

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7925974/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Altered sexual and social behaviors in trp2 mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6376-6381.	7.1	516
2	Spontaneous Neural Activity Is Required for the Establishment and Maintenance of the Olfactory Sensory Map. Neuron, 2004, 42, 553-566.	8.1	360
3	Encoding Gender and Individual Information in the Mouse Vomeronasal Organ. Science, 2008, 320, 535-538.	12.6	146
4	Agonist-Independent GPCR Activity Regulates Anterior-Posterior Targeting of Olfactory Sensory Neurons. Cell, 2013, 154, 1314-1325.	28.9	126
5	Distributed representation of chemical features and tunotopic organization of glomeruli in the mouse olfactory bulb. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5481-5486.	7.1	85
6	Integrated action of pheromone signals in promoting courtship behavior in male mice. ELife, 2014, 3, e03025.	6.0	77
7	A Developmental Switch of Axon Targeting in the Continuously Regenerating Mouse Olfactory System. Science, 2014, 344, 194-197.	12.6	76
8	Requirement of calcium-activated chloride channels in the activation of mouse vomeronasal neurons. Nature Communications, 2011, 2, 365.	12.8	51
9	An Olfactory Cilia Pattern in the Mammalian Nose Ensures High Sensitivity to Odors. Current Biology, 2015, 25, 2503-2512.	3.9	51
10	Paradoxical contribution of SK3 and GIRK channels to the activation of mouse vomeronasal organ. Nature Neuroscience, 2012, 15, 1236-1244.	14.8	47
11	Regeneration and rewiring of rodent olfactory sensory neurons. Experimental Neurology, 2017, 287, 395-408.	4.1	40
12	Distinct Signals Conveyed by Pheromone Concentrations to the Mouse Vomeronasal Organ. Journal of Neuroscience, 2010, 30, 7473-7483.	3.6	38
13	Activity-Dependent Modulation of Odorant Receptor Gene Expression in the Mouse Olfactory Epithelium. PLoS ONE, 2013, 8, e69862.	2.5	35
14	A Population of Navigator Neurons Is Essential for Olfactory Map Formation during the Critical Period. Neuron, 2018, 100, 1066-1082.e6.	8.1	28
15	Automated Analyses of Innate Olfactory Behaviors in Rodents. PLoS ONE, 2014, 9, e93468.	2.5	20
16	TRICK or TRP? What Trpc2â^'/â^' mice tell us about vomeronasal organ mediated innate behaviors. Frontiers in Neuroscience, 2015, 9, 221.	2.8	18
17	Pronounced strain-specific chemosensory receptor gene expression in the mouse vomeronasal organ. BMC Genomics, 2017, 18, 965.	2.8	18
18	Acquisition of innate odor preference depends on spontaneous and experiential activities during critical period. ELife, 2021, 10, .	6.0	17

C Ron Yu

#	Article	IF	CITATIONS
19	Intracellular chloride concentration of the mouse vomeronasal neuron. BMC Neuroscience, 2015, 16, 90.	1.9	16
20	Encoding innately recognized odors via a generalized population code. Current Biology, 2021, 31, 1813-1825.e4.	3.9	14
21	Tuning properties and dynamic range of type 1 vomeronasal receptors. Frontiers in Neuroscience, 2015, 9, 244.	2.8	13
22	Alkaline phosphatase-based chromogenic and fluorescence detection method for BaseScopeâ,,¢ <i>In Situ</i> hybridization. Journal of Histotechnology, 2019, 42, 193-201.	0.5	11
23	G protein γ subunit Gγ13 is essential for olfactory function and aggressive behavior in mice. NeuroReport, 2018, 29, 1333-1339.	1.2	9
24	Matrix metalloprotease-mediated cleavage of neural glial-related cell adhesion molecules activates quiescent olfactory stem cells via EGFR. Molecular and Cellular Neurosciences, 2020, 108, 103552.	2.2	8
25	Imaging Neuronal Responses in Slice Preparations of Vomeronasal Organ Expressing a Genetically Encoded Calcium Sensor. Journal of Visualized Experiments, 2011, , .	0.3	7
26	A physicochemical model of odor sampling. PLoS Computational Biology, 2021, 17, e1009054.	3.2	7
27	Calcium Imaging of Vomeronasal Organ Response Using Slice Preparations from Transgenic Mice Expressing G-CaMP2. Methods in Molecular Biology, 2013, 1068, 211-220.	0.9	3
28	Robust and sensitive in situ RNA detection using Yn-situ. Cell Reports Methods, 2022, 2, 100201.	2.9	3
29	Maximal Dependence Capturing as a Principle of Sensory Processing. Frontiers in Computational	2.1	1