Rosalie C Sears

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7927059/publications.pdf Version: 2024-02-01

ROSALLE C SEADS

#	Article	IF	CITATIONS
1	Microfluidics Formulated Liposomes of Hypoxia Activated Prodrug for Treatment of Pancreatic Cancer. Pharmaceutics, 2022, 14, 713.	4.5	5
2	T-cell Dysfunction upon Expression of MYC with Altered Phosphorylation at Threonine 58 and Serine 62. Molecular Cancer Research, 2022, 20, 1151-1165.	3.4	0
3	HuR Plays a Role in Double-Strand Break Repair in Pancreatic Cancer Cells and Regulates Functional BRCA1-Associated-Ring-Domain-1(BARD1) Isoforms. Cancers, 2022, 14, 1848.	3.7	4
4	The RNA-Binding Protein HuR Posttranscriptionally Regulates the Protumorigenic Activator YAP1 in Pancreatic Ductal Adenocarcinoma. Molecular and Cellular Biology, 2022, 42, .	2.3	6
5	Pharmacologic Targeting of TFIIH Suppresses KRAS-Mutant Pancreatic Ductal Adenocarcinoma and Synergizes with TRAIL. Cancer Research, 2022, 82, 3375-3393.	0.9	2
6	Ex Vivo Analysis of Primary Tumor Specimens for Evaluation of Cancer Therapeutics. Annual Review of Cancer Biology, 2021, 5, 39-57.	4.5	9
7	Detection of Post-translational Modifications on MYC. Methods in Molecular Biology, 2021, 2318, 69-85.	0.9	6
8	Tumor-Infiltrating Leukocyte Phenotypes Distinguish Outcomes in Related Patients With Pancreatic Adenocarcinoma. JCO Precision Oncology, 2021, 5, 344-356.	3.0	2
9	The deubiquitinase USP36 promotes snoRNP group SUMOylation and is essential for ribosome biogenesis. EMBO Reports, 2021, 22, e50684.	4.5	17
10	AMBRA1 regulates cyclin D to guard S-phase entry and genomic integrity. Nature, 2021, 592, 799-803.	27.8	78
11	Loss of Ambra1 promotes melanoma growth and invasion. Nature Communications, 2021, 12, 2550.	12.8	30
12	Sulfopin is a covalent inhibitor of Pin1 that blocks Myc-driven tumors in vivo. Nature Chemical Biology, 2021, 17, 954-963.	8.0	73
13	Targeting the MYC Ubiquitination-Proteasome Degradation Pathway for Cancer Therapy. Frontiers in Oncology, 2021, 11, 679445.	2.8	20
14	High-content single-cell combinatorial indexing. Nature Biotechnology, 2021, 39, 1574-1580.	17.5	39
15	Metabolic convergence on lipogenesis in RAS, BCR-ABL, and MYC-driven lymphoid malignancies. Cancer & Metabolism, 2021, 9, 31.	5.0	1
16	Protein phosphatase 2A activation as a therapeutic strategy for managing MYC-driven cancers. Journal of Biological Chemistry, 2020, 295, 757-770.	3.4	24
17	Hypoxia: Friend or Foe for drug delivery in Pancreatic Cancer. Cancer Letters, 2020, 492, 63-70.	7.2	60
18	Acidic fibroblast growth factor underlies microenvironmental regulation of MYC in pancreatic cancer. Journal of Experimental Medicine, 2020, 217, .	8.5	26

#	Article	IF	CITATIONS
19	Altering MYC phosphorylation in the epidermis increases the stem cell population and contributes to the development, progression, and metastasis of squamous cell carcinoma. Oncogenesis, 2020, 9, 79.	4.9	8
20	Select Stabilization of a Tumor-Suppressive PP2A Heterotrimer. Trends in Pharmacological Sciences, 2020, 41, 595-597.	8.7	7
21	PIN1 Provides Dynamic Control of MYC in Response to Extrinsic Signals. Frontiers in Cell and Developmental Biology, 2020, 8, 224.	3.7	7
22	Deconstructing Pancreatic Adenocarcinoma by Targeting the Conductor, MYC. Cancer Discovery, 2020, 10, 495-497.	9.4	4
23	Protein phosphatase 2A activation as a therapeutic strategy for managing MYC-driven cancers. Journal of Biological Chemistry, 2020, 295, 757-770.	3.4	34
24	Mission Possible: Advances in MYC Therapeutic Targeting in Cancer. BioDrugs, 2019, 33, 539-553.	4.6	113
25	Writing and erasing MYC ubiquitination and SUMOylation. Genes and Diseases, 2019, 6, 359-371.	3.4	55
26	The Role of Lineage Plasticity in Prostate Cancer Therapy Resistance. Clinical Cancer Research, 2019, 25, 6916-6924.	7.0	200
27	Innate αβ T Cells Mediate Antitumor Immunity by Orchestrating Immunogenic Macrophage Programming. Cancer Discovery, 2019, 9, 1288-1305.	9.4	19
28	The use of protein phosphatase 2A activators in combination therapies for pancreas cancer. Oncotarget, 2019, 10, 2008-2009.	1.8	1
29	Myc and Loss of p53 Cooperate to Drive Formation of Choroid Plexus Carcinoma. Cancer Research, 2019, 79, 2208-2219.	0.9	15
30	A Stromal Lysolipid–Autotaxin Signaling Axis Promotes Pancreatic Tumor Progression. Cancer Discovery, 2019, 9, 617-627.	9.4	209
31	Modeling differentiation-state transitions linked to therapeutic escape in triple-negative breast cancer. PLoS Computational Biology, 2019, 15, e1006840.	3.2	18
32	GRB7 dependent proliferation of basalâ€like, HERâ€2 positive human breast cancer cell lines is mediated in part by HERâ€1 signaling. Molecular Carcinogenesis, 2019, 58, 699-707.	2.7	9
33	Modeling Tumor Phenotypes InÂVitro with Three-Dimensional Bioprinting. Cell Reports, 2019, 26, 608-623.e6.	6.4	169
34	Activation of PP2A and Inhibition of mTOR Synergistically Reduce MYC Signaling and Decrease Tumor Growth in Pancreatic Ductal Adenocarcinoma. Cancer Research, 2019, 79, 209-219.	0.9	56
35	Deregulating MYC in a model of HER2+ breast cancer mimics human intertumoral heterogeneity. Journal of Clinical Investigation, 2019, 130, 231-246.	8.2	31
36	Small-Molecule Activators of Protein Phosphatase 2A for the Treatment of Castration-Resistant Prostate Cancer. Cancer Research, 2018, 78, 2065-2080.	0.9	60

#	Article	IF	CITATIONS
37	The ubiquitin-specific protease USP36 is a conserved histone H2B deubiquitinase. Biochemical and Biophysical Research Communications, 2018, 495, 2363-2368.	2.1	24
38	Serum Biomarker Signature-Based Liquid Biopsy for Diagnosis of Early-Stage Pancreatic Cancer. Journal of Clinical Oncology, 2018, 36, 2887-2894.	1.6	108
39	On the Analysis of Cyclic Drug Schedules for Cancer Treatment using Switched Dynamical Systems. , 2018, , .		6
40	SUMO protease SENP1 deSUMOylates and stabilizes c-Myc. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10983-10988.	7.1	59
41	Post-translational modification localizes MYC to the nuclear pore basket to regulate a subset of target genes involved in cellular responses to environmental signals. Genes and Development, 2018, 32, 1398-1419.	5.9	52
42	Differentiation-state plasticity is a targetable resistance mechanism in basal-like breast cancer. Nature Communications, 2018, 9, 3815.	12.8	137
43	Proteomics, Post-translational Modifications, and Integrative Analyses Reveal Molecular Heterogeneity within Medulloblastoma Subgroups. Cancer Cell, 2018, 34, 396-410.e8.	16.8	146
44	AB024. S024. Drug responses of patient-derived cell lines in vitro that match drug responses of patient PDAc tumors in situ. Annals of Pancreatic Cancer, 2018, 1, AB024-AB024.	1.2	2
45	ΔN-ASPP2, a novel isoform of the ASPP2 tumor suppressor, promotes cellular survival. Biochemical and Biophysical Research Communications, 2017, 482, 1271-1277.	2.1	12
46	Epigenomic Inactivation of RasGAPs Activates RAS Signaling in a Subset of Luminal B Breast Cancers. Cancer Discovery, 2017, 7, 131-133.	9.4	16
47	MYC regulates ductal-neuroendocrine lineage plasticity in pancreatic ductal adenocarcinoma associated with poor outcome and chemoresistance. Nature Communications, 2017, 8, 1728.	12.8	83
48	The tumor suppressor phosphatase PP2A-B56 \hat{l} ± regulates stemness and promotes the initiation of malignancies in a novel murine model. PLoS ONE, 2017, 12, e0188910.	2.5	17
49	Activation of tumor suppressor protein PP2A inhibits KRAS-driven tumor growth. Journal of Clinical Investigation, 2017, 127, 2081-2090.	8.2	155
50	A model of phenotypic state dynamics initiates a promising approach to control heterogeneous malignant cell populations. , 2016, , .		8
51	Combined targeting of SET and tyrosine kinases provides an effective therapeutic approach in human T-cell acute lymphoblastic leukemia. Oncotarget, 2016, 7, 84214-84227.	1.8	26
52	The nucleolar ubiquitin-specific protease USP36 deubiquitinates and stabilizes c-Myc. Proceedings of the United States of America, 2015, 112, 3734-3739.	7.1	160
53	Inhibition of 5-Lipoxygenase Selectively Triggers Disruption of c-Myc Signaling in Prostate Cancer Cells. Journal of Biological Chemistry, 2015, 290, 4994-5006.	3.4	50
54	Deubiquitinating c-Myc: USP36 steps up in the nucleolus. Cell Cycle, 2015, 14, 3786-3793.	2.6	31

#	Article	IF	CITATIONS
55	Serine 62-Phosphorylated MYC Associates with Nuclear Lamins and Its Regulation by CIP2A Is Essential for Regenerative Proliferation. Cell Reports, 2015, 12, 1019-1031.	6.4	50
56	Pre-Anchoring of Pin1 to Unphosphorylated c-Myc in a Fuzzy Complex Regulates c-Myc Activity. Structure, 2015, 23, 2267-2279.	3.3	48
57	MYC Degradation. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a014365-a014365.	6.2	342
58	Targeting Inhibitors of the Tumor Suppressor PP2A for the Treatment of Pancreatic Cancer. Molecular Cancer Research, 2014, 12, 924-939.	3.4	89
59	Targeting c-MYC by antagonizing PP2A inhibitors in breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9157-9162.	7.1	160
60	Antagonism of SET Using OP449 Enhances the Efficacy of Tyrosine Kinase Inhibitors and Overcomes Drug Resistance in Myeloid Leukemia. Clinical Cancer Research, 2014, 20, 2092-2103.	7.0	108
61	Pin1 Regulates the Dynamics of c-Myc DNA Binding To Facilitate Target Gene Regulation and Oncogenesis. Molecular and Cellular Biology, 2013, 33, 2930-2949.	2.3	103
62	Detection of c-Myc Protein–Protein Interactions and Phosphorylation Status by Immunoprecipitation. Methods in Molecular Biology, 2013, 1012, 65-76.	0.9	3
63	A critical role for Mnt in Myc-driven T-cell proliferation and oncogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19685-19690.	7.1	34
64	Mechanistic insight into Myc stabilization in breast cancer involving aberrant Axin1 expression. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2790-2795.	7.1	69
65	Studying c-Myc serine 62 phosphorylation in leukemia cells: concern over antibody cross-reactivity. Blood, 2012, 119, 5334-5335.	1.4	6
66	Phosphorylation Regulates c-Myc's Oncogenic Activity in the Mammary Gland. Cancer Research, 2011, 71, 925-936.	0.9	146
67	Focal Adhesion Kinase Is Required for Intestinal Regeneration and Tumorigenesis Downstream of Wnt/c-Myc Signaling. Developmental Cell, 2010, 19, 259-269.	7.0	176
68	Direct interaction between the inhibitor 2 and ceramide <i>via</i> sphingolipidâ€protein binding is involved in the regulation of protein phosphatase 2A activity and signaling. FASEB Journal, 2009, 23, 751-763.	0.5	189
69	The Axin1 scaffold protein promotes formation of a degradation complex for c-Myc. EMBO Journal, 2009, 28, 500-512.	7.8	101
70	A tumor suppressor role for PP2A-B56α through negative regulation of c-Myc and other key oncoproteins. Cancer and Metastasis Reviews, 2008, 27, 147-158.	5.9	97
71	<i>FBW7</i> mutations in leukemic cells mediate NOTCH pathway activation and resistance to Î ³ -secretase inhibitors. Journal of Experimental Medicine, 2007, 204, 1813-1824.	8.5	605
72	Feedback Regulation of c-Myc by Ribosomal Protein L11. Cell Cycle, 2007, 6, 2735-2741.	2.6	55

#	Article	IF	Citations
73	CIP2A Inhibits PP2A in Human Malignancies. Cell, 2007, 130, 51-62.	28.9	662
74	Inhibition of c-Myc activity by ribosomal protein L11. EMBO Journal, 2007, 26, 3332-3345.	7.8	168
75	Protein Phosphatase 2A Regulatory Subunit B56α Associates with c-Myc and Negatively Regulates c-Myc Accumulation. Molecular and Cellular Biology, 2006, 26, 2832-2844.	2.3	220
76	The Life Cycle of C-Myc: From Synthesis to Degradation. Cell Cycle, 2004, 3, 1131-1135.	2.6	318
77	A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nature Cell Biology, 2004, 6, 308-318.	10.3	687
78	Aberrant Stabilization of c-Myc Protein in Lymphoblastic and Myelogenous Leukemia Cell Lines Blood, 2004, 104, 1532-1532.	1.4	0
79	The life cycle of C-myc: from synthesis to degradation. Cell Cycle, 2004, 3, 1133-7.	2.6	173
80	Ras Enhances Myc Protein Stability. Molecular Cell, 1999, 3, 169-179.	9.7	413
81	The Prolyl Isomerase PIN1 Plays a Critical Role in Fibroblast Differentiation States to Support Pancreatic Cancer. SSRN Electronic Journal, 0, , .	0.4	0