Frank Breinig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7926702/publications.pdf

Version: 2024-02-01

516561 434063 1,208 31 16 31 citations h-index g-index papers 33 33 33 1149 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Targeted delivery of functionalized PLGA nanoparticles to macrophages by complexation with the yeast <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2020, 117, 776-788.	1.7	9
2	Yeast Viral Killer Toxin K1 Induces Specific Host Cell Adaptions via Intrinsic Selection Pressure. Applied and Environmental Microbiology, 2020, 86, .	1.4	8
3	Analysis of Yeast Killer Toxin K1 Precursor Processing via Site-Directed Mutagenesis: Implications for Toxicity and Immunity. MSphere, 2020, 5, .	1.3	4
4	Substitution of cysteines in the yeast viral killer toxin K1 precursor reveals novel insights in heterodimer formation and immunity. Scientific Reports, 2019, 9, 13127.	1.6	6
5	Transcriptome Kinetics of Saccharomyces cerevisiae in Response to Viral Killer Toxin K1. Frontiers in Microbiology, 2019, 10, 1102.	1.5	5
6	Maturation and cytokine pattern of human dendritic cells in response to different yeasts. Medical Microbiology and Immunology, 2018, 207, 75-81.	2.6	19
7	Adding phosphorylation events to the core oscillator driving the cell cycle of fission yeast. PLoS ONE, 2018, 13, e0208515.	1.1	1
8	Yeast-mediated mRNA delivery polarizes immuno-suppressive macrophages towards an immuno-stimulatory phenotype. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 117, 1-13.	2.0	18
9	Expression of K1 Toxin Derivatives in Saccharomyces cerevisiae Mimics Treatment with Exogenous Toxin and Provides a Useful Tool for Elucidating K1 Mechanisms of Action and Immunity. Toxins, 2017, 9, 345.	1.5	15
10	Yeast (Saccharomyces cerevisiae) Polarizes Both M-CSF- and GM-CSF-Differentiated Macrophages Toward an M1-Like Phenotype. Inflammation, 2016, 39, 1690-1703.	1.7	15
11	H/KDEL receptors mediate host cell intoxication by a viral A/B toxin in yeast. Scientific Reports, 2016, 6, 31105.	1.6	28
12	Surface-modified yeast cells: A novel eukaryotic carrier for oral application. Journal of Controlled Release, 2016, 224, 1-7.	4.8	18
13	Heat treatment improves antigen-specific T cell activation after protein delivery by several but not all yeast genera. Vaccine, 2014, 32, 2591-2598.	1.7	20
14	Schizosaccharomyces pombe: A novel transport vehicle of functional DNA and mRNA into mammalian antigen-presenting cells. Vaccine, 2014, 32, 6029-6033.	1.7	7
15	mRNA Delivery to Human Dendritic Cells by Recombinant Yeast and Activation of Antigen-Specific Memory T Cells. Methods in Molecular Biology, 2013, 969, 163-184.	0.4	5
16	Yeast-based protein delivery to mammalian phagocytic cells is increased by coexpression of bacterial listeriolysin. Microbes and Infection, 2011, 13, 908-913.	1.0	10
17	Uptake of various yeast genera by antigen-presenting cells and influence of subcellular antigen localization on the activation of ovalbumin-specific CD8 T lymphocytes. Vaccine, 2011, 29, 8165-8173.	1.7	24
18	RNAâ€directed DNA methylation and plant development require an IWR1â€type transcription factor. EMBO Reports, 2010, 11, 65-71.	2.0	77

#	Article	lF	CITATIONS
19	Yeast viral killer toxins: lethality and self-protection. Nature Reviews Microbiology, 2006, 4, 212-221.	13.6	266
20	Retrotranslocation of a viral A/B toxin from the yeast endoplasmic reticulum is independent of ubiquitination and ERAD. EMBO Journal, 2006, 25, 4717-4727.	3.5	34
21	Cell Surface Expression of Bacterial Esterase A by Saccharomyces cerevisiae and Its Enhancement by Constitutive Activation of the Cellular Unfolded Protein Response. Applied and Environmental Microbiology, 2006, 72, 7140-7147.	1.4	32
22	Dissecting toxin immunity in virus-infected killer yeast uncovers an intrinsic strategy of self-protection. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3810-3815.	3.3	66
23	Yeast Kre1p is GPI-anchored and involved in both cell wall assembly and architecture. Microbiology (United Kingdom), 2004, 150, 3209-3218.	0.7	33
24	Viral Preprotoxin Signal Sequence Allows Efficient Secretion of Green Fluorescent Protein by Candida glabrata, Pichia pastoris, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. Applied and Environmental Microbiology, 2004, 70, 961-966.	1.4	53
25	S. cerevisiae K28 toxin $\hat{a}\in$ a secreted virus toxin of the A/B family of protein toxins. Topics in Current Genetics, 2004, , 111-132.	0.7	3
26	Specific activation of CMV-primed human T lymphocytes by cytomegalovirus pp65 expressed in fission yeast. FEMS Immunology and Medical Microbiology, 2003, 38, 231-239.	2.7	19
27	Extensive MHC class I-restricted CD8 T lymphocyte responses against various yeast genera in humans. FEMS Immunology and Medical Microbiology, 2003, 39, 279-286.	2.7	32
28	Kre1p, the Plasma Membrane Receptor for the Yeast K1 Viral Toxin. Cell, 2002, 108, 395-405.	13.5	117
29	The viral killer system in yeast: from molecular biology to application. FEMS Microbiology Reviews, 2002, 26, 257-276.	3.9	215
30	The viral killer system in yeast: from molecular biology to application. FEMS Microbiology Reviews, 2002, 26, 257-276.	3.9	14
31	Mutational analysis of K28 preprotoxin processing in the yeast Saccharomyces cerevisiae. Microbiology (United Kingdom), 2002, 148, 1317-1328.	0.7	35