Dmitri B Papkovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7926073/publications.pdf

Version: 2024-02-01

195 papers 8,122 citations

50 h-index 64668 79 g-index

201 all docs

201 does citations

201 times ranked

8413 citing authors

#	Article	IF	CITATIONS
1	A sensorâ€based system for rapid onâ€site testing of microbial contamination in meat samples and carcasses. Journal of Applied Microbiology, 2022, 132, 1210-1220.	1.4	9
2	Advanced multi-modal, multi-analyte optochemical sensing platform for cell analysis. Sensors and Actuators B: Chemical, 2022, 355, 131116.	4.0	5
3	Mitochondrial complex IV defects induce metabolic and signaling perturbations that expose potential vulnerabilities in HCT116 cells. FEBS Open Bio, 2022, 12, 959-982.	1.0	2
4	Ghrelin rapidly elevates protein synthesis in vitro by employing the rpS6K-eEF2K-eEF2 signalling axis. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	0
5	Cell Energy Budget Platform for Multiparametric Assessment of Cell and Tissue Metabolism. Methods in Molecular Biology, 2021, 2276, 305-324.	0.4	7
6	Facile biosensor-based system for on-site quantification of total viable counts in food and environmental swabs. Biosensors and Bioelectronics, 2021, 176, 112938.	5.3	12
7	A Simple Sensor System for Onsite Monitoring of O2 in Vacuum-Packed Meats during the Shelf Life. Sensors, 2021, 21, 4256.	2.1	9
8	Effects of Irinotecan on Tumor Vasculature and Oxygenation: An <i>in vivo</i> Study on Colorectal Cancer Model. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-8.	1.9	9
9	Extruded phosphorescence based oxygen sensors for large-scale packaging applications. Sensors and Actuators B: Chemical, 2020, 304, 127357.	4.0	18
10	Application of O2 sensor technology to monitor performance of industrial beef samples packaged on three different vacuum packaging machines. Sensors and Actuators B: Chemical, 2020, 304, 127338.	4.0	13
11	Estimation of the Mitochondrial Membrane Potential Using Fluorescence Lifetime Imaging Microscopy. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 471-482.	1.1	28
12	Translation initiation downstream from annotated start codons in human mRNAs coevolves with the Kozak context. Genome Research, 2020, 30, 974-984.	2.4	24
13	Disruption of hypoxia-inducible fatty acid binding protein 7 induces beige fat-like differentiation and thermogenesis in breast cancer cells. Cancer & Metabolism, 2020, 8, 13.	2.4	11
14	Visualization of Stem Cell Niche by Fluorescence Lifetime Imaging Microscopy. Methods in Molecular Biology, 2020, 2171, 65-97.	0.4	8
15	Reduced Oxidative Phosphorylation and Increased Glycolysis in Human Glaucoma Lamina Cribrosa Cells. , 2020, 61, 4.		13
16	Unusually efficient CUG initiation of an overlapping reading frame in <i>POLG</i> mRNA yields novel protein POLGARF. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24936-24946.	3.3	30
17	Mapping O2 concentration in ex-vivo tissue samples on a fast PLIM macro-imager. Scientific Reports, 2020, 10, 19006.	1.6	8
18	Characterization of planar phosphorescence based oxygen sensors on a TCSPC-PLIM macro-imager. Sensors and Actuators B: Chemical, 2020, 321, 128459.	4.0	5

#	Article	IF	Citations
19	The use of optical oxygen sensing and respirometry to quantify the effects of antimicrobials on common food spoilage bacteria and food samples. Sensors and Actuators B: Chemical, 2020, 322, 128572.	4.0	14
20	A deeper understanding of intestinal organoid metabolism revealed by combining fluorescence lifetime imaging microscopy (FLIM) and extracellular flux analyses. Redox Biology, 2020, 30, 101420.	3.9	71
21	New luminescence lifetime macro-imager based on a Tpx3Cam optical camera. Biomedical Optics Express, 2020, 11, 77.	1.5	18
22	Nanoparticleâ€Based Fluoroionophore for Analysis of Potassium Ion Dynamics in 3D Tissue Models and In Vivo. Advanced Functional Materials, 2018, 28, 1704598.	7.8	33
23	Stability and Safety Assessment of Phosphorescent Oxygen Sensors for Use in Food Packaging Applications. Chemosensors, 2018, 6, 38.	1.8	11
24	Cellulose-based scaffolds for fluorescence lifetime imaging-assisted tissue engineering. Acta Biomaterialia, 2018, 80, 85-96.	4.1	45
25	Imaging of oxygen and hypoxia in cell and tissue samples. Cellular and Molecular Life Sciences, 2018, 75, 2963-2980.	2.4	64
26	Assessment of Performance of the Industrial Process of Bulk Vacuum Packaging of Raw Meat with Nondestructive Optical Oxygen Sensing Systems. Sensors, 2018, 18, 1395.	2.1	10
27	CHAPTER 3. Evolution of Cell-penetrating Phosphorescent O2 Probes. RSC Detection Science, 2018, , 50-70.	0.0	2
28	CHAPTER 17. Applications of Phosphorescent O2 Sensors in Food and Beverage Packaging Systems. RSC Detection Science, 2018, , 335-360.	0.0	1
29	Planar implantable sensor for in vivo measurement of cellular oxygen metabolism in brain tissue. Journal of Neuroscience Methods, 2017, 281, 1-6.	1.3	8
30	Low energy costs of F1Fo ATP synthase reversal in colon carcinoma cells deficient in mitochondrial complex IV. Free Radical Biology and Medicine, 2017, 106, 184-195.	1.3	10
31	Phosphorescence based oxygen sensors and probes for biomedical research., 2017,,.		1
32	Single-cell time-lapse imaging of intracellular O2 in response to metabolic inhibition and mitochondrial cytochrome-c release. Cell Death and Disease, 2017, 8, e2853-e2853.	2.7	28
33	Phosphorescent Oxygen and Mechanosensitive Nanostructured Materials Based on Hard Elastic Polypropylene Films. ACS Applied Materials & Interfaces, 2017, 9, 13587-13592.	4.0	16
34	Steering surface topographies of electrospun fibers: understanding the mechanisms. Scientific Reports, 2017, 7, 158.	1.6	71
35	Multi-Parametric Imaging of Hypoxia and Cell Cycle in Intestinal Organoid Culture. Advances in Experimental Medicine and Biology, 2017, 1035, 85-103.	0.8	16
36	Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells. Journal of Biological Chemistry, 2017, 292, 16983-16998.	1.6	77

#	Article	IF	CITATIONS
37	Live cell imaging of mouse intestinal organoids reveals heterogeneity in their oxygenation. Biomaterials, 2017, 146, 86-96.	5.7	59
38	Cellular ROS imaging with hydro-Cy3 dye is strongly influenced by mitochondrial membrane potential. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 198-204.	1.1	14
39	Quantitative analysis of mucosal oxygenation using ex vivo imaging of healthy and inflamed mammalian colon tissue. Cellular and Molecular Life Sciences, 2017, 74, 141-151.	2.4	19
40	An Assessment of the Influence of the Industry Distribution Chain on the Oxygen Levels in Commercial Modified Atmosphere Packaged Cheddar Cheese Using Non-Destructive Oxygen Sensor Technology. Sensors, 2016, 16, 916.	2.1	14
41	Use of Fluorescence Lifetime Imaging Microscopy (FLIM) as a Timer of Cell Cycle S Phase. PLoS ONE, 2016, 11, e0167385.	1.1	32
42	Defensive Mutualism Rescues NADPH Oxidase Inactivation in Gut Infection. Cell Host and Microbe, 2016, 19, 651-663.	5.1	83
43	Two-Acceptor Cyanine-Based Fluorescent Indicator for NAD(P)H in Tumor Cell Models. ACS Sensors, 2016, 1, 702-709.	4.0	46
44	Sulforhodamine Nanothermometer for Multiparametric Fluorescence Lifetime Imaging Microscopy. Analytical Chemistry, 2016, 88, 10566-10572.	3.2	55
45	The Ca2+/Mn2+-transporting SPCA2 pump is regulated by oxygen and cell density in colon cancer cells. Biochemical Journal, 2016, 473, 2507-2518.	1.7	14
46	Biocompatibility and internalization of molecularly imprinted nanoparticles. Nano Research, 2016, 9, 3463-3477.	5.8	61
47	Phosphorescence based O 2 sensors – Essential tools for monitoring cell and tissue oxygenation and its impact on metabolism. Free Radical Biology and Medicine, 2016, 101, 202-210.	1.3	28
48	Hypothermia protects brain mitochondrial function from hypoxemia in a murine model of sepsis. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1955-1964.	2.4	23
49	Metallochelate Coupling of Phosphorescent Pt-Porphyrins to Peptides, Proteins, and Self-Assembling Protein Nanoparticles. Bioconjugate Chemistry, 2016, 27, 439-445.	1.8	13
50	High throughput non-destructive assessment of quality and safety of packaged food products using phosphorescent oxygen sensors. Trends in Food Science and Technology, 2016, 50, 85-102.	7.8	60
51	Phosphorescent oxygen sensors produced from polyolefin fibres by solvent-crazing method. Sensors and Actuators B: Chemical, 2016, 230, 434-441.	4.0	17
52	Application of phosphorescent oxygen sensors in in-package dielectric barrier discharge plasma environment. Innovative Food Science and Emerging Technologies, 2016, 33, 234-239.	2.7	9
53	Development and validation of a colorimetric sensor array for fish spoilage monitoring. Food Control, 2016, 60, 346-352.	2.8	174
54	Oxygen and glucose deprivation induces widespread alterations in mRNA translation within 20Âminutes. Genome Biology, 2015, 16, 90.	3.8	110

#	Article	IF	Citations
55	Imaging of oxygenation in 3D tissue models with multi-modal phosphorescent probes. , 2015, , .		O
56	Solid-state oxygen sensors based on phosphorescent diiodo-borondipyrromethene dye. Sensors and Actuators B: Chemical, 2015, 212, 229-234.	4.0	24
57	Oxygen-sensing scaffolds for 3-dimensional cell and tissue culture. Acta Biomaterialia, 2015, 16, 126-135.	4.1	45
58	Imaging oxygen in neural cell and tissue models by means of anionic cell-permeable phosphorescent nanoparticles. Cellular and Molecular Life Sciences, 2015, 72, 367-381.	2.4	49
59	A novel effect of DMOG on cell metabolism: direct inhibition of mitochondrial function precedes HIF target gene expression. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1254-1266.	0.5	89
60	Intracellular probes for imaging oxygen concentration: how good are they?. Methods and Applications in Fluorescence, 2015, 3, 034001.	1.1	53
61	Imaging Cell and Tissue O2 by TCSPC-PLIM. Springer Series in Chemical Physics, 2015, , 225-247.	0.2	7
62	Multi-parametric imaging of tumor spheroids with ultra-bright and tunable nanoparticle O2 probes. Proceedings of SPIE, 2015, , .	0.8	7
63	Versatile Conjugated Polymer Nanoparticles for High-Resolution O ₂ Imaging in Cells and 3D Tissue Models. ACS Nano, 2015, 9, 5275-5288.	7.3	147
64	In vitro ischemia decreases histone H4K16 acetylation in neural cells. FEBS Letters, 2015, 589, 138-144.	1.3	23
65	Differential contribution of key metabolic substrates and cellular oxygen in HIF signalling. Experimental Cell Research, 2015, 330, 13-28.	1.2	24
66	Multi-parametric O2 Imaging in Three-Dimensional Neural Cell Models with the Phosphorescent Probes. Methods in Molecular Biology, 2015, 1254, 55-71.	0.4	13
67	Comparison of the three optical platforms for measurement of cellular respiration. Analytical Biochemistry, 2015, 468, 1-3.	1.1	2
68	Cell Energy Budget Platform for Assessment of Cell Metabolism. Methods in Molecular Biology, 2015, 1265, 333-348.	0.4	8
69	Discrete O2 sensors produced by a spotting method on polyolefin fabric substrates. Sensors and Actuators B: Chemical, 2014, 203, 935-940.	4.0	16
70	A compact multifunctional microfluidic platform for exploring cellular dynamics in real-time using electrochemical detection. RSC Advances, 2014, 4, 63761-63771.	1.7	19
71	Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 51-62.	0.5	45
72	pH-sensitive perylene bisimide probes for live cell fluorescence lifetime imaging. Journal of Materials Chemistry B, 2014, 2, 6792-6801.	2.9	57

#	Article	IF	CITATIONS
73	Small molecule phosphorescent probes for O ₂ imaging in 3D tissue models. Biomaterials Science, 2014, 2, 853-866.	2.6	93
74	Phosphorescent oxygen sensors produced by spot-crazing of polyphenylenesulfide films. Journal of Materials Chemistry C, 2014, 2, 8035-8041.	2.7	22
75	Phosphorescent O ₂ sensors based on polyolefin fabric materials. Journal of Materials Chemistry C, 2014, 2, 2169-2174.	2.7	20
76	Oxygen-Sensitive Phosphorescent Nanomaterials Produced from High-Density Polyethylene Films by Local Solvent-Crazing. Analytical Chemistry, 2014, 86, 1917-1923.	3.2	30
77	Modeling the dynamics of hypoxia inducible factor- $1\hat{l}$ (HIF- $1\hat{l}$) within single cells and 3D cell culture systems. Mathematical Biosciences, 2014, 258, 33-43.	0.9	31
78	HRG-1 enhances cancer cell invasive potential and couples glucose metabolism to cytosolic/extracellular pH gradient regulation by the vacuolar-H+ ATPase. Oncogene, 2014, 33, 4653-4663.	2.6	27
79	Kinetic Analysis of Local Oxygenation and Respiratory Responses of Mammalian Cells Using Intracellular Oxygen-Sensitive Probes and Time-Resolved Fluorometry. Methods in Enzymology, 2014, 542, 183-207.	0.4	6
80	Application of gas sensing technologies for non-destructive monitoring of headspace gases (O2 and) Tj ETQq0 of product quality parameters. Food Packaging and Shelf Life, 2014, 2, 17-29.	0 0 rgBT /0 3.3	Overlock 10 Tf 47
81	Use of smart packaging technologies for monitoring and extending the shelf-life quality of modified atmosphere packaged (MAP) bread: application of intelligent oxygen sensors and active ethanol emitters. European Food Research and Technology, 2013, 237, 117-124.	1.6	53
82	Chronic hypoxia leads to a glycolytic phenotype and suppressed HIF-2 signaling in PC12 cells. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3553-3569.	1.1	30
83	Imaging of neurosphere oxygenation with phosphorescent probes. Biomaterials, 2013, 34, 9307-9317.	5.7	105
84	Measurement of cell respiration and oxygenation in standard multichannel biochips using phosphorescent O2-sensitive probes. Analyst, The, 2013, 138, 4915.	1.7	13
85	A CO2 sensor based on Pt-porphyrin dye and FRET scheme for food packaging applications. Sensors and Actuators B: Chemical, 2013, 176, 157-165.	4.0	62
86	Rapid detection and respirometric profiling of aerobic bacteria on panels of selective media. Journal of Applied Microbiology, 2013, 114, 423-432.	1.4	14
87	Genome-wide investigation of cellular targets and mode of action of the antifungal bacterial metabolite 2,4-diacetylphloroglucinol in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2013, 13, 322-334.	1.1	40
88	In vivo imaging of brain metabolism activity using a phosphorescent oxygen-sensitive probe. Journal of Neuroscience Methods, 2013, 216, 146-151.	1.3	40
89	Biological detection by optical oxygen sensing. Chemical Society Reviews, 2013, 42, 8700.	18.7	361
90	Nondestructive and Continuous Monitoring of Oxygen Levels in Modified Atmosphere Packaged Readyâ€toâ€Eat Mixed Salad Products Using Optical Oxygen Sensors, and Its Effects on Sensory and Microbiological Counts during Storage. Journal of Food Science, 2013, 78, S1057-62.	1.5	15

#	Article	IF	Citations
91	Assessment and Use of Optical Oxygen Sensors as Tools to Assist in Optimal Product Component Selection for the Development of Packs of Ready-to-Eat Mixed Salads and for the Non-Destructive Monitoring of in-Pack Oxygen Levels Using Chilled Storage. Foods, 2013, 2, 213-224.	1.9	22
92	Use of Optical Oxygen Sensors in Non-Destructively Determining the Levels of Oxygen Present in Combined Vacuum and Modified Atmosphere Packaged Pre-Cooked Convenience-Style Foods and the Use of Ethanol Emitters to Extend Product Shelf-Life. Foods, 2013, 2, 507-520.	1.9	16
93	3D O 2 imaging in the neuronal spheroids. FASEB Journal, 2013, 27, 574.1.	0.2	0
94	Insight into oxygenation levels within 3D cell models and its impact on cell metabolism. FASEB Journal, 2013, 27, lb799.	0.2	0
95	O2 Analysis on a Fluorescence Spectrometer or Plate Reader. SpringerBriefs in Biochemistry and Molecular Biology, 2012, , 29-69.	0.3	0
96	G2019S leucine-rich repeat kinase 2 causes uncoupling protein-mediated mitochondrial depolarization. Human Molecular Genetics, 2012, 21, 4201-4213.	1.4	147
97	Bafilomycin A1 activates HIF-dependent signalling in human colon cancer cells via mitochondrial uncoupling. Bioscience Reports, 2012, 32, 587-595.	1.1	32
98	Control of oxygenation and bioenergetic assessment of respiring objects with the intracellular oxygen-sensing probes. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, S162.	0.5	0
99	Detection of cheese packaging containment failures using reversible optical oxygen sensors. International Journal of Dairy Technology, 2012, 65, 456-460.	1.3	15
100	High throughput quality and safety assessment of packaged green produce using two optical oxygen sensor based systems. Food Control, 2012, 28, 87-93.	2.8	22
101	Phosphorescent Oxygen-Sensitive Probes. SpringerBriefs in Biochemistry and Molecular Biology, 2012,	0.3	16
102	O2-Sensitive Probes Based on Phosphorescent Metalloporphyrins. SpringerBriefs in Biochemistry and Molecular Biology, 2012, , 1-28.	0.3	2
103	Assessment of Cellular Oxygen Gradients with a Panel of Phosphorescent Oxygen-Sensitive Probes. Analytical Chemistry, 2012, 84, 2930-2938.	3.2	74
104	A Phosphorescent Nanoparticleâ€Based Probe for Sensing and Imaging of (Intra)Cellular Oxygen in Multiple Detection Modalities. Advanced Functional Materials, 2012, 22, 4931-4939.	7.8	136
105	Complexes of Ir ^{III} â€Octaethylporphyrin with Peptides as Probes for Sensing Cellular O ₂ . ChemBioChem, 2012, 13, 1184-1190.	1.3	68
106	Optical probes and techniques for O2 measurement in live cells and tissue. Cellular and Molecular Life Sciences, 2012, 69, 2025-2039.	2.4	196
107	O2 Imaging in Biological Specimens. SpringerBriefs in Biochemistry and Molecular Biology, 2012, , 71-101.	0.3	2
108	Histone H4 acetylation at K16 residue and mitochondrial activity in neuronal cells. FASEB Journal, 2012, 26, 565.4.	0.2	1

#	Article	IF	CITATIONS
109	Intracellular O ₂ Sensing Probe Based on Cell-Penetrating Phosphorescent Nanoparticles. ACS Nano, 2011, 5, 5499-5508.	7.3	179
110	Cell-Penetrating Conjugates of Coproporphyrins with Oligoarginine Peptides: Rational Design and Application for Sensing Intracellular O2. Bioconjugate Chemistry, 2011, 22, 2507-2518.	1.8	54
111	Metabolic Profiling of Hypoxic Cells Revealed a Catabolic Signature Required for Cell Survival. PLoS ONE, 2011, 6, e24411.	1.1	150
112	O ₂ /pH Multisensor Based on One Phosphorescent Dye. Analytical Chemistry, 2011, 83, 18-22.	3.2	31
113	Bafilomycin A1 activates respiration of neuronal cells via uncoupling associated with flickering depolarization of mitochondria. Cellular and Molecular Life Sciences, 2011, 68, 903-917.	2.4	47
114	Analysis of Total Aerobic Viable Counts in Raw Fish by High-Throughput Optical Oxygen Respirometry. Journal of Food Protection, 2011, 74, 776-782.	0.8	22
115	Uncoupling effect of bafilomycin A1 on HIF and cell bioenergetics. FASEB Journal, 2011, 25, 861.15.	0.2	1
116	Evaluation of the derivates of phosphorescent Pt-coproporphyrin as intracellular oxygen-sensitive probes. Analytical and Bioanalytical Chemistry, 2010, 396, 1793-1803.	1.9	19
117	Extracellular calcium depletion transiently elevates oxygen consumption in neurosecretory PC12 cells through activation of mitochondrial Na+/Ca2+ exchange. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1627-1637.	0.5	29
118	Analysis of activity and inhibition of oxygen-dependent enzymes by optical respirometry on the LightCycler system. Analytical Biochemistry, 2010, 397, 144-151.	1.1	17
119	Intracellular oxygen-sensitive phosphorescent probes based on cell-penetrating peptides. Analytical Biochemistry, 2010, 398, 24-33.	1.1	67
120	Bactenecin 7 peptide fragment as a tool for intracellular delivery of a phosphorescent oxygen sensor. FEBS Journal, 2010, 277, 4651-4661.	2.2	31
121	Mitochondrial pyrimidine nucleotide carrier (PNC1) regulates mitochondrial biogenesis and the invasive phenotype of cancer cells. Oncogene, 2010, 29, 3964-3976.	2.6	79
122	Dysregulation of hypoxia pathways in fumarate hydratase-deficient cells is independent of defective mitochondrial metabolism. Human Molecular Genetics, 2010, 19, 3844-3851.	1.4	91
123	Imaging of Cellular Oxygen and Analysis of Metabolic Responses of Mammalian Cells. Methods in Molecular Biology, 2010, 591, 257-273.	0.4	23
124	A Simple Screening Assay for Cholinesterase Activity and Inhibition Based on Optical Oxygen Detection. Analytical Letters, 2010, 43, 1746-1755.	1.0	7
125	Mitochondrial Toxicity of Microcystin-LR on Cultured Cells: Application to the Analysis of Contaminated Water Samples. Environmental Science & Environ	4.6	31
126	Phosphorescent Oxygen Sensors Based on Nanostructured Polyolefin Substrates. Analytical Chemistry, 2010, 82, 466-468.	3.2	21

#	Article	IF	CITATIONS
127	Monitoring of cell oxygenation and responses to metabolic stimulation by intracellular oxygen sensing technique. Integrative Biology (United Kingdom), 2010, 2, 443-451.	0.6	56
128	Respirometric acute toxicity screening assay using Daphnia magna. Chemistry and Ecology, 2009, 25, 217-227.	0.6	10
129	PGC-1α is coupled to HIF-1α-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2188-2193.	3.3	172
130	Toxicological profiling of chemical and environmental samples using panels of test organisms and optical oxygen respirometry. Environmental Toxicology, 2009, 24, 116-127.	2.1	28
131	Photophysical properties of the new phosphorescent platinum(II) and palladium(II) complexes of benzoporphyrins and chlorins. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 206, 87-92.	2.0	39
132	In vitro analysis of cell metabolism using a long-decay pH-sensitive lanthanide probe and extracellular acidification assay. Analytical Biochemistry, 2009, 390, 21-28.	1.1	58
133	Toxicological assessment of chemicals using <i>Caenorhabditis elegans</i> and optical oxygen respirometry. Environmental Toxicology and Chemistry, 2009, 28, 791-799.	2.2	26
134	Analysis of total aerobic viable counts in samples of raw meat using fluorescence-based probe and oxygen consumption assay. Food Control, 2009, 20, 129-135.	2.8	25
135	Data analysis algorithm for high throughput enzymatic oxygen consumption assays based on quenched-fluorescence detection. Sensors and Actuators B: Chemical, 2008, 129, 581-590.	4.0	11
136	Dynamics of Intracellular Oxygen in PC12 Cells upon Stimulation of Neurotransmission. Journal of Biological Chemistry, 2008, 283, 5650-5661.	1.6	38
137	Biological Toxicity Testing of Heavy Metals and Environmental Samples Using Fluorescence-Based Oxygen Sensing and Respirometry. , 2008, , 312-324.		1
138	Sensing intracellular oxygen using near-infrared phosphorescent probes and live-cell fluorescence imaging. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R1613-R1620.	0.9	56
139	Analysis of Intracellular Oxygen and Metabolic Responses of Mammalian Cells by Time-Resolved Fluorometry. Analytical Chemistry, 2007, 79, 9414-9419.	3.2	89
140	Homogeneous time-resolved fluorescence assays for the detection of activity and inhibition of phosphatase enzymes employing phosphorescently labeled peptide substrates. Analytica Chimica Acta, 2007, 583, 349-356.	2.6	4
141	Analysis of close proximity quenching of phosphorescent metalloporphyrin labels in oligonucleotide structures. Analytica Chimica Acta, 2007, 585, 139-146.	2.6	7
142	Non-destructive assessment of oxygen levels in industrial modified atmosphere packaged cheddar cheese. Food Control, 2006, 17, 286-292.	2.8	58
143	Development of a respirometric biochip for embryo assessment. Lab on A Chip, 2006, 6, 1438.	3.1	24
144	The use of a fluorescence-based oxygen uptake assay in the analysis of cytotoxicity. Toxicology in Vitro, 2006, 20, 785-792.	1,1	51

#	Article	IF	Citations
145	Analysis of mitochondrial function using phosphorescent oxygen-sensitive probes. Nature Protocols, 2006, 1, 2563-2572.	5.5	158
146	Modelling of phase-fluorometric oxygen sensors: Consideration of temperature effects and operational requirements. Sensors and Actuators B: Chemical, 2006, 113, 917-929.	4.0	20
147	Application of frequency spectroscopy to fluorescence-based oxygen sensors. Sensors and Actuators B: Chemical, 2006, 113, 608-616.	4.0	11
148	Investigation of Drug-Induced Mitochondrial Toxicity Using Fluorescence-Based Oxygen-Sensitive Probes. Toxicological Sciences, 2006, 92, 186-200.	1.4	143
149	Rapid High-Throughput Assessment of Aerobic Bacteria in Complex Samples by Fluorescence-Based Oxygen Respirometry. Applied and Environmental Microbiology, 2006, 72, 1279-1287.	1.4	48
150	Respirometric Screening Technology for ADME-Tox studies. Expert Opinion on Drug Metabolism and Toxicology, 2006, 2, 313-323.	1.5	31
151	Quality assessment of packaged foods by optical oxygen sensing. , 2005, , .		2
152	Homogeneous assays for cellular proteases employing the platinum(II)–coproporphyrin label and time-resolved phosphorescence. Analytical Biochemistry, 2005, 342, 111-119.	1.1	8
153	Study of migration of active components of phosphorescent oxygen sensors for food packaging applications. Analytica Chimica Acta, 2005, 530, 135-141.	2.6	51
154	Post-PCR detection of nucleic acids using metalloporphyrin labels and time-resolved fluorescence. Analytica Chimica Acta, 2005, 537, 111-117.	2.6	8
155	Fluorescence based oxygen uptake analysis in the study of metabolic responses to apoptosis induction. Journal of Immunological Methods, 2005, 306, 193-201.	0.6	20
156	Emerging Applications of Phosphorescent Metalloporphyrins. Journal of Fluorescence, 2005, 15, 569-584.	1.3	173
157	Optical oxygen sensing systems for drug discovery applications: Respirometric Screening Technology (RST)., 2005,,.		0
158	Phosphorescent oxygen-sensitive materials for biological applications. Journal of Materials Chemistry, 2005, 15, 2946.	6.7	60
159	Optical Oxygen Microrespirometry as a Platform for Environmental Toxicology and Animal Model Studies. Environmental Science &	4.6	50
160	Luminescent Probes. , 2004, , 821-829.		2
161	Assessment of oxygen levels in convenience-style muscle-basedsous vide products through optical means and impact on shelf-life stability. Packaging Technology and Science, 2004, 17, 225-234.	1.3	35
162	A low-volume platform for cell-respirometric screening based on quenched-luminescence oxygen sensing. Biosensors and Bioelectronics, 2004, 19, 1529-1535.	5.3	51

#	Article	IF	CITATIONS
163	Methods in Optical Oxygen Sensing: Protocols and Critical Analyses. Methods in Enzymology, 2004, 381, 715-735.	0.4	80
164	Title is missing!. Applied Biochemistry and Microbiology, 2003, 39, 482-487.	0.3	3
165	Evaluation of the phosphorescent palladium(II)–coproporphyrin labels in separation-free hybridization assays. Analytical Biochemistry, 2003, 320, 273-280.	1.1	17
166	Modeling of luminescence-based oxygen sensors with non-uniform distribution of excitation and quenching characteristics inside active medium. Sensors and Actuators B: Chemical, 2003, 88, 89-100.	4.0	23
167	Fluorescence-Based Cell Viability Screening Assays Using Water-Soluble Oxygen Probes. Journal of Biomolecular Screening, 2003, 8, 264-272.	2.6	96
168	Synthesis and evaluation of phosphorescent oligonucleotide probes for hybridisation assays. Nucleic Acids Research, 2002, 30, 114e-114.	6.5	21
169	Performance Evaluation of the Phosphorescent Porphyrin Label: Solid-Phase Immunoassay of α-Fetoprotein. Analytical Chemistry, 2002, 74, 5845-5850.	3.2	45
170	Evaluation of oxygen content in commercial modified atmosphere packs (MAP) of processed cooked meats. Food Research International, 2002, 35, 571-575.	2.9	48
171	Use of oxygen sensors for the non-destructive measurement of the oxygen content in modified atmosphere and vacuum packs of cooked chicken patties; impact of oxygen content on lipid oxidation. Food Research International, 2002, 35, 577-584.	2.9	92
172	Use of oxygen sensors to non-destructively measure the oxygen content in modified atmosphere and vacuum packed beef: impact of oxygen content on lipid oxidation. Meat Science, 2002, 61, 285-290.	2.7	73
173	Phosphorescent metalloporphyrins as labels in time-resolved luminescence microscopy: Effect of mounting on emission intensity. Microscopy Research and Technique, 2002, 58, 125-131.	1.2	20
174	Time-resolved electrochemiluminescence of platinum(II) coproporphyrin. Analytica Chimica Acta, 2002, 453, 269-279.	2.6	22
175	Chemiluminescence of luminol induced by dissolution of oxide-covered aluminum in alkaline aqueous solution. Analytica Chimica Acta, 2002, 453, 253-267.	2.6	17
176	Spectral-luminescent study of the porphyrin-diketones and their complexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2001, 57, 1897-1905.	2.0	15
177	Monofunctional Derivatives of Coproporphyrins for Phosphorescent Labeling of Proteins and Binding Assays. Analytical Biochemistry, 2001, 290, 366-375.	1.1	44
178	Approximation of calibration of phase-fluorimetric oxygen sensors on the basis of physical models. Sensors and Actuators B: Chemical, 2001, 81, 17-24.	4.0	21
179	A Cell Viability Assay Based on Monitoring Respiration by Optical Oxygen Sensing. Analytical Biochemistry, 2000, 278, 221-227.	1.1	94
180	Phosphorescent Sensor Approach for Non-Destructive Measurement of Oxygen in Packaged Foods: Optimisation of Disposable Oxygen Sensors and their Characterization Over a Wide Temperature Range. Analytical Letters, 2000, 33, 1755-1777.	1.0	56

#	Article	IF	CITATIONS
181	Electrochemiluminescent labels for applications in fully aqueous solutions at oxide-covered aluminium electrodes. Analytica Chimica Acta, 1999, 386, 1-6.	2.6	27
182	An Immunosensor Based on the Glucose Oxidase Label and Optical Oxygen Detection. Analytical Chemistry, 1999, 71, 1568-1573.	3.2	43
183	Enzymatic Flow-Injection Analysis of Metabolites Using New Type of Oxygen Sensor Membranes and Phosphorescence Phase Measurements. Analytical Letters, 1999, 32, 701-716.	1.0	13
184	Optical sensing of sulfite with a phosphorescent probe. Analytica Chimica Acta, 1998, 374, 1-9.	2.6	33
185	Biosensors on the basis of luminescent oxygen sensor: the use of microporous light-scattering support materials. Sensors and Actuators B: Chemical, 1998, 51, 137-145.	4.0	47
186	Selection of modulation frequency of excitation for luminescence lifetime-based oxygen sensors. Sensors and Actuators B: Chemical, 1998, 51, 377-381.	4.0	25
187	Protonation of porphyrins in liquid PVC membranes: Effects of anionic additives and application to pH-sensing. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 104, 151-158.	2.0	32
188	Protonation of the porphyrin-ketones and their complexes: Verification of spectral forms and mechanisms. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1997, 53, 613-621.	2.0	9
189	New polar plasticizers for luminescence-based sensors. Analytica Chimica Acta, 1997, 337, 201-205.	2.6	28
190	Studies with solid-state phosphorescent coatings on their sensitivity to nitrogen oxides. Analytica Chimica Acta, 1995, 310, 233-239.	2.6	16
191	New oxygen sensors and their application to biosensing. Sensors and Actuators B: Chemical, 1995, 29, 213-218.	4.0	164
192	Phosphorescent Complexes of Porphyrin Ketones: Optical Properties and Application to Oxygen Sensing. Analytical Chemistry, 1995, 67, 4112-4117.	3.2	295
193	Luminescence lifetime-based sensor for relative air humidity. Sensors and Actuators B: Chemical, 1994, 22, 57-61.	4.0	31
194	Flow-Cell Fibre-Optic Enzyme Sensor for Phenols. Analytical Letters, 1993, 26, 1505-1518.	1.0	23
195	Phosphorescent polymer films for optical oxygen sensors. Biosensors and Bioelectronics, 1992, 7, 199-206.	5.3	97