Antonio Magrì

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7926453/publications.pdf

Version: 2024-02-01

50	1,253	21	34
papers	citations	h-index	g-index
51	51	51	1355
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	A Deeper Insight in Metal Binding to the hCtr1 N-terminus Fragment: Affinity, Speciation and Binding Mode of Binuclear Cu2+ and Mononuclear Ag+ Complex Species. International Journal of Molecular Sciences, 2022, 23, 2929.	1.8	7
2	Nerve Growth Factor Peptides Bind Copper(II) with High Affinity: A Thermodynamic Approach to Unveil Overlooked Neurotrophin Roles. International Journal of Molecular Sciences, 2021, 22, 5085.	1.8	4
3	Peptides Derived from Angiogenin Regulate Cellular Copper Uptake. International Journal of Molecular Sciences, 2021, 22, 9530.	1.8	3
4	Anti-Angiogenic and Anti-Proliferative Graphene Oxide Nanosheets for Tumor Cell Therapy. International Journal of Molecular Sciences, 2020, 21, 5571.	1.8	20
5	The Role of Copper (II) on Kininogen Binding to Tropomyosin in the Presence of a Histidine–Proline-Rich Peptide. International Journal of Molecular Sciences, 2020, 21, 9343.	1.8	2
6	Zinc Interactions with a Soluble Mutated Rat Amylin to Mimic Whole Human Amylin: An Experimental and Simulation Approach to Understand Stoichiometry, Speciation and Coordination of the Metal Complexes. Chemistry - A European Journal, 2020, 26, 13072-13084.	1.7	6
7	The copper(II) binding centres of carbonic anhydrase are differently affected by reductants that ensure the redox intracellular environment. Journal of Inorganic Biochemistry, 2019, 199, 110759.	1.5	5
8	A Tunable Nanoplatform of Nanogold Functionalised with Angiogenin Peptides for Anti-Angiogenic Therapy of Brain Tumours. Cancers, 2019, 11, 1322.	1.7	21
9	The curious case of opossum prion: a physicochemical study on copper(<scp>ii</scp>) binding to the bis-decarepeat fragment from the protein N-terminal domain. Dalton Transactions, 2019, 48, 17533-17543.	1.6	4
10	Gold nanoparticles functionalized with angiogenin-mimicking peptides modulate cell membrane interactions. Biointerphases, $2018,13,03C401.$	0.6	8
11	Binding of Zn(II) to Tropomyosin Receptor Kinase A in Complex with Its Cognate Nerve Growth Factor: Insights from Molecular Simulation and <i>in Vitro</i> Essays. ACS Chemical Neuroscience, 2018, 9, 1095-1103.	1.7	3
12	Copper-assisted interaction between amyloid- \hat{l}^2 and prion: Ternary metal complexes with A \hat{l}^2 N-terminus and octarepeat. Inorganica Chimica Acta, 2018, 472, 93-102.	1.2	6
13	Copper Binding Features of Tropomyosin-Receptor-Kinase-A Fragment: Clue for Neurotrophic Factors and Metals Link. International Journal of Molecular Sciences, 2018, 19, 2374.	1.8	5
14	Peptides derived from the histidine–proline rich glycoprotein bind copper ions and exhibit anti-angiogenic properties. Dalton Transactions, 2018, 47, 9492-9503.	1.6	17
15	Copper ion interaction with the RNase catalytic site fragment of the angiogenin protein: an experimental and theoretical investigation. Dalton Transactions, 2017, 46, 8524-8538.	1.6	6
16	Immobilization of Neurotrophin Peptides on Gold Nanoparticles by Direct and Lipid-Mediated Interaction: A New Multipotential Therapeutic Nanoplatform for CNS Disorders. ACS Omega, 2017, 2, 4071-4079.	1.6	11
17	From Peptide Fragments to Whole Protein: Copper(II) Load and Coordination Features of IAPP. Chemistry - A European Journal, 2017, 23, 17898-17902.	1.7	10
18	Coordination Environment of Cu(II) Ions Bound to N-Terminal Peptide Fragments of Angiogenin Protein. International Journal of Molecular Sciences, 2016, 17, 1240.	1.8	29

#	Article	IF	CITATIONS
19	New Insight in Copperâ€lon Binding to Human Islet Amyloid: The Contribution of Metalâ€Complex Speciation To Reveal the Polypeptide Toxicity. Chemistry - A European Journal, 2016, 22, 13287-13300.	1.7	18
20	Influence of the N-terminus acetylation of Semax, a synthetic analog of ACTH(4-10), on copper(II) and zinc(II) coordination and biological properties. Journal of Inorganic Biochemistry, 2016, 164, 59-69.	1.5	5
21	The Inorganic Perspective of VEGF: Interactions of Cu2+ with Peptides Encompassing a Recognition Domain of the VEGF Receptor. Journal of Inorganic Biochemistry, 2016, 159, 149-158.	1.5	15
22	Copper(<scp>ii</scp>) complexes with peptides based on the second cell binding site of fibronectin: metal coordination and ligand exchange kinetics. Physical Chemistry Chemical Physics, 2016, 18, 3982-3994.	1.3	7
23	Copper binding to naturally occurring, lactam form of angiogenin differs from that to recombinant protein, affecting their activity. Metallomics, 2016, 8, 118-124.	1.0	20
24	Semax, an ACTH4-10 peptide analog with high affinity for copper(II) ion and protective ability against metal induced cell toxicity. Journal of Inorganic Biochemistry, 2015, 142, 39-46.	1.5	12
25	Adsorption of NGF and BDNF derived peptides on gold surfaces. Physical Chemistry Chemical Physics, 2014, 16, 1536-1544.	1.3	30
26	The role of copper(<scp>ii</scp>) in the aggregation of human amylin. Metallomics, 2014, 6, 1841-1852.	1.0	51
27	The copper(II) and zinc(II) coordination mode of HExxH and HxxEH motif in small peptides: The role of carboxylate location and hydrogen bonding network. Journal of Inorganic Biochemistry, 2014, 130, 92-102.	1.5	25
28	Zinc(II) Interactions with Brain-Derived Neurotrophic Factor N-Terminal Peptide Fragments: Inorganic Features and Biological Perspectives. Inorganic Chemistry, 2013, 52, 11075-11083.	1.9	27
29	Probing the Residual Structure in Avian Prion Hexarepeats by CD, NMR and MD Techniques. Molecules, 2013, 18, 11467-11484.	1.7	7
30	Copper, BDNF and Its Nâ€terminal Domain: Inorganic Features and Biological Perspectives. Chemistry - A European Journal, 2012, 18, 15618-15631.	1.7	35
31	Probing the Copper(II) Binding Features of Angiogenin. Similarities and Differences between a N-Terminus Peptide Fragment and the Recombinant Human Protein. Inorganic Chemistry, 2012, 51, 128-141.	1.9	27
32	Copper(II) coordination properties of the integrin ligand sequence PHSRN and its new \hat{l}^2 -cyclodextrin conjugates. Journal of Inorganic Biochemistry, 2012, 113, 15-24.	1.5	9
33	Copper(II) interaction with peptide fragments of histidine–proline-rich glycoprotein: Speciation, stability and binding details. Journal of Inorganic Biochemistry, 2012, 111, 59-69.	1.5	30
34	A Doppel αâ€Helix Peptide Fragment Mimics the Copper(II) Interactions with the Whole Protein. Chemistry - A European Journal, 2010, 16, 6212-6223.	1.7	28
35	Copper(ii) complex formation with a linear peptide encompassing the putative cell binding site of angiogenin. Dalton Transactions, 2010, 39, 10678.	1.6	33
36	Aggregation Properties of the Peptide Fragments Derived from the 17-29 Region of the Human and Rat IAPP: A Comparative Study with Two PEG-Conjugated Variants of the Human Sequence. Journal of Physical Chemistry B, 2010, 114, 705-713.	1,2	12

#	Article	IF	CITATIONS
37	Copper(II) complexes with peptide fragments encompassing the sequence 122–130 of human doppel protein. Journal of Inorganic Biochemistry, 2009, 103, 758-765.	1.5	26
38	Determination of the Conformation of the Human VDAC1 N-Terminal Peptide, a Protein Moiety Essential for the Functional Properties of the Pore. ChemBioChem, 2007, 8, 744-756.	1.3	66
39	Environmental Factors Differently Affect Human and Rat IAPP: Conformational Preferences and Membrane Interactions of IAPP17–29 Peptide Derivatives. Chemistry - A European Journal, 2007, 13, 10204-10215.	1.7	37
40	Ubiquitin Stability and the Lys 63â€Linked Polyubiquitination Site Are Compromised on Copper Binding. Angewandte Chemie - International Edition, 2007, 46, 7993-7995.	7.2	36
41	Inclusion of naturally occurring amino acids in water soluble calix[4]arenes: a microcalorimetric and 1H NMR investigation supported by molecular modeling. Organic and Biomolecular Chemistry, 2006, 4, 243-249.	1.5	85
42	A re-investigation of copper coordination in the octa-repeats region of the prion protein. Dalton Transactions, 2005, , 150-158.	1.6	55
43	Energetics of the Inclusion of Organic Molecules by Rigidified Cone Calix[4]arenes in Carbon Tetrachloride. Supramolecular Chemistry, 2001, 13, 379-386.	1.5	16
44	Complexation of small neutral organic molecules by water soluble calix[4] arenes. Tetrahedron Letters, 2000, 41, 9327-9330.	0.7	115
45	Copper(II) complexes with I-lysine and I-ornithine: is the side-chain involved in the coordination?. Thermochimica Acta, 2000, 362, 13-23.	1.2	35
46	Strategies Based on Calixcrowns for the Detection and Removal of Cesium Ions from Alkali-Containing Solutions. Industrial & Engineering Chemistry Research, 2000, 39, 3605-3610.	1.8	27
47	Complexation of native L-α-aminoacids by water soluble calix[4]arenes. Tetrahedron Letters, 1999, 40, 1597-1600.	0.7	124
48	Nanomolar determination of copper(II) and zinc(II) using supramolecular complexes of meso-tetrakis(4-N-methylpyridyl)porphine on polyglutamate. Chemical Communications, 1998, , 1333-1334.	2.2	21
49	Selective Transport of Cesium and Strontium Ions Through Polymer Inclusion Membranes Containing Calixarenes as Carriers. Supramolecular Chemistry, 1998, 10, 5-15.	1.5	45
50	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1997, 29, 347-363.	1.6	5