List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7927385/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effect of the magnetically dead layer on the magnetization and the magnetic anisotropy of the dextran-coated magnetite nanoparticles. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	10
2	Effect of ultrasonic irradiation power on sonochemical synthesis of gold nanoparticles. Ultrasonics Sonochemistry, 2021, 70, 105274.	3.8	55
3	Colloidal Stability and Concentration Effects on Nanoparticle Heat Delivery for Magnetic Fluid Hyperthermia. Langmuir, 2021, 37, 1129-1140.	1.6	28
4	Engineering Shape Anisotropy of Fe ₃ O ₄ -γ-Fe ₂ O ₃ Hollow Nanoparticles for Magnetic Hyperthermia. ACS Applied Nano Materials, 2021, 4, 3148-3158.	2.4	33
5	Welcome to Magnetism: A New Open Access Scientific Journal on Magnetism, Magnetic Materials and Magnetic Technology. Magnetism, 2021, 1, 1-2.	0.6	0
6	Role of Anisotropy, Frequency, and Interactions in Magnetic Hyperthermia Applications: Noninteracting Nanoparticles and Linear Chain Arrangements. Physical Review Applied, 2021, 15, .	1.5	22
7	Dependence of the composition, morphology and magnetic properties with the water and air exposure during the Fe1-yO/Fe3O4 core–shell nanoparticles synthesis. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	6
8	Energy Evolution, Stabilization, and Mechanotransducer Properties of Fe3O4 Vortex Nanorings and Nanodisks. Physical Review Applied, 2021, 16, .	1.5	1
9	Sonochemical route for mesoporous silica-coated magnetic nanoparticles towards pH-triggered drug delivery system. Journal of Materials Research and Technology, 2021, 15, 52-67.	2.6	16
10	Adjusting the Néel relaxation time of Fe ₃ O ₄ /Zn <i> _x </i> Co _{1â^'<i>x</i>} Fe ₂ O ₄ core/shell nanoparticles for optimal heat generation in magnetic hyperthermia. Nanotechnology, 2021, 32, 065703.	1.3	13
11	Next generation of nanozymes: A perspective of the challenges to match biological performance. Journal of Applied Physics, 2021, 130, .	1.1	5
12	Simple Sonochemical Method to Optimize the Heating Efficiency of Magnetic Nanoparticles for Magnetic Fluid Hyperthermia. ACS Omega, 2020, 5, 26357-26364.	1.6	37
13	Enhanced Cellular Transduction of Nanoparticles Resistant to Rapidly Forming Plasma Protein Coronas. Advanced Biology, 2020, 4, e2000162.	3.0	8
14	Low-Dimensional Assemblies of Magnetic MnFe ₂ O ₄ Nanoparticles and Direct <i>In Vitro</i> Measurements of Enhanced Heating Driven by Dipolar Interactions: Implications for Magnetic Hyperthermia. ACS Applied Nano Materials, 2020, 3, 8719-8731.	2.4	19
15	Lipid-Iron Nanoparticle with a Cell Stress Release Mechanism Combined with a Local Alternating Magnetic Field Enables Site-Activated Drug Release. Cancers, 2020, 12, 3767.	1.7	11
16	Magnetic Hyperthermia Experiments with Magnetic Nanoparticles in Clarified Butter Oil and Paraffin: A Thermodynamic Analysis. Journal of Physical Chemistry C, 2020, 124, 27709-27721.	1.5	7
17	PolishEM: image enhancement in FIB–SEM. Bioinformatics, 2020, 36, 3947-3948.	1.8	4
18	A Concise Review of Nanomaterials for Drug Delivery and Release. Current Nanoscience, 2020, 16, 399-412	0.7	5

#	Article	IF	CITATIONS
19	Free-Radical Formation by the Peroxidase-Like Catalytic Activity of MFe ₂ O ₄ (M) Tj ETQ	q1 <u>1</u> 0.78	84314 rgBT C
20	Reply to "Comment on â€~Free-Radical Formation by the Peroxidase-Like Catalytic Activity of MFe ₂ O ₄ (M = Fe, Ni, and Mn) Nanoparticles'― Journal of Physical Chemistry C, 2019, 123, 28511-28512.	1.5	2
21	Synthesis of Magnetite Nanoparticles of Different Size and Shape by Interplay of Two Different Surfactants. Brazilian Journal of Physics, 2019, 49, 829-835.	0.7	7
22	Controlling the dominant magnetic relaxation mechanisms for magnetic hyperthermia in bimagnetic core–shell nanoparticles. Nanoscale, 2019, 11, 3164-3172.	2.8	49
23	Magnetic Graphene Oxide Nanocarrier for Targeted Delivery of Cisplatin: A Perspective for Glioblastoma Treatment. Pharmaceuticals, 2019, 12, 76.	1.7	30
24	Sonochemical magnetite encapsulation in silica at low irradiation power. Materials Letters, 2019, 250, 103-107.	1.3	10
25	The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia. Scientific Reports, 2019, 9, 3992.	1.6	79
26	Gold-decorated magnetic nanoparticles design for hyperthermia applications and as a potential platform for their surface-functionalization. Scientific Reports, 2019, 9, 4185.	1.6	71
27	Effects of Zn Substitution in the Magnetic and Morphological Properties of Fe-Oxide-Based Core–Shell Nanoparticles Produced in a Single Chemical Synthesis. Journal of Physical Chemistry C, 2019, 123, 1444-1453.	1.5	16
28	Graphene Oxide Functional Nanohybrids with Magnetic Nanoparticles for Improved Vectorization of Doxorubicin to Neuroblastoma Cells. Pharmaceutics, 2019, 11, 3.	2.0	33
29	Core/Shell Nanoparticles of Non-Stoichiometric Zn–Mn and Zn–Co Ferrites as Thermosensitive Heat Sources for Magnetic Fluid Hyperthermia. Journal of Physical Chemistry C, 2018, 122, 3028-3038.	1.5	68
30	<i>In vitro</i> magnetic hyperthermia using polyphenol-coated Fe ₃ O ₄ @ <i>Î³</i> Fe ₂ O ₃ nanoparticles from <i>Cinnamomun verum</i> and <i>Vanilla planifolia</i> : the concert of green synthesis and therapeutic possibilities. Nanotechnology, 2018, 29, 074001.	1.3	41
31	Thermal diffusivity of ferrofluids as a function of particle size determined using the mode-mismatched dual-beam thermal lens technique. Journal of Applied Physics, 2018, 123, .	1.1	27
32	Magnetic and power absorption measurements on iron oxide nanoparticles synthesized by thermal decomposition of Fe(acac)3. Journal of Magnetism and Magnetic Materials, 2018, 449, 286-296.	1.0	54
33	Piconewton Mechanical Forces Promote Neurite Growth. Biophysical Journal, 2018, 115, 2026-2033.	0.2	27
34	Magnetic Nanoparticles for Neural Engineering. , 2018, , 395-410.		2
35	Polyphenols delivery by polymeric materials: challenges in cancer treatment. Drug Delivery, 2017, 24, 162-180.	2.5	48
36	Magnetic Nanoparticles for Efficient Delivery of Growth Factors: Stimulation of Peripheral Nerve Regeneration. Advanced Healthcare Materials, 2017, 6, 1601429.	3.9	74

#	Article	IF	CITATIONS
37	Structural and magnetic properties of core-shell Au/Fe3O4 nanoparticles. Scientific Reports, 2017, 7, 41732.	1.6	59
38	Magnetically responsive biopolymeric multilayer films for local hyperthermia. Journal of Materials Chemistry B, 2017, 5, 8570-8578.	2.9	8
39	Cell damage produced by magnetic fluid hyperthermia on microglial BV2 cells. Scientific Reports, 2017, 7, 8627.	1.6	48
40	Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating. Biomaterials, 2017, 114, 62-70.	5.7	102
41	Chitosan nanoparticles for combined drug delivery and magnetic hyperthermia: From preparation to in vitro studies. Carbohydrate Polymers, 2017, 157, 361-370.	5.1	107
42	Tuning Properties of Iron Oxide Nanoparticles in Aqueous Synthesis without Ligands to Improve MRI Relaxivity and SAR. Nanomaterials, 2017, 7, 225.	1.9	30
43	In Silico before In Vivo: how to Predict the Heating Efficiency of Magnetic Nanoparticles within the Intracellular Space. Scientific Reports, 2016, 6, 38733.	1.6	57
44	Cell Bystander Effect Induced by Radiofrequency Electromagnetic Fields and Magnetic Nanoparticles. Current Nanoscience, 2016, 12, 372-377.	0.7	15
45	Long-Term Stability and Reproducibility of Magnetic Colloids Are Key Issues for Steady Values of Specific Power Absorption over Time. European Journal of Inorganic Chemistry, 2015, 2015, 4444-4444.	1.0	Ο
46	Determination of the blocking temperature of magnetic nanoparticles: The good, the bad, and the ugly. Journal of Applied Physics, 2015, 118, .	1.1	189
47	Validity of the Néel-Arrhenius model for highly anisotropic CoxFe3â^'xO4 nanoparticles. Journal of Applied Physics, 2015, 118, .	1.1	48
48	Longâ€Term Stability and Reproducibility of Magnetic Colloids Are Key Issues for Steady Values of Specific Power Absorption over Time. European Journal of Inorganic Chemistry, 2015, 2015, 4524-4531.	1.0	31
49	Growth factor choice is critical for successful functionalization of nanoparticles. Frontiers in Neuroscience, 2015, 9, 305.	1.4	19
50	Enhanced Thermal Lens Effect in Gold Nanoparticle-Doped Lyotropic Liquid Crystal by Nanoparticle Clustering Probed by Z-Scan Technique. Brazilian Journal of Physics, 2015, 45, 213-218.	0.7	7
51	Exchange bias in ferrite hollow nanoparticles originated by complex internal magnetic structure. Materials Research Express, 2015, 2, 105001.	0.8	8
52	Influence of size distribution and field amplitude on specific loss power. Journal of Applied Physics, 2015, 117, .	1.1	25
53	Evaluation of <i>In-Situ</i> Magnetic Signals from Iron Oxide Nanoparticle-Labeled PC12 Cells by Atomic Force Microscopy. Journal of Biomedical Nanotechnology, 2015, 11, 457-468.	0.5	1
54	Preparation and <i>in vivo</i> evaluation of multifunctional ⁹⁰ Y-labeled magnetic nanoparticles designed for cancer therapy. Journal of Biomedical Materials Research - Part A, 2015, 103, 126-134.	2.1	48

#	Article	IF	CITATIONS
55	An integrated device for magnetically-driven drug release and in situ quantitative measurements: Design, fabrication and testing. Journal of Magnetism and Magnetic Materials, 2015, 377, 446-451.	1.0	18
56	Magnetic Nanoparticles as Intraocular Drug Delivery System to Target Retinal Pigmented Epithelium (RPE). International Journal of Molecular Sciences, 2014, 15, 1590-1605.	1.8	43
57	Magnetic nanoparticles for magnetically guided therapies against neural diseases. MRS Bulletin, 2014, 39, 965-969.	1.7	5
58	Relaxation time diagram for identifying heat generation mechanisms in magnetic fluid hyperthermia. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	36
59	Ex situ integration of iron oxide nanoparticles onto the exfoliated expanded graphite flakes in water suspension. Journal of the Serbian Chemical Society, 2014, 79, 1155-1167.	0.4	6
60	The orientation of the neuronal growth process can be directed via magnetic nanoparticles under an applied magnetic field. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1549-1558.	1.7	84
61	<i>In vitro</i> and <i>in vivo</i> experiments with iron oxide nanoparticles functionalized with DEXTRAN or polyethylene glycol for medical applications: Magnetic targeting. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 860-868.	1.6	77
62	Magnetic core–shell chitosan nanoparticles: Rheological characterization and hyperthermia application. Carbohydrate Polymers, 2014, 102, 691-698.	5.1	54
63	The effect of surface charge of functionalized Fe3O4 nanoparticles on protein adsorption and cell uptake. Biomaterials, 2014, 35, 6389-6399.	5.7	220
64	Specific Power Absorption of Silica-coated Magnetite Cubes. Current Nanoscience, 2014, 10, 676-683.	0.7	9
65	Size dependence of the magnetic relaxation and specific power absorption in iron oxide nanoparticles. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	45
66	Neuronal cells loaded with PEI-coated Fe3O4 nanoparticles for magnetically guided nerve regeneration. Journal of Materials Chemistry B, 2013, 1, 3607.	2.9	38
67	Cell death induced by AC magnetic fields and magnetic nanoparticles: Current state and perspectives. International Journal of Hyperthermia, 2013, 29, 810-818.	1.1	73
68	Magnetically-driven selective synthesis of Au clusters on Fe ₃ O ₄ nanoparticles. Chemical Communications, 2013, 49, 716-718.	2.2	10
69	Induced cell toxicity originates dendritic cell death following magnetic hyperthermia treatment. Cell Death and Disease, 2013, 4, e596-e596.	2.7	41
70	Generation of Magnetized Olfactory Ensheathing Cells for Regenerative Studies in the Central and Peripheral Nervous Tissue. International Journal of Molecular Sciences, 2013, 14, 10852-10868.	1.8	17
71	Fluorescent Magnetic Bioprobes by Surface Modification of Magnetite Nanoparticles. Materials, 2013, 6, 3213-3225.	1.3	29
72	Magnetization enhancement and cation valences in nonstoichiometric (Mn,Fe)3-δO4 nanoparticles. Journal of Applied Physics, 2012, 111, 074309.	1.1	13

#	Article	IF	CITATIONS
73	Magnetic Properties of Lithium Ferrite Nanoparticles with a Core/Shell Structure. Current Nanoscience, 2012, 8, 651-658.	0.7	18
74	Influence of the Substrate and Precursor on the Magnetic and Magneto-transport Properties in Magnetite Films. Current Nanoscience, 2012, 8, 659-668.	0.7	2
75	Magnetic Field-Assisted Gene Delivery: Achievements and Therapeutic Potential. Current Gene Therapy, 2012, 12, 116-126.	0.9	58
76	Self organization in oleic acid-coated CoFe2O4 colloids: a SAXS study. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	23
77	Development and evaluation of 90Y-labeled albumin microspheres loaded with magnetite nanoparticles for possible applications in cancer therapy. Journal of Materials Chemistry, 2012, 22, 24017.	6.7	27
78	Poly-l-lysine-coated magnetic nanoparticles as intracellular actuators for neural guidance. International Journal of Nanomedicine, 2012, 7, 3155.	3.3	57
79	Application of magnetically induced hyperthermia in the model protozoan Crithidia fasciculata as a potential therapy against parasitic infections. International Journal of Nanomedicine, 2012, 7, 5351.	3.3	20
80	Controlled Cell Death by Magnetic Hyperthermia: Effects of Exposure Time, Field Amplitude, and Nanoparticle Concentration. Pharmaceutical Research, 2012, 29, 1319-1327.	1.7	115
81	Magnetic nanoparticles in primary neural cell cultures are mainly taken up by microglia. BMC Neuroscience, 2012, 13, 32.	0.8	64
82	Magnetically Triggered Nanocomposite Membranes: A Versatile Platform for Triggered Drug Release. Nano Letters, 2011, 11, 1395-1400.	4.5	241
83	Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells. Nanotechnology, 2011, 22, 205101.	1.3	67
84	Optimization of photoluminescence of Y ₂ O ₃ :Eu and Gd ₂ O ₃ :Eu phosphors synthesized by thermolysis of 2,4-pentanedione complexes. Nanotechnology, 2010, 21, 245702.	1.3	49
85	Magnetic properties and energy absorption of CoFe ₂ O ₄ nanoparticles for magnetic hyperthermia. Journal of Physics: Conference Series, 2010, 200, 072101.	0.3	46
86	Magnetic Hydrogels Derived from Polysaccharides with Improved Specific Power Absorption: Potential Devices for Remotely Triggered Drug Delivery. Journal of Physical Chemistry B, 2010, 114, 12002-12007.	1.2	51
87	Single-step chemical synthesis of ferrite hollow nanospheres. Nanotechnology, 2009, 20, 045606.	1.3	14
88	Magnetic nanoparticles for power absorption: Optimizing size, shape and magnetic properties. Journal of Solid State Chemistry, 2009, 182, 2779-2784.	1.4	141
89	Influence of heavy rare earth ions substitution on microstructure and magnetism of nanocrystalline magnetite. Journal of Alloys and Compounds, 2009, 472, 571-575.	2.8	18
90	A Magnetically Triggered Composite Membrane for On-Demand Drug Delivery. Nano Letters, 2009, 9, 3651-3657.	4.5	335

#	Article	IF	CITATIONS
91	Effects of Thermal Annealing on Structural and Magnetic Properties of Lithium Ferrite Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 20559-20567.	1.5	78
92	Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: Evidences for Stoner–Wohlfarth behavior and large losses. Journal of Applied Physics, 2009, 105, .	1.1	131
93	Dendritic cell uptake of ironâ€based magnetic nanoparticles. Cell Biology International, 2008, 32, 1001-1005.	1.4	45
94	Magnetic characterization of ferrihydrite nanoparticles synthesized by hydrolysis of Fe metal-organic precursor. Physica B: Condensed Matter, 2008, 403, 4156-4159.	1.3	8
95	Numerical simulation of magnetic interactions in polycrystalline YFeO3. Journal of Magnetism and Magnetic Materials, 2008, 320, 622-629.	1.0	28
96	Magnetic and electrical properties of In doped FeCr2S4 compound. Journal of Magnetism and Magnetic Materials, 2008, 320, e450-e452.	1.0	1
97	Uniform and water stable magnetite nanoparticles with diameters around the monodomain–multidomain limit. Journal Physics D: Applied Physics, 2008, 41, 134003.	1.3	208
98	Magnetic Hyperthermia With Fe\$_{3}\$O\$_{4}\$ Nanoparticles: The Influence of Particle Size on Energy Absorption. IEEE Transactions on Magnetics, 2008, 44, 4444-4447.	1.2	89
99	ZnFe ₂ O ₄ Nanocrystals:  Synthesis and Magnetic Properties. Journal of Physical Chemistry C, 2007, 111, 12274-12278.	1.5	323
100	In-field Mössbauer study of the disordered surface contribution in nickel ferrite nanomagnets. Journal of Magnetism and Magnetic Materials, 2007, 310, e1020-e1022.	1.0	5
101	Brownian rotational relaxation and power absorption in magnetite nanoparticles. Journal of Magnetism and Magnetic Materials, 2007, 316, 132-135.	1.0	21
102	Surface spin freezing of ferrite nanoparticles evidenced by magnetization measurements. Journal of Applied Physics, 2006, 99, 08M905.	1.1	47
103	Magnetic Structure and Power Absorption in Magnetite Nanoparticles from a MRI Contrast Agent. , 2006, , .		1
104	Large magnetic anisotropy in ferrihydrite nanoparticles synthesized from reverse micelles. Nanotechnology, 2006, 17, 5549-5555.	1.3	39
105	Spin disorder and magnetic anisotropy in Fe3O4 nanoparticles. Journal of Applied Physics, 2006, 99, 083908.	1.1	158
106	Magnetism in non-stoichiometric goethite of varying total water content and surface area. Geophysical Journal International, 2006, 164, 331-339.	1.0	44
107	Synthesis and characterization of LiFePO4 prepared by sol–gel technique. Solid State Ionics, 2006, 177, 497-500.	1.3	80
108	Experimental evidence of surface effects in the magnetic dynamics behavior of ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 2005, 289, 118-121.	1.0	27

#	Article	IF	CITATIONS
109	Biocompatible superparamagnetic iron oxide nanoparticles used for contrast agents: a structural and magnetic study. Journal of Magnetism and Magnetic Materials, 2005, 289, 439-441.	1.0	96
110	Morphological and magnetic properties of carbon–nickel nanocomposite thin films. Journal of Applied Physics, 2005, 97, 044313.	1.1	43
111	Thermal hysteresis of spin reorientation at Morin transition in alkoxide derived hematite nanoparticles. Applied Physics A: Materials Science and Processing, 2005, 80, 1523-1526.	1.1	31
112	Interparticle interactions and surface contribution to the effective anisotropy in biocompatible iron oxide nanoparticles used for contrast agents. Journal of Applied Physics, 2005, 97, 10J316.	1.1	38
113	Co-Sputtered Carbon-Nickel Nanocomposite Thin Films. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 700-704.	0.1	4
114	Low Temperature Experimental Investigation of Finite-Size and Surface Effects in CuFe ₂ 0 ₄ Nanoparticles of Ferrofluids. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 694-699.	0.1	28
115	Magnetic interactions in ball-milled spinel ferrites. Journal of Materials Science, 2004, 39, 5045-5049.	1.7	7
116	Magnetic properties of acicular Fe1â^'xREx (RE = Nd, Sm, Eu, Tb; x = 0, 0.05, 0.10) metallic nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 112, 188-193.	1.7	14
117	Molecule Derived Synthesis of Nanocrystalline YFeO3 and Investigations on Its Weak Ferromagnetic Behavior ChemInform, 2004, 35, no.	0.1	1
118	Handling the particle size and distribution of Fe3O4 nanoparticles through ball milling. Solid State Communications, 2004, 130, 783-787.	0.9	69
119	Enhanced surface anisotropy evidenced by Mössbauer spectroscopy in nickel ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1215-E1217.	1.0	30
120	Molecule Derived Synthesis of Nanocrystalline YFeO3 and Investigations on Its Weak Ferromagnetic Behavior. Chemistry of Materials, 2004, 16, 1906-1913.	3.2	178
121	Magnetic Dynamics of Iron-Oxide Nanoparticles in Frozen Ferrofluids and Ferronematics. Journal of Metastable and Nanocrystalline Materials, 2004, 22, 33-38.	0.1	8
122	Spin glass formation in Li-substituted Co2TiO4spinel. Journal of Physics Condensed Matter, 2004, 16, 651-659.	0.7	21
123	Field Dependence of Blocking Temperature in Magnetite Nanoparticles. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 673-678.	0.1	50
124	The effect of water content on the magnetic and structural properties of goethite. Journal of Alloys and Compounds, 2004, 369, 247-251.	2.8	26
125	Magnetic properties of Ni:SiO 2 nanocomposites synthesized by a modified sol-gel method. Applied Physics A: Materials Science and Processing, 2003, 76, 621-623.	1.1	23
126	Antiferromagnetism and spin-glass transition in the FeIn Cr2â^'Se4 series of selenides. Solid State Communications, 2003, 125, 247-251.	0.9	13

#	Article	IF	CITATIONS
127	Static and dynamic magnetic properties of spherical magnetite nanoparticles. Journal of Applied Physics, 2003, 94, 3520-3528.	1.1	1,201
128	Magnetic dynamics of single-domain Ni nanoparticles. Journal of Applied Physics, 2003, 93, 6531-6533.	1.1	48
129	Ferrimagnetism and spin canting of Zn57Fe2O4nanoparticles embedded in ZnO matrix. Journal of Physics Condensed Matter, 2003, 15, 641-651.	0.7	48
130	Structural, magnetic, and mossbauer characterization of size-controlled iron-iron oxide nanoparticles obtained by chemical methods. IEEE Transactions on Magnetics, 2003, 39, 2681-2683.	1.2	7
131	Low-temperature electrical resistivity of as-cast glassy, relaxed, and crystallized Pd40Cu30Ni10P20alloys. Journal of Physics Condensed Matter, 2003, 15, 8713-8718.	0.7	4
132	Superparamagnetism and magnetic properties of Ni nanoparticles embedded inSiO2. Physical Review B, 2002, 66, .	1.1	210
133	Magnetic dynamics of Zn/sup 57/Fe/sub 2/O/sub 4/ nanoparticles dispersed in a ZnO matrix. IEEE Transactions on Magnetics, 2002, 38, 2610-2612.	1.2	22
134	Magnetic and Transport Properties of Mechanosynthesized FeCr ₂ S ₄ Sulfospinel. Materials Science Forum, 2002, 386-388, 491-496.	0.3	0
135	Spin Dynamics of Nanostructured La _{2/3} Ca _{1/3} MnO ₃ . Materials Science Forum, 2002, 386-388, 433-440.	0.3	0
136	On the Magnetic Properties of Mechanosynthesized and Ball-Milled Spinel Ferrites. Materials Science Forum, 2002, 403, 127-132.	0.3	2
137	Magnetic Properties of Ni Nanoparticles Embedded in Amorphous SiO ₂ . Materials Research Society Symposia Proceedings, 2002, 746, 1.	0.1	3
138	Magnetic properties of acicular ultrafine iron particles. IEEE Transactions on Magnetics, 2002, 38, 1907-1909.	1.2	18
139	Mol̀^ssbauer spectroscopy and magnetoresistivity of [sup 57]Fe substituted Mn in La[sub 0.7â^'x]Y[sub x]Ca[sub 0.3]MnO[sub 3] manganites. Journal of Applied Physics, 2002, 91, 7932.	1.1	4
140	Nanocrystalline Orthoferrite GdFeO3 from a Novel Heterobimetallic Precursor. Advanced Materials, 2002, 14, 1405-1409.	11.1	108
141	Magnetic and Mössbauer Study of the Novel FeIn2S2Se2 Layered Compound. Journal of Solid State Chemistry, 2002, 164, 326-331.	1.4	13
142	Nanocrystalline Orthoferrite GdFeO3 from a Novel Heterobimetallic Precursor. , 2002, 14, 1405.		1
143	Spin-glass ordering inZn1â^'xMnxIn2Te4diluted magnetic semiconductor. Physical Review B, 2001, 64, .	1.1	50
144	Magnetic properties of spindle-type iron fine particles obtained from hematite. Journal of Magnetism and Magnetic Materials, 2001, 226-230, 1933-1935.	1.0	26

#	Article	IF	CITATIONS
145	Study of the spin-glass transition in FeCr2xIn2â^2xS4 thiospinel. Journal of Magnetism and Magnetic Materials, 2001, 226-230, 1298-1299.	1.0	12
146	Spin-glass behavior in Zn1â^'xMnxIn2Te4. Journal of Magnetism and Magnetic Materials, 2001, 226-230, 1323-1325.	1.0	4
147	Magnetic properties of the reentrant spin glass FeCr2xIn2â^'2xS4. Physica B: Condensed Matter, 2000, 291, 190-194.	1.3	7
148	Magnetic irreversibility and relaxation in CuFe2O4 nanoparticles. Journal of Magnetism and Magnetic Materials, 2000, 218, 221-228.	1.0	47
149	Mechanosynthesis of intermetallic Fe100-xAlxobtained by reduction of Al/Fe2O3composite. Journal of Physics Condensed Matter, 2000, 12, 10579-10590.	0.7	14
150	Magnetic irreversibility in ultrafine ZnFe2O4 particles. Journal of Applied Physics, 2000, 87, 8005-8007.	1.1	69
151	Microstructural and Magnetic Properties of Mechanosynthesized Ferrites. Materials Science Forum, 1999, 302-303, 406-410.	0.3	2
152	Low-Temperature Magnetic Behavior of Ball-Milled Copper Ferrite. Journal of Metastable and Nanocrystalline Materials, 1999, 2-6, 545-550.	0.1	0
153	Magnetic properties of nanostructured CuFe2O4. Journal of Physics Condensed Matter, 1999, 11, 4063-4078.	0.7	185
154	Ionic disorder and Néel temperature in ZnFe2O4 nanoparticles. Journal of Magnetism and Magnetic Materials, 1999, 196-197, 191-192.	1.0	98
155	Magnetic properties of ZnFe2O4 synthesized by ball milling. Journal of Magnetism and Magnetic Materials, 1999, 203, 141-142.	1.0	70
156	Magnetic properties of the solid solution (Y1â^'xGdx)2BaCuO5 (0⩽x⩽1). Journal of Magnetism and Magnetism and Magnetials, 1999, 205, 215-220.	etic 1.0	3
157	Superparamagnetic transition and local disorder in CuFe2O4 nanoparticles. Scripta Materialia, 1998, 10, 1001-1011.	0.5	71
158	Structural and magnetic properties of ball milled copper ferrite. Journal of Applied Physics, 1998, 84, 1101-1108.	1.1	176
159	Reversibility of the synthesis-decomposition reaction in the ball-milled Cu-Fe-O system. Journal of Physics Condensed Matter, 1998, 10, 11829-11840.	0.7	17
160	Nanocrystalline CuFe2O4 obtained by mechanical grinding. Journal of Materials Science Letters, 1997, 16, 563-565.	0.5	14
161	Phase transformations in Fe-doped cupric oxide. Journal of Physics and Chemistry of Solids, 1997, 58, 73-77.	1.9	11
162	Magnetic properties ofPnma- oxides (R = Sm, Eu, Dy and Ho). Journal of Physics Condensed Matter, 1996, 8, 8607-8612.	0.7	19

#	Article	IF	CITATIONS
163	R - M interactions in (R = Y or Gd; M=Cu or Zn). Journal of Physics Condensed Matter, 1996, 8, 4529-4537.	0.7	20
164	Paramagnetic centers in Nd2â´'xSrxNiOy: an EPR study. Physica B: Condensed Matter, 1995, 210, 171-177.	1.3	0
165	Mössbauer study of Fe-Zn-O phases. Solid State Communications, 1995, 96, 485-490.	0.9	12
166	Coordination and electronic spin state of iron in Fe-doped Y2BaCuO5. Journal of Magnetism and Magnetic Materials, 1994, 138, 147-152.	1.0	5
167	Oxidation states of Fe in LaNilâ^'x Fe x O3. Hyperfine Interactions, 1994, 90, 371-375.	0.2	13
168	Mössbauer and susceptibility studies of FeMoVO7. Hyperfine Interactions, 1994, 83, 199-201.	0.2	0
169	Magnetic ordering in Fe-doped Gd2BaCuO5. Hyperfine Interactions, 1994, 83, 419-424.	0.2	4
170	Superparamagnetism and site prefernces in nanocrystalline spinel ferrites. , 0, , .		0
171	Structural, magnetic and Mossbauer characterization of controlled-size iron-iron oxide nanoparticles obtained by chemical methods. , 0, , .		0