling insects on Baccharis concinna (Asteraceae). Revista Brasileira De Entomologia, 2006, 50, 394-398.	0.4	18
165	Genetic variation in two Chamaecrista species (Leguminosae), one endangered and narrowly distributed and another widespread in the Serra do Espinhaço, Brazil. Canadian Journal of Botany, 2007, 85, 629-636.	1.1	18
166	Plant organ abscission and the green island effect caused by gallmidges (Cecidomyiidae) on tropical trees. Arthropod-Plant Interactions, 2008, 2, 93-99.	1.1	18
167	Gall-inducing insects from Campos de Altitude, Brazil. Biota Neotropica, 2013, 13, 139-151.	1.0	18
168	Worldwide COVID-19 spreading explained: traveling numbers as a primary driver for the pandemic. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20201139.	0.8	18
169	Efeito do AIB sobre a qualidade e fitossanidade dos alporques de influência da Caryocar brasiliense Camb (caryocaraceae). Revista Arvore, 2007, 31, 315-320.	0.5	18
170	Insect herbivores associated with Baccharis dracunculifolia (Asteraceae): responses of gall-forming and free-feeding insects to latitudinal variation. Revista De Biologia Tropical, 2011, 59, 1419-32.	0.4	18
171	Challenges in the Restoration of Quartzitic and Ironstone Rupestrian Grasslands. , 2016, , 449-477.		17
172	Archipelago of Montane Forests Surrounded by Rupestrian Grasslands: New Insights and Perspectives. , 2016, , 129-156.		17
173	Functional connectivity in urban landscapes promoted by Ramphastos toco (Toco Toucan) and its implications for policy making. Urban Ecosystems, 2018, 21, 1097-1111.	2.4	17
174	Community structure of gall-inducing insects associated with a tropical shrub: regional, local and individual patterns. Tropical Ecology, 2019, 60, 74-82.	1.2	17
175	An overview of inventories of gall-inducing insects in Brazil: looking for patterns and identifying knowledge gaps. Anais Da Academia Brasileira De Ciencias, 2019, 91, e20180162.	0.8	17
176	Trioecy in Coccoloba cereifera Schwacke (Polygonaceae), a narrow endemic and threatened tropical species. Brazilian Archives of Biology and Technology, 2008, 51, 1003-1010.	0.5	16
177	Tri-trophic level interactions affect host plant development and abundance of insect herbivores. Arthropod-Plant Interactions, 2011, 5, 351-357.	1.1	16
178	Forces driving the regeneration component of a rupestrian grassland complex along an altitudinal gradient. Revista Brasileira De Botanica, 2016, 39, 845-860.	1.3	16
179	Soil constraints for arbuscular mycorrhizal fungi spore community in degraded sites of rupestrian grassland: Implications for restoration. European Journal of Soil Biology, 2019, 90, 51-57.	3.2	16
180	Habitat generalists drive nestedness in a tropical mountaintop insect metacommunity. Biological Journal of the Linnean Society, 2021, 133, 577-586.	1.6	16

#	Article	IF	Citations
181	The effect of fire on seed germination of campo rupestre species in the South American Cerrado. Plant Ecology, 2021, 222, 45-55.	1.6	16
182	Seedling growth of the invader Calotropis procera in ironstone rupestrian field and seasonally dry forest soils. Neotropical Biology and Conservation, 2009, 4, 69-76.	0.3	16
183	Tannins in Baccharis dracunculifolia (Asteraceae): effects of seasonality, water availability and plant sex. Acta Botanica Brasilica, 1999, 13, 167-174.	0.8	15
184	Plant Resistance Against Gall-forming Insects: The Role of Hypersensitivity., 2002, , 137-152.		15
185	Phenology Patterns Across a Rupestrian Grassland Altitudinal Gradient. , 2016, , 275-289.		15
186	Diversity of Hemiptera (Arthropoda: Insecta) and Their Natural Enemies on <i>Caryocar brasiliense</i> (Malpighiales: Caryocaraceae) Trees in the Brazilian Cerrado. Florida Entomologist, 2016, 99, 239-247.	0.5	15
187	High butterfly beta diversity between Brazilian cerrado and cerrado–caatinga transition zones. Journal of Insect Conservation, 2017, 21, 849-860.	1.4	15
188	Floral antagonists counteract pollinatorâ€mediated selection on attractiveness traits in the hummingbirdâ€pollinated <i>Collaea cipoensis</i> (Fabaceae). Biotropica, 2018, 50, 797-804.	1.6	15
189	Interaction engineering: Nonâ€trophic effects modify interactions in an insect galler community. Journal of Animal Ecology, 2019, 88, 1168-1177.	2.8	15
190	Does seed germination contribute to ecological breadth and geographic range? A test with sympatric <i>Diplusodon </i> (Lythraceae) species from rupestrian fields. Plant Species Biology, 2012, 27, 170-173.	1.0	14
191	Environmental control of seed dormancy and germination of Mimosa calodendron (Fabaceae): implications for ecological restoration of a highly threatened environment. Revista Brasileira De Botanica, 2015, 38, 395-399.	1.3	14
192	Multitrophic interactions among fungal endophytes, bees, and Baccharis dracunculifolia: resin tapering for propolis production leads to endophyte infection. Arthropod-Plant Interactions, 2018, 12, 329-337.	1.1	14
193	Embryo size as a tolerance trait against seed predation: Contribution of embryo-damaged seeds to plant regeneration. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 31, 7-16.	2.7	14
194	Fire? They don't give a dung! The resilience of dung beetles to fire in a tropical savanna. Ecological Entomology, 2019, 44, 315-323.	2.2	14
195	Climate and plant structure determine the spatiotemporal butterfly distribution on a tropical mountain. Biotropica, 2021, 53, 191-200.	1.6	14
196	Fenologia reprodutiva, sazonalidade e germinação de Kielmeyera regalis Saddi (Clusiaceae), espécie endêmica dos campos rupestres da Cadeia do Espinhaço, Brasil. Acta Botanica Brasilica, 2012, 26, 632-641.	0.8	14
197	Local and regional spatial distribution of an eruptive and a latent herbivore insect species. Austral Ecology, 2003, 28, 99-107.	1.5	13
198	Two new species of Lopesia Rýbsaamen (Diptera, Cecidomyiidae) associated with Mimosa hostilis (Mimosaceae) in Brazil. Revista Brasileira De Entomologia, 2010, 54, 578-583.	0.4	13

#	Article	IF	CITATIONS
199	Ecological interactions among insect herbivores, ants and the host plant <i>Baccharis dracunculifolia</i> in a Brazilian mountain ecosystem. Austral Ecology, 2020, 45, 158-167.	1.5	13
200	Floristic and functional identity of rupestrian grasslands as a subsidy for environmental restoration and policy. Ecological Complexity, 2020, 43, 100833.	2.9	13
201	A 15-year post evaluation of the fire effects on ant community in an area of Amazonian forest. Revista Brasileira De Entomologia, 2008, 52, 82-87.	0.4	13
202	Bird species distribution and conservation in Serra do Cip \tilde{A}^3 , Minas Gerais, Brazil. Bird Conservation International, 2001, 11, .	1.3	12
203	Mediation of herbivore attack and induced resistance by plant vigor and ontogeny. Acta Oecologica, 2010, 36, 617-625.	1.1	12
204	Protein content and electrophoretic profile of insect galls on susceptible and resistant host plants of Bauhinia brevipes Vogel (Fabaceae). Australian Journal of Botany, 2011, 59, 509.	0.6	12
205	Spatial distribution of a spherical gall (Hymenoptera, Eulophidae) on Caryocar brasiliense (Caryocaraceae). Revista Brasileira De Entomologia, 2011, 55, 396-400.	0.4	12
206	Neotropical Insect Galls: Status of Knowledge and Perspectives. , 2014, , 1-14.		12
207	Genetic diversity and structure of the tree Enterolobium contortisiliquum (Fabaceae) associated with remnants of a seasonally dry tropical forest. Flora: Morphology, Distribution, Functional Ecology of Plants, 2015, 210, 40-46.	1.2	12
208	High Temporal Beta Diversity in an Ant Metacommunity, With Increasing Temporal Functional Replacement Along the Elevational Gradient. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	12
209	Foraging patterns of the leaf-cutter ant Atta laevigata (Smith) (Myrmicinae: Attini) in an area of cerrado vegetation. Neotropical Entomology, 2004, 33, 391-393.	1.2	12
210	The distribution of genetic variability in Baccharis concinna (Asteraceae), an endemic, dioecious and threatened shrub of rupestrian fields of Brazil. Conservation Genetics, 2004, 5, 157-165.	1.5	11
211	Fluctuating asymmetry and herbivory in two ontogenetical stages of <i>Chamaecrista semaphora </i> ir restored and natural environments. Journal of Plant Interactions, 2013, 8, 179-186.	2.1	11
212	Seasonal Abundance of Galling Insects (Hymenoptera) on <i>Caryocar brasiliense</i> (Malpighiales:) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
213	Rupestrian Grassland: Past, Present and Future Distribution. , 2016, , 531-544.		11
214	The Shady Future of the Rupestrian Grassland: Major Threats to Conservation and Challenges in the Anthropocene., 2016,, 545-561.		11
215	Galling Insects of the Brazilian Páramos: Species Richness and Composition Along High-Altitude Grasslands. Environmental Entomology, 2017, 46, 1243-1253.	1.4	11
216	Together yet separate: variation in soil chemistry determines differences in the arboreal-shrub structure of two contiguous rupestrian environments. Acta Botanica Brasilica, 2018, 32, 578-587.	0.8	11

#	Article	IF	CITATIONS
217	FlorÃstica e caracterização de uma área de campo ferruginoso no Complexo Minerário Alegria, Serra de Antônio Pereira, Ouro Preto, Minas Gerais, Brasil. Revista Arvore, 2011, 35, 1265-1275.	0.5	10
218	Ecophysiological performance of a threatened shrub under restored and natural conditions in a harsh tropical mountaintop environment. Acta Botanica Brasilica, 2016, 30, 17-26.	0.8	10
219	Fluctuating asymmetry in leaves and flowers of sympatric species in a tropical montane environment. Plant Species Biology, 2017, 32, 3-12.	1.0	10
220	Regenerative potential of the soil seed bank along an elevation gradient of rupestrian grassland in southeastern Brazil. Botany, 2018, 96, 281-298.	1.0	10
221	Nurse shrubs to mitigate plant invasion along roads of montane Neotropics. Ecological Engineering, 2019, 136, 193-196.	3.6	10
222	Diversity of Gall-Inducing Insects Associated With a Widely Distributed Tropical Tree Species: Testing the Environmental Stress Hypothesis. Environmental Entomology, 2020, 49, 838-847.	1.4	10
223	Bottom-Up Effects on Gall Distribution. , 2014, , 99-113.		10
224	Galling Insects as Indicators of Habitat Quality. , 2014, , 143-150.		10
225	Efeito do fogo na fenologia de Syagrus glaucescens Glaz. ex Becc. (Arecaceae). Neotropical Biology and Conservation, 2010, 5, 146-153.	0.3	10
226	Canopy arthropod diversity associated with Quercus laurina: importance of an oak species diversity gradient on abundance, species richness and guild composition. Journal of Insect Conservation, 2021, 25, 859-874.	1.4	10
227	Strong floristic distinctiveness across Neotropical successional forests. Science Advances, 2022, 8, .	10.3	10
228	Riqueza e abundância de herbÃvoros em flores de Vellozia nivea (Velloziaceae). Acta Botanica Brasilica, 1998, 12, 403-409.	0.8	9
229	Influence of Apion sp. (Brentidae, Apioninae) stem-galls on induced resistance and leaf area of Diospyros hispida (Ebenaceae). Revista Brasileira De Entomologia, 2006, 50, 433-435.	0.4	9
230	Distribution and frequency of galls induced by Anisodiplosis waltheriae Maia (Diptera: Cecidomyiidae) on the invasive plant Waltheria indica L. (Sterculiaceae). Neotropical Entomology, 2006, 35, 435-439.	1.2	9
231	Test of hypotheses about herbivory and chemical defences of Qualea parviflora (Vochysiaceae) in Brazilian Cerrado. Revista Brasileira De Botanica, 2011, 34, 223-230.	1.3	9
232	Differential Female Attack and Larval Performance of a Galling Cecidomyiid on the Host, <i>Astronium fraxinifolium </i> (Anacardiaceae), in Contrasting Habitats. Entomological News, 2012, 122, 10-21.	0.2	9
233	Galls from Calliandra brevipes BENTH (Fabaceae: Mimosoidae): evidence of apyrase activity contribution in a plant - insect interaction. Australian Journal of Botany, 2012, 60, 559.	0.6	9
234	Carbon dioxide-enriched atmosphere enhances biomass accumulation and meristem production in the pioneer shrub Baccharis dracunculifolia (Asteraceae). Acta Botanica Brasilica, 2014, 28, 646-650.	0.8	9

#	Article	IF	CITATIONS
235	Gallers as leaf rollers: ecosystem engineering in a tropical system and its effects on arthropod biodiversity. Ecological Entomology, 2021, 46, 470-481.	2.2	9
236	The Program for Biodiversity Research in Brazil: The role of regional networks for biodiversity knowledge, dissemination, and conservation. Anais Da Academia Brasileira De Ciencias, 2021, 93, e20201604.	0.8	9
237	Role of environmental filtering and functional traits for species coexistence in a harsh tropical montane ecosystem. Biological Journal of the Linnean Society, 2021, 133, 546-560.	1.6	9
238	Glomalin-Related Soil Protein Reflects the Heterogeneity of Substrate and Vegetation in the campo rupestre Ecosystem. Journal of Soil Science and Plant Nutrition, 2021, 21, 733-743.	3.4	9
239	Baccharis: A Neotropical Model System to Study Insect Plant Interactions. , 2014, , 193-219.		9
240	Isolation and characterization of microsatellite loci in <i>Coccoloba cereifera</i> (Polygonaceae), an endangered species endemic to the Serra do Cip \tilde{A}^3 , Brazil. Molecular Ecology Resources, 2008, 8, 854-856.	4.8	8
241	Misleading herbivory in a tropical tree. Arthropod-Plant Interactions, 2012, 6, 649-654.	1.1	8
242	Physiological approaches to determine the impact of climate changes on invasive African grasses in the savanna ecoregion of Brazil. Environmental Earth Sciences, 2015, 74, 3077-3088.	2.7	8
243	Seed Germination Ecology in Rupestrian Grasslands. , 2016, , 207-225.		8
244	The fate of endemic birds of eastern Brazilian mountaintops in the face of climate change. Perspectives in Ecology and Conservation, 2020, 18, 257-266.	1.9	8
245	Size matters: larger galls produced by Eutreta xanthochaeta (Diptera: Tephritidae) on Lippia myriocephala (Verbenaceae) predict lower rates of parasitic wasps. Arthropod-Plant Interactions, 2021, 15, 615.	1.1	8
246	Influência dos fungos endofÃticos sobre os herbÃvoros de Baccharis dracunculifolia (Asteraceae). Neotropical Biology and Conservation, 2009, 4, 83-88.	0.3	8
247	Arthropods: Why It Is So Crucial to Know Their Biodiversity?. , 2021, , 3-11.		8
248	A new genus and species of gall midge (Diptera: Cecidomyiidae) associated with Waltheria indica L. (Sterculiaceae). Zootaxa, 2005, 1060, 27–36.	0.5	7
249	Galling Insect Species Richness and Leaf Herbivory in an Abrupt Transition Between Cerrado and Tropical Dry Forest. Annals of the Entomological Society of America, 2016, 109, 705-712.	2.5	7
250	Effects of ferric soils on arthropod abundance and herbivory on Tibouchina heteromalla (Melastomataceae): is fluctuating asymmetry a good indicator of environmental stress? Plant Ecology, 2018, 219, 69-78.	1.6	7
251	The mistletoe Struthanthus flexicaulis reduces dominance and increases diversity of plants in campo rupestre. Flora: Morphology, Distribution, Functional Ecology of Plants, 2020, 271, 151690.	1.2	7
252	From Spanish Flu to Syndemic COVID-19: long-standing sanitarian vulnerability of Manaus, warnings from the Brazilian rainforest gateway. Anais Da Academia Brasileira De Ciencias, 2021, 93, e20210431.	0.8	7

#	Article	lF	Citations
253	Ants in Burned and Unburned Areas in Campos Rupestres Ecosystem. Sociobiology, 2016, 63, 628.	0.5	7
254	Growth and performance of rupestrian grasslands native species in quartzitic degraded areas. Neotropical Biology and Conservation, 2015, 10 , .	0.9	7
255	Chinese Economic Growth: Implications for Brazilian Conservation Policies. Natureza A Conservacao, 2013, 11, 88-91.	2.5	7
256	Floristic mosaics of the threatened Brazilian campo rupestre. Nature Conservation Research, 2022, 7, .	1.5	7
257	Evidence for a stress hypothesis: hemiparasitism effect on the colonization of Alchornea	0.7	6
258	Seed germination ecophysiology of the wild pineapple, Ananas ananassoides (Baker) L.B.Sm. (Bromeliaceae). Acta Botanica Brasilica, 2010, 24, 1100-1103.	0.8	6
259	Hemiparasitism effect on Baccharis dracunculifolia DC. and consequences to its major galling herbivore. Acta Botanica Brasilica, 2015, 29, 339-345.	0.8	6
260	Arbuscular Mycorrhiza and Endophytic Fungi in Ruspestrian Grasslands. , 2016, , 157-179.		6
261	Understory host plant and insect gall diversity changes across topographic habitats differing in nutrient and water stress in the Brazilian Amazon rainforest. Acta Amazonica, 2017, 47, 237-246.	0.7	6
262	Reproductive biology and floral visitors of Collaea cipoensis (Fabaceae), an endemic shrub of the rupestrian grasslands. Flora: Morphology, Distribution, Functional Ecology of Plants, 2018, 238, 129-137.	1.2	6
263	Structural analysis of a fragmented area in Minas Gerais State, Brazil. Anais Da Academia Brasileira De Ciencias, 2018, 90, 3353-3361.	0.8	6
264	Arbuscular Mycorrhizal Fungi in the Rhizosphere of Saplings Used in the Restoration of the Rupestrian Grassland. Ecological Restoration, 2019, 37, 152-162.	0.8	6
265	Structure and composition of the euglossine bee community along an elevational gradient of rupestrian grassland vegetation. Apidologie, 2020, 51, 675-687.	2.0	6
266	Functional trait coordination in the ancient and nutrient-impoverished (i) campo rupestre (i): soil properties drive stem, leaf and architectural traits. Biological Journal of the Linnean Society, 2021, 133, 531-545.	1.6	6
267	Patterns of orchid bee species diversity and turnover among forested plateaus of central Amazonia. PLoS ONE, 2017, 12, e0175884.	2.5	6
268	Asphondylia fructicola, a new species of Cecidomyiidae (Diptera) associated with Solanum sp. (Solanaceae) from Brazil. Revista Brasileira De Entomologia, 2009, 53, 166-170.	0.4	6
269	Caracterização fÃsico-quÃmica de solos quartzÃŧicos degradados e áreas adjacentes de campo rupestre na Serra do Cipó, MG, Brasil. Neotropical Biology and Conservation, 2012, 6, .	0.9	6
270	Altitudinal variation in butterfly community associated with climate and vegetation. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20190058.	0.8	6

#	Article	IF	Citations
271	Mycorrhiza fungi application as a successful tool for worldwide mine land restoration: Current state of knowledge and the way forward. Ecological Engineering, 2022, 178, 106580.	3.6	6
272	A new genus and species of gall midge (Diptera, Cecidomyiidae) associated with Myrcia retorta (Myrtaceae). Revista Brasileira De Entomologia, 2009, 53, 38-40.	0.4	5
273	A new species of Bruggmanniella (Diptera, Cecidomyiidae, Asphondyliini) associated with Doliocarpus dentatus (Dilleniaceae) in Brazil. Revista Brasileira De Entomologia, 2010, 54, 225-228.	0.4	5
274	Costs and benefits of reproducing under unfavorable conditions: an integrated view of ecological and physiological constraints in a cerrado shrub. Plant Ecology, 2015, 216, 963-974.	1.6	5
275	Riparian vegetation structure and soil variables in Pandeiros river, Brazil. Rodriguesia, 2019, 70, .	0.9	5
276	Osmotic stress at membrane level and photosystem II activity in two C4 plants after growth in elevated CO ₂ and temperature. Annals of Applied Biology, 2019, 174, 113-122.	2.5	5
277	Fire mediated herbivory and plant defense of a neotropical shrub. Arthropod-Plant Interactions, 2019, 13, 489-498.	1.1	5
278	Fertilisation with dehydrated sewage sludge affects the phytophagous Hemiptera, tending ants and Sternorrhyncha predators on <scp><i>Acacia mangium</i></scp> (Fabaceae). Annals of Applied Biology, 2021, 179, 345-353.	2.5	5
279	CO2 Fertilizer Effect on Growth, Polyphenols, and Endophytes in Two Baccharis Species. Brazilian Archives of Biology and Technology, 0, 63, .	0.5	5
280	Impact of a gall midge Parkiamyia paraensis (Diptera, Cecidomyiidae) on the Amazonian plant Parkia pendula (Fabaceae). Revista Brasileira De Entomologia, 2007, 51, 471-475.	0.4	5
281	Pattern of attack of a galling insect reveals an unexpected preference-performance linkage on medium-sized resources. Revista Brasileira De Entomologia, 2010, 54, 96-103.	0.4	5
282	Cerrado conservation is key to the water crisis. Science, 2022, 377, 270-270.	12.6	5
283	Cynipid gall growth dynamics and enemy attack: effects of gall size, toughness and thickness. Neotropical Entomology, 1999, 28, 211-218.	0.2	4
284	Ethical abuses in the authorship of scientific papers. Revista Brasileira De Entomologia, 2007, 51, 1-5.	0.4	4
285	Predicting the impact of increasing carbon dioxide concentration and temperature on seed germination and seedling establishment of African grasses in Brazilian Cerrado. Austral Ecology, 2015, 40, 962-973.	1.5	4
286	Nectar robbing in Collaea cipoensis (Fabaceae), an endemic shrub of the Brazilian rupestrian grasslands. Revista Mexicana De Biodiversidad, 2016, 87, 1352-1355.	0.4	4
287	Emissions from cattle farming in Brazil. Nature Climate Change, 2016, 6, 893-894.	18.8	4
288	Differences in leaf nutrients and developmental instability in relation to induced resistance to a gall midge. Arthropod-Plant Interactions, 2017, 11, 163-170.	1.1	4

#	Article	IF	Citations
289	Influence of Flood Levels on the Richness and Abundance of Galling Insects Associated with Trees from Seasonally Flooded Forests of Central Amazonia, Brazil., 2018,, 99-117.		4
290	Early plant development depends on embryo damage location: the role of seed size in partial seed predation. Oikos, 2020, 129, 320-330.	2.7	4
291	Effectiveness of Endophytic Fungi from Baccharis dracunculifolia Against Sucking Insect and Fungal Pathogens., 2021,, 337-349.		4
292	Endophytic fungus diversity in soybean plants submitted to conditions of elevated atmospheric CO ₂ and temperature. Canadian Journal of Microbiology, 2021, 67, 290-300.	1.7	4
293	Galling Insects in the Pantanal Wetland and Amazonian Rainforest. , 2014, , 377-403.		4
294	Termite Foraging on Plants of a Brazilian Savanna: the Effects of Tree Height. Sociobiology, 2018, 65, 48.	0.5	4
295	Mechanisms Driving Galling Success in a Fragmented Landscape: Synergy of Habitat and Top-Down Factors along Temperate Forest Edges. PLoS ONE, 2016, 11, e0157448.	2.5	4
296	More is not always better: responses of the endemic plant Vellozia nanuzae to additional nutrients. Acta Botanica Brasilica, 2020, 34, 487-496.	0.8	4
297	Incidence of galls on fruits of Parkinsonia praecox and its consequences on structure and physiology traits in a Mexican semi-arid region. Revista Mexicana De Biodiversidad, 2019, 90, .	0.4	4
298	Response of the galling insect Aciurina trixa Curran (Diptera: Tephritidae) to host plant quality. Neotropical Entomology, 2000, 29, 423-431.	0.2	3
299	Galling Insects (Diptera: Cecidomyiidae) Survive Inundation during Host Plant Flooding in Central Amazonia1. Biotropica, 2003, 35, 115.	1.6	3
300	Interactions of gall-forming species at different plant spatial scales. Arthropod-Plant Interactions, 2010, 4, 247-255.	1.1	3
301	Induced responses in the neotropical shrub Bauhinia brevipes Vogel: does early season herbivory function as cue to plant resistance?. Arthropod-Plant Interactions, 2011, 5, 245-253.	1.1	3
302	Is the São Francisco River a geographic barrier to gene flow in trees of Handroanthus ochraceus?. Journal of Tropical Ecology, 2013, 29, 243-250.	1.1	3
303	Features of CAM-cycling expressed in the dry season by terrestrial and epiphytic plants of Clusia arrudae Planchon & Triana in two rupestrian savannas of southeastern Brazil in comparison to the C3-species Eremanthus glomerulatus Less Trees - Structure and Function, 2016, 30, 913-922.	1.9	3
304	Facilitative effects of tree species on natural regeneration in an endangered biodiversity hotspot. Revista Brasileira De Botanica, 2017, 40, 943-950.	1.3	3
305	Ecophysiological performance of four species of Clusiaceae with different modes of photosynthesis in a mosaic of riverine, rupestrian grasslands, and cerrado vegetation in SE-Brazil. Trees - Structure and Function, 2019, 33, 641-652.	1.9	3
306	Litter decomposition in wet and dry ecosystems of the Brazilian Cerrado. Soil Research, 2020, 58, 371.	1.1	3

#	Article	IF	Citations
307	Myrciariamyia admirabilis, a new species of gall midge (Diptera, Cecidomyiidae) associated with Erythroxylum suberosum (Erythroxylaceae). Zootaxa, 2007, 1554, 41-48.	0.5	3
308	Insect herbivores associated with Baccharis dracunculifolia(Asteraceae): responses of gall-forming and free-feeding insects to latitudinal variation. Revista De Biologia Tropical, 2011, .	0.4	3
309	The bigger the better? Vigour of the exotic host plant Calotropis procera (Apocynaceae) affects herbivory. Neotropical Biology and Conservation, 2020, 15, 359-366.	0.9	3
310	Improvement in light utilization and shoot growth in Hymenaea stigonocarpa under high CO 2 concentration attenuates simulated leaf herbivory effects. Acta Botanica Brasilica, 2019, 33, 558-571.	0.8	3
311	Interaction between increased CO2 and temperature enhance plant growth but do not affect millet grain production. Acta Scientiarum - Agronomy, 0, 44, e53515.	0.6	3
312	Experimental manipulation of biotic and abiotic parameters changes the outcome of insect-plant interactions. Basic and Applied Ecology, 2022, 65, 97-108.	2.7	3
313	Tri-trophic interactions among congeneric sympatric host plants of Chamaecrista, seed predators and parasitoids. Arthropod-Plant Interactions, 2013, 7, 403-413.	1.1	2
314	Growing straight versus growing decumbent: soil quality and allometry in Syagrus glaucescens Becc. (Arecaceae), an endemic and threatened palm of the EspinhaĀSo Mountains, Brazil. Acta Botanica Brasilica, 2015, 29, 417-424.	0.8	2
315	Effects of sex and altitude on nutrient, and carbon and nitrogen stable isotope composition of the endangered shrub Baccharis concinna G.M. Barroso (Asteraceae). Acta Botanica Brasilica, 2017, 31, 229-240.	0.8	2
316	Induction, engineering, and hijacking of defensive strategies of the host by a gallâ€inducing weevil. Ecology, 2019, 100, e02693.	3.2	2
317	Positive response of seedlings from an old-growth grassland to soil quality improvement. Revista Brasileira De Botanica, 2020, 43, 1037-1045.	1.3	2
318	Incidence of Galls on Sympatric California Oaks: Ecological and Physiological Perspectives. Diversity, 2021, 13, 20.	1.7	2
319	Functional traits of three major invasive grasses in a threatened tropical mountain grassland. Anais Da Academia Brasileira De Ciencias, 2021, 93, e20200119.	0.8	2
320	Changes in Epigaeic Ant Assemblage Structure in the Amazon during Successional Processes after Bauxite Mining. Sociobiology, 2021, 68, e4973.	0.5	2
321	Vegetative Propagation of Schizachyrium tenerum (Poaceae) Under Different Substrates and Environments. Floresta E Ambiente, 2021, 28, .	0.4	2
322	Assessing Urban Ecosystem Services. Impact of Meat Consumption on Health and Environmental Sustainability, 2018, , 183-220.	0.4	2
323	Elevated CO ₂ concentration improves the performance of an agricultural pest: a worrisome climate crisis scenario. Entomologia Experimentalis Et Applicata, 2021, 169, 1068-1080.	1.4	2
324	Galls from Brazilian Atlantic Forest: Status of Knowledge and Perspectives. , 2014, , 363-376.		2

#	Article	IF	CITATIONS
325	Natural Selection on a Tropical System: Gall-Size Distribution on Waltheria indica (Malvaceae). , 2014, , 115-128.		2
326	Local environmental context determines the colonisation of leaf shelters by arthropods: an experimental study. Journal of Tropical Ecology, 0, , 1-9.	1.1	2
327	Subtle structures with notâ€soâ€subtle functions: A data set of arthropod constructs and their host plants. Ecology, 2022, 103, e3639.	3.2	2
328	Can our current knowledge and practice allow ecological restoration in the Cerrado?. Anais Da Academia Brasileira De Ciencias, 2022, 94, e20200665.	0.8	2
329	Antiâ€Zika Virus Activity of Plant Extracts Containing Polyphenols and Triterpenes on Vero CCLâ€81 and Human Neuroblastoma SHâ€6Y5Y Cells. Chemistry and Biodiversity, 2022, 19, .	2.1	2
330	The role of Baccharis (Asteraceae) shrubs in the short-term restoration of Atlantic rainforest. Nature Conservation Research, 2022, 7, .	1.5	2
331	Economic Environmental Management Tools in the Serra Do Espinhaço Biosphere Reserve. Journal of Sustainable Development, 2012, 5, .	0.3	1
332	Antagonistic Interactions in the Rupestrian Grasslands: New Insights and Perspectives. , 2016, , 315-343.		1
333	Galls in Brazilian Mountains: New Reports and Perspectives. , 2014, , 273-293.		1
334	Galls from Brazilian Tropical Dry Forests: Status of Knowledge and Perspectives. , 2014, , 405-427.		1
335	Topsoil depth influences the recovery of rupestrian grasslands degraded by mining. Revista Brasileira De Ciencia Do Solo, 2021, 45, .	1.3	1
336	Endophytic Fungi of Baccharis. , 2021, , 151-169.		1
337	Imbalance of water potential and photosynthetic efficiency in the parasitic relationship between Struthanthus flexicaulis and Baccharis dracunculifolia. Folia Geobotanica, 2022, 57, 71-82.	0.9	1
338	Aftershocks of the Samarco disaster: diminished growth and increased metal content of Raphanus sativus cultivated in soil with mining tailings. Acta Scientiarum - Biological Sciences, 0, 44, e59175.	0.3	1
339	Efeito da profundidade, estacionalidade e luminosidade no banco de sementes do solo de campo rupestre. Ciencia Florestal, 2022, 32, 880-901.	0.3	1
340	The Homogenization of two Different Natural Ecosystems by Conversion to Pasture in the Southern Espinhaço, Brazil. Floresta E Ambiente, 2021, 28, .	0.4	0
341	Potential interactions between herbivorous arthropods and of their natural enemies on Caryocar brasiliense (Caryocaraceae) trees. Revista Brasileira De Entomologia, 2021, 65, .	0.4	0
342	Disentangling the factors that shape bromeliad and ant communities in the canopies of cocoa agroforestry and preserved Atlantic Forest. Biotropica, 2021, 53, 1698-1709.	1.6	0

#	Article	IF	CITATIONS
343	Isolation and characterization of microsatellite loci in Coccoloba cereifera (Polygonaceae), an endangered species endemic to the Serra do Cip \tilde{A}^3 , Brazil. Molecular Ecology Resources, 2008, .	4.8	О
344	Influência do tamanho e da escarificação dos diásporos na emergência e estabelecimento de Pterodon emarginatus. Pesquisa Florestal Brasileira, 2019, 39, .	0.1	0
345	Does environmental diversity affect hymenopteran galling insects and their natural enemies on Caryocar brasiliense trees (Caryocaraceae)?. Revista Colombiana De Entomologia, 2020, 46, e8546.	0.4	0
346	Effect of patch size of the exotic host plant Calotropis procera (Apocynaceae) on herbivory. Revista Brasileira De Entomologia, 2020, 64, .	0.4	0
347	Local and regional spatial distribution of an eruptive and a latent herbivore insect species. Austral Ecology, 0, 28, 99-107.	1.5	0
348	VIABILIDADE DO TURISMO DE BASE COMUNITÂRIA NO PARQUE NACIONAL DA SERRA DO CIP"/MG. É POSSÃVEL?. Geographia, 2021, 23, .	0.1	0
349	Deep capillary impact of a psyllid gall on its host ecophysiology, architecture and performance. Trees - Structure and Function, 0, , 1.	1.9	0
350	Arthropod Constructs and Host Plants. Bulletin of the Ecological Society of America, 2022, 103, .	0.2	0
351	Free-feeding organisms and galling insects (Hymenoptera) interactions on Caryocar brasiliense (Malpighiales: Caryocaraceae) trees, a savanna plant from Brazil. Brazilian Journal of Biology, 2022, 84, e257975.	0.9	0
352	Heading back into the perfect storm: increasing risks for disease emergence in Brazil?. Revista Da Sociedade Brasileira De Medicina Tropical, 0, 55, .	0.9	0