Antonio MagrÃ-

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7926453/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complexation of native L-α-aminoacids by water soluble calix[4]arenes. Tetrahedron Letters, 1999, 40, 1597-1600.	1.4	124
2	Complexation of small neutral organic molecules by water soluble calix[4]arenes. Tetrahedron Letters, 2000, 41, 9327-9330.	1.4	115
3	Inclusion of naturally occurring amino acids in water soluble calix[4]arenes: a microcalorimetric and 1H NMR investigation supported by molecular modeling. Organic and Biomolecular Chemistry, 2006, 4, 243-249.	2.8	85
4	Determination of the Conformation of the Human VDAC1 N-Terminal Peptide, a Protein Moiety Essential for the Functional Properties of the Pore. ChemBioChem, 2007, 8, 744-756.	2.6	66
5	A re-investigation of copper coordination in the octa-repeats region of the prion protein. Dalton Transactions, 2005, , 150-158.	3.3	55
6	The role of copper(<scp>ii</scp>) in the aggregation of human amylin. Metallomics, 2014, 6, 1841-1852.	2.4	51
7	Selective Transport of Cesium and Strontium Ions Through Polymer Inclusion Membranes Containing Calixarenes as Carriers. Supramolecular Chemistry, 1998, 10, 5-15.	1.2	45
8	Environmental Factors Differently Affect Human and Rat IAPP: Conformational Preferences and Membrane Interactions of IAPP17–29 Peptide Derivatives. Chemistry - A European Journal, 2007, 13, 10204-10215.	3.3	37
9	Ubiquitin Stability and the Lys 63‣inked Polyubiquitination Site Are Compromised on Copper Binding. Angewandte Chemie - International Edition, 2007, 46, 7993-7995.	13.8	36
10	Copper(II) complexes with I-lysine and I-ornithine: is the side-chain involved in the coordination?. Thermochimica Acta, 2000, 362, 13-23.	2.7	35
11	Copper, BDNF and Its Nâ€ŧerminal Domain: Inorganic Features and Biological Perspectives. Chemistry - A European Journal, 2012, 18, 15618-15631.	3.3	35
12	Copper(ii) complex formation with a linear peptide encompassing the putative cell binding site of angiogenin. Dalton Transactions, 2010, 39, 10678.	3.3	33
13	Copper(II) interaction with peptide fragments of histidine–proline-rich glycoprotein: Speciation, stability and binding details. Journal of Inorganic Biochemistry, 2012, 111, 59-69.	3.5	30
14	Adsorption of NGF and BDNF derived peptides on gold surfaces. Physical Chemistry Chemical Physics, 2014, 16, 1536-1544.	2.8	30
15	Coordination Environment of Cu(II) Ions Bound to N-Terminal Peptide Fragments of Angiogenin Protein. International Journal of Molecular Sciences, 2016, 17, 1240.	4.1	29
16	A Doppel αâ€Helix Peptide Fragment Mimics the Copper(II) Interactions with the Whole Protein. Chemistry - A European Journal, 2010, 16, 6212-6223.	3.3	28
17	Strategies Based on Calixcrowns for the Detection and Removal of Cesium Ions from Alkali-Containing Solutions. Industrial & Engineering Chemistry Research, 2000, 39, 3605-3610.	3.7	27
18	Probing the Copper(II) Binding Features of Angiogenin. Similarities and Differences between a N-Terminus Peptide Fragment and the Recombinant Human Protein. Inorganic Chemistry, 2012, 51, 128-141.	4.0	27

ANTONIO MAGRì

#	Article	IF	CITATIONS
19	Zinc(II) Interactions with Brain-Derived Neurotrophic Factor N-Terminal Peptide Fragments: Inorganic Features and Biological Perspectives. Inorganic Chemistry, 2013, 52, 11075-11083.	4.0	27
20	Copper(II) complexes with peptide fragments encompassing the sequence 122–130 of human doppel protein. Journal of Inorganic Biochemistry, 2009, 103, 758-765.	3.5	26
21	The copper(II) and zinc(II) coordination mode of HExxH and HxxEH motif in small peptides: The role of carboxylate location and hydrogen bonding network. Journal of Inorganic Biochemistry, 2014, 130, 92-102.	3.5	25
22	Nanomolar determination of copper(II) and zinc(II) using supramolecular complexes of meso-tetrakis(4-N-methylpyridyl)porphine on polyglutamate. Chemical Communications, 1998, , 1333-1334.	4.1	21
23	A Tunable Nanoplatform of Nanogold Functionalised with Angiogenin Peptides for Anti-Angiogenic Therapy of Brain Tumours. Cancers, 2019, 11, 1322.	3.7	21
24	Copper binding to naturally occurring, lactam form of angiogenin differs from that to recombinant protein, affecting their activity. Metallomics, 2016, 8, 118-124.	2.4	20
25	Anti-Angiogenic and Anti-Proliferative Graphene Oxide Nanosheets for Tumor Cell Therapy. International Journal of Molecular Sciences, 2020, 21, 5571.	4.1	20
26	New Insight in Copperâ€lon Binding to Human Islet Amyloid: The Contribution of Metal omplex Speciation To Reveal the Polypeptide Toxicity. Chemistry - A European Journal, 2016, 22, 13287-13300.	3.3	18
27	Peptides derived from the histidine–proline rich glycoprotein bind copper ions and exhibit anti-angiogenic properties. Dalton Transactions, 2018, 47, 9492-9503.	3.3	17
28	Energetics of the Inclusion of Organic Molecules by Rigidified Cone Calix[4]arenes in Carbon Tetrachloride. Supramolecular Chemistry, 2001, 13, 379-386.	1.2	16
29	The Inorganic Perspective of VEGF: Interactions of Cu2+ with Peptides Encompassing a Recognition Domain of the VEGF Receptor. Journal of Inorganic Biochemistry, 2016, 159, 149-158.	3.5	15
30	Aggregation Properties of the Peptide Fragments Derived from the 17-29 Region of the Human and Rat IAPP: A Comparative Study with Two PEG-Conjugated Variants of the Human Sequence. Journal of Physical Chemistry B, 2010, 114, 705-713.	2.6	12
31	Semax, an ACTH4-10 peptide analog with high affinity for copper(II) ion and protective ability against metal induced cell toxicity. Journal of Inorganic Biochemistry, 2015, 142, 39-46.	3.5	12
32	Immobilization of Neurotrophin Peptides on Gold Nanoparticles by Direct and Lipid-Mediated Interaction: A New Multipotential Therapeutic Nanoplatform for CNS Disorders. ACS Omega, 2017, 2, 4071-4079.	3.5	11
33	From Peptide Fragments to Whole Protein: Copper(II) Load and Coordination Features of IAPP. Chemistry - A European Journal, 2017, 23, 17898-17902.	3.3	10
34	Copper(II) coordination properties of the integrin ligand sequence PHSRN and its new β-cyclodextrin conjugates. Journal of Inorganic Biochemistry, 2012, 113, 15-24.	3.5	9
35	Gold nanoparticles functionalized with angiogenin-mimicking peptides modulate cell membrane interactions. Biointerphases, 2018, 13, 03C401.	1.6	8
36	Probing the Residual Structure in Avian Prion Hexarepeats by CD, NMR and MD Techniques. Molecules, 2013, 18, 11467-11484.	3.8	7

ANTONIO MAGRì

#	Article	IF	CITATIONS
37	Copper(<scp>ii</scp>) complexes with peptides based on the second cell binding site of fibronectin: metal coordination and ligand exchange kinetics. Physical Chemistry Chemical Physics, 2016, 18, 3982-3994.	2.8	7
38	A Deeper Insight in Metal Binding to the hCtr1 N-terminus Fragment: Affinity, Speciation and Binding Mode of Binuclear Cu2+ and Mononuclear Ag+ Complex Species. International Journal of Molecular Sciences, 2022, 23, 2929.	4.1	7
39	Copper ion interaction with the RNase catalytic site fragment of the angiogenin protein: an experimental and theoretical investigation. Dalton Transactions, 2017, 46, 8524-8538.	3.3	6
40	Copper-assisted interaction between amyloid-β and prion: Ternary metal complexes with Aβ N-terminus and octarepeat. Inorganica Chimica Acta, 2018, 472, 93-102.	2.4	6
41	Zinc Interactions with a Soluble Mutated Rat Amylin to Mimic Whole Human Amylin: An Experimental and Simulation Approach to Understand Stoichiometry, Speciation and Coordination of the Metal Complexes. Chemistry - A European Journal, 2020, 26, 13072-13084.	3.3	6
42	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1997, 29, 347-363.	1.6	5
43	Influence of the N-terminus acetylation of Semax, a synthetic analog of ACTH(4-10), on copper(II) and zinc(II) coordination and biological properties. Journal of Inorganic Biochemistry, 2016, 164, 59-69.	3.5	5
44	Copper Binding Features of Tropomyosin-Receptor-Kinase-A Fragment: Clue for Neurotrophic Factors and Metals Link. International Journal of Molecular Sciences, 2018, 19, 2374.	4.1	5
45	The copper(II) binding centres of carbonic anhydrase are differently affected by reductants that ensure the redox intracellular environment. Journal of Inorganic Biochemistry, 2019, 199, 110759.	3.5	5
46	The curious case of opossum prion: a physicochemical study on copper(<scp>ii</scp>) binding to the bis-decarepeat fragment from the protein N-terminal domain. Dalton Transactions, 2019, 48, 17533-17543.	3.3	4
47	Nerve Growth Factor Peptides Bind Copper(II) with High Affinity: A Thermodynamic Approach to Unveil Overlooked Neurotrophin Roles. International Journal of Molecular Sciences, 2021, 22, 5085.	4.1	4
48	Binding of Zn(II) to Tropomyosin Receptor Kinase A in Complex with Its Cognate Nerve Growth Factor: Insights from Molecular Simulation and <i>in Vitro</i> Essays. ACS Chemical Neuroscience, 2018, 9, 1095-1103.	3.5	3
49	Peptides Derived from Angiogenin Regulate Cellular Copper Uptake. International Journal of Molecular Sciences, 2021, 22, 9530.	4.1	3
50	The Role of Copper (II) on Kininogen Binding to Tropomyosin in the Presence of a Histidine–Proline-Rich Peptide. International Journal of Molecular Sciences, 2020, 21, 9343.	4.1	2