Yong Zi Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/792758/publications.pdf

Version: 2024-02-01

430874 677142 2,378 26 18 22 h-index citations g-index papers 37 37 37 3792 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nature Methods, 2017, 14, 793-796.	19.0	708
2	Routine single particle CryoEM sample and grid characterization by tomography. ELife, 2018, 7, .	6.0	216
3	Reducing effects of particle adsorption to the air–water interface in cryo-EM. Nature Methods, 2018, 15, 793-795.	19.0	167
4	Modular Assembly of the Bacterial Large Ribosomal Subunit. Cell, 2016, 167, 1610-1622.e15.	28.9	163
5	FACT caught in the act of manipulating the nucleosome. Nature, 2020, 577, 426-431.	27.8	160
6	Spotiton: New features and applications. Journal of Structural Biology, 2018, 202, 161-169.	2.8	140
7	Structure of an endosomal signaling GPCR–G protein–β-arrestin megacomplex. Nature Structural and Molecular Biology, 2019, 26, 1123-1131.	8.2	139
8	Structure and drug resistance of the Plasmodium falciparum transporter PfCRT. Nature, 2019, 576, 315-320.	27.8	123
9	Sub-2 à Ewald curvature corrected structure of an AAV2 capsid variant. Nature Communications, 2018, 9, 3628.	12.8	73
10	Electron-event representation data enable efficient cryoEM file storage with full preservation of spatial and temporal resolution. IUCrJ, 2020, 7, 860-869.	2.2	71
11	Automated data collection in single particle electron microscopy. Microscopy (Oxford, England), 2016, 65, 43-56.	1.5	48
12	Multivalency transforms SARS-CoV-2 antibodies into ultrapotent neutralizers. Nature Communications, 2021, 12, 3661.	12.8	48
13	Big data in cryoEM: automated collection, processing and accessibility of EM data. Current Opinion in Microbiology, 2018, 43, 1-8.	5.1	45
14	Ensemble cryoEM elucidates the mechanism of insulin capture and degradation by human insulin degrading enzyme. ELife, 2018, 7, .	6.0	45
15	Better, Faster, Cheaper: Recent Advances in Cryo–Electron Microscopy. Annual Review of Biochemistry, 2022, 91, 1-32.	11.1	45
16	The MmpL3 interactome reveals a complex crosstalk between cell envelope biosynthesis and cell elongation and division in mycobacteria. Scientific Reports, 2019, 9, 10728.	3.3	32
17	Through-grid wicking enables high-speed cryoEM specimen preparation. Acta Crystallographica Section D: Structural Biology, 2020, 76, 1092-1103.	2.3	31
18	Cryo-EM Structures and Regulation of Arabinofuranosyltransferase AftD from Mycobacteria. Molecular Cell, 2020, 78, 683-699.e11.	9.7	27

#	Article	lF	CITATIONS
19	Strategies for Automated CryoEM Data Collection Using Direct Detectors. Methods in Enzymology, 2016, 579, 87-102.	1.0	19
20	Cryo-EM structure of arabinosyltransferase EmbB from Mycobacterium smegmatis. Nature Communications, 2020, 11, 3396.	12.8	14
21	Seeing Atoms: Single-Particle Cryo-EM Breaks the Atomic Barrier. Molecular Cell, 2020, 80, 938-939.	9.7	9
22	The structure of a 15-stranded actin-like filament from Clostridium botulinum. Nature Communications, 2019, 10, 2856.	12.8	7
23	Collecting and processing single-particle cryo-EM data with tilts. Protocol Exchange, 0, , .	0.3	3
24	Through-grid wicking enables high-speed cryoEM specimen preparation. Microscopy and Microanalysis, 2021, 27, 526-528.	0.4	1
25	CryoET of Single Particle CryoEM Grids Reveals Widespread Particle Adsorption to the Air-Water Interface, Which May be Reduced with New Plunging Techniques. Microscopy and Microanalysis, 2018, 24, 872-873.	0.4	0
26	High Throughput Expression Screening of Arabinofuranosyltransferases from Mycobacteria. Processes, 2021, 9, 629.	2.8	0