
Sarina Sarina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7927444/publications.pdf Version: 2024-02-01

SADINA SADINA

#	Article	IF	CITATIONS
1	Nanostructure Shape-Effects in ZnO heterogeneous photocatalysis. Journal of Colloid and Interface Science, 2022, 606, 588-599.	5.0	32
2	High efficient arsenic removal by In-layer sulphur of layered double hydroxide. Journal of Colloid and Interface Science, 2022, 608, 2358-2366.	5.0	13
3	AuCu/ZnO heterogeneous photocatalysts: Photodeposited AuCu alloy effect on product selectivity in alkene epoxidation. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 426, 113732.	2.0	2
4	Wavelength-Specific Product Desorption as a Key to Raising Nitrile Yield of Primary Alcohol Ammoxidation over Illuminated Pd Nanoparticles. ACS Catalysis, 2022, 12, 2280-2289.	5.5	17
5	Surfaceâ€Plasmonâ€Enhanced Transmetalation between Copper and Palladium Nanoparticle Catalyst. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
6	Surfaceâ€Plasmonâ€Enhanced Transmetalation between Copper and Palladium Nanoparticle Catalyst. Angewandte Chemie, 2022, 134, .	1.6	3
7	Solar thermal-activated photocatalysis for hydrogen production and aqueous triethanolamine polymerization. Journal of Materials Chemistry A, 2022, 10, 19984-19993.	5.2	4
8	Catalysis based on ferroelectrics: controllable chemical reaction with boosted efficiency. Nanoscale, 2021, 13, 7096-7107.	2.8	27
9	Non-plasmonic Ni nanoparticles catalyzed visible light selective hydrogenolysis of aryl ethers in lignin under mild conditions. Green Chemistry, 2021, 23, 7780-7789.	4.6	16
10	Visible-light photocatalytic selective oxidation of C(sp ³)–H bonds by anion–cation dual-metal-site nanoscale localized carbon nitride. Catalysis Science and Technology, 2021, 11, 4429-4438.	2.1	11
11	Oxidative Esterification of 5-Hydroxymethylfurfural into Dimethyl 2,5-Furandicarboxylate Using Gamma Alumina-Supported Gold Nanoparticles. ACS Omega, 2021, 6, 4740-4748.	1.6	16
12	Visible-Light-Driven Efficient Cleavage of β-O-4 Linkage in a Lignin Model Compound: Phenethyl Phenyl Ether Photocatalyzed by Titanium Nitride Nanoparticles. Energy & Fuels, 2021, 35, 13315-13324.	2.5	6
13	Plasmonic silver nanoparticles promoted sugar conversion to 5-hydroxymethylfurfural over catalysts of immobilised metal ions. Applied Catalysis B: Environmental, 2021, 296, 120340.	10.8	7
14	Direct visible photoexcitation on palladium nanocatalysts by chemisorption with distinct size dependence. Catalysis Science and Technology, 2021, 11, 2073-2080.	2.1	4
15	Simultaneous removal of cationic and anionic heavy metal contaminants from electroplating effluent by hydrotalcite adsorbent with disulfide (<mml:math) (xr<="" 0.784314="" 1="" 10="" 187="" 50="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>nlns:mml=" 6.5</td><td>http://www.v 48</td></mml:math)>	nlns:mml=" 6.5	http://www.v 48
16	Intercalation, Journal of Hazardous Materials, 2020, 302, 121111. Heterogeneous photocatalytic anaerobic oxidation of alcohols to ketones by Pt-mediated hole oxidation. Chemical Communications, 2020, 56, 11847-11850.	2.2	32
17	Strongly interfacial-coupled 2D-2D TiO2/g-C3N4 heterostructure for enhanced visible-light induced synthesis and conversion. Journal of Hazardous Materials, 2020, 394, 122529.	6.5	118
18	Plasmonic Switching of the Reaction Pathway: Visible‣ight Irradiation Varies the Reactant Concentration at the Solid–Solution Interface of a Gold–Cobalt Catalyst. Angewandte Chemie, 2019, 131, 12160-12164.	1.6	18

SARINA SARINA

#	Article	IF	CITATIONS
19	Promoting Ni(II) Catalysis with Plasmonic Antennas. CheM, 2019, 5, 2879-2899.	5.8	39
20	Quantifying the influence of surface physico-chemical properties of biosorbents on heavy metal adsorption. Chemosphere, 2019, 234, 488-495.	4.2	37
21	Plasmonic Switching of the Reaction Pathway: Visibleâ€Light Irradiation Varies the Reactant Concentration at the Solid–Solution Interface of a Gold–Cobalt Catalyst. Angewandte Chemie - International Edition, 2019, 58, 12032-12036.	7.2	59
22	Visible light-driven selective hydrogenation of unsaturated aromatics in an aqueous solution by direct photocatalysis of Au nanoparticles. Catalysis Science and Technology, 2018, 8, 726-734.	2.1	23
23	Metal Nanoparticle Photocatalysts: Synthesis, Characterization, and Application. Particle and Particle Systems Characterization, 2018, 35, 1700489.	1.2	50
24	Tuning the reduction power of visible-light photocatalysts of gold nanoparticles for selective reduction of nitroaromatics to azoxy-compounds—Tailoring the catalyst support. Applied Catalysis B: Environmental, 2017, 209, 69-79.	10.8	30
25	Silver and palladium alloy nanoparticle catalysts: reductive coupling of nitrobenzene through light irradiation. Dalton Transactions, 2017, 46, 10665-10672.	1.6	16
26	Stable Copper Nanoparticle Photocatalysts for Selective Epoxidation of Alkenes with Visible Light. ACS Catalysis, 2017, 7, 4975-4985.	5.5	96
27	Photon Energy Threshold in Direct Photocatalysis with Metal Nanoparticles: Key Evidence from the Action Spectrum of the Reaction. Journal of Physical Chemistry Letters, 2017, 8, 2526-2534.	2.1	50
28	Direct photocatalysis of supported metal nanostructures for organic synthesis. Journal Physics D: Applied Physics, 2017, 50, 283001.	1.3	20
29	Selective Oxidation of Aliphatic Alcohols using Molecular Oxygen at Ambient Temperature: Mixed-Valence Vanadium Oxide Photocatalysts. ACS Catalysis, 2016, 6, 3580-3588.	5.5	76
30	Visible light-driven photocatalytic Heck reaction over carbon nanocoil supported Pd nanoparticles. Catalysis Science and Technology, 2016, 6, 7738-7743.	2.1	35
31	Non-plasmonic metal nanoparticles as visible light photocatalysts for the selective oxidation of aliphatic alcohols with molecular oxygen at near ambient conditions. Chemical Communications, 2016, 52, 11567-11570.	2.2	32
32	Efficient Removal of Cationic and Anionic Radioactive Pollutants from Water Using Hydrotalcite-Based Getters. ACS Applied Materials & Interfaces, 2016, 8, 16503-16510.	4.0	40
33	Highly efficient self-esterification of aliphatic alcohols using supported gold nanoparticles under mild conditions. Journal of Molecular Catalysis A, 2016, 423, 61-69.	4.8	9
34	Alloying Gold with Copper Makes for a Highly Selective Visible-Light Photocatalyst for the Reduction of Nitroaromatics to Anilines. ACS Catalysis, 2016, 6, 1744-1753.	5.5	164
35	Factors influencing the photocatalytic hydroamination of alkynes with anilines catalyzed by supported gold nanoparticles under visible light irradiation. RSC Advances, 2016, 6, 31717-31725.	1.7	9
36	Catalytic Transformation of Aliphatic Alcohols to Corresponding Esters in O ₂ under Neutral Conditions Using Visible-Light Irradiation. Journal of the American Chemical Society, 2015, 137, 1956-1966.	6.6	116

SARINA SARINA

#	Article	IF	CITATIONS
37	Visible light enhanced oxidant free dehydrogenation of aromatic alcohols using Au–Pd alloy nanoparticle catalysts. Green Chemistry, 2014, 16, 331-341.	4.6	92
38	Direct Photocatalytic Conversion of Aldehydes to Esters Using Supported Gold Nanoparticles under Visible Light Irradiation at Room Temperature. Journal of Physical Chemistry C, 2014, 118, 19062-19069.	1.5	59
39	Viable Photocatalysts under Solar‣pectrum Irradiation: Nonplasmonic Metal Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 2935-2940.	7.2	234
40	Visible Light-Driven Cross-Coupling Reactions at Lower Temperatures Using a Photocatalyst of Palladium and Gold Alloy Nanoparticles. ACS Catalysis, 2014, 4, 1725-1734.	5.5	181
41	Separate or Simultaneous Removal of Radioactive Cations and Anions from Water by Layered Sodium Vanadate-Based Sorbents. Chemistry of Materials, 2014, 26, 4788-4795.	3.2	65
42	Efficient photocatalytic Suzuki cross-coupling reactions on Au–Pd alloy nanoparticles under visible light irradiation. Green Chemistry, 2014, 16, 4272.	4.6	213
43	Au–Pd alloy nanoparticle catalyzed selective oxidation of benzyl alcohol and tandem synthesis of imines at ambient conditions. Catalysis Today, 2014, 235, 152-159.	2.2	37
44	Silver oxide nanocrystals anchored on titanate nanotubes and nanofibers: promising candidates for entrapment of radioactive iodine anions. Nanoscale, 2013, 5, 11011.	2.8	64
45	Removal of radioactive iodine from water using Ag2O grafted titanate nanolamina as efficient adsorbent. Journal of Hazardous Materials, 2013, 246-247, 199-205.	6.5	92
46	Highly efficient and selective photocatalytic hydroamination of alkynes by supported gold nanoparticles using visible light at ambient temperature. Chemical Communications, 2013, 49, 2676.	2.2	76
47	Selective reductions using visible light photocatalysts of supported gold nanoparticles. Green Chemistry, 2013, 15, 236-244.	4.6	123
48	Enhancing Catalytic Performance of Palladium in Gold and Palladium Alloy Nanoparticles for Organic Synthesis Reactions through Visible Light Irradiation at Ambient Temperatures. Journal of the American Chemical Society, 2013, 135, 5793-5801.	6.6	416
49	Titanate-based adsorbents for radioactive ions entrapment from water. Nanoscale, 2013, 5, 2232.	2.8	102
50	Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green Chemistry, 2013, 15, 1814.	4.6	562
51	Tuning the Surface Structure of Nitrogenâ€Doped TiO ₂ Nanofibres—An Effective Method to Enhance Photocatalytic Activities of Visible‣ightâ€Driven Green Synthesis and Degradation. Chemistry - A European Journal, 2013, 19, 5731-5741.	1.7	31
52	Tuning the reduction power of supported gold nanoparticle photocatalysts for selective reductions by manipulating the wavelength of visible light irradiation. Chemical Communications, 2012, 48, 3509.	2.2	110
53	Driving selective aerobic oxidation of alkyl aromatics by sunlight on alcohol grafted metal hydroxides. Chemical Science, 2012, 3, 2138.	3.7	61
54	Capture of Radioactive Cesium and Iodide Ions from Water by Using Titanate Nanofibers and Nanotubes. Angewandte Chemie - International Edition, 2011, 50, 10594-10598.	7.2	208

#	Article	IF	CITATIONS
55	Reduction of Nitroaromatic Compounds on Supported Gold Nanoparticles by Visible and Ultraviolet Light. Angewandte Chemie - International Edition, 2010, 49, 9657-9661.	7.2	379