
André Luiz Martinez de Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7925623/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics, 2009, 10, 450.	2.8	207

Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

3	Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant and Soil, 2006, 284, 23-32.	3.7	141
4	Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes. PLoS ONE, 2019, 14, e0215332.	2.5	108
5	Colonization of sugarcane plantlets by mixed inoculations with diazotrophic bacteria. European Journal of Soil Biology, 2009, 45, 106-113.	3.2	85
6	The main spoilage-related psychrotrophic bacteria in refrigerated raw milk. Journal of Dairy Science, 2018, 101, 75-83.	3.4	76
7	Effects of plant growth-promoting rhizobacteria on co-inoculation with <i>Bradyrhizobium</i> in soybean crop: a meta-analysis of studies from 1987 to 2018. PeerJ, 2020, 8, e7905.	2.0	59
8	The Family Rhodospirillaceae. , 2014, , 533-618.		58
9	Detection and quantification of Aspergillus westerdijkiae in coffee beans based on selective amplification of β-tubulin gene by using real-time PCR. International Journal of Food Microbiology, 2007, 119, 270-276.	4.7	57
10	Maize Inoculation with Azospirillum brasilense Ab-V5 Cells Enriched with Exopolysaccharides and Polyhydroxybutyrate Results in High Productivity under Low N Fertilizer Input. Frontiers in Microbiology, 2017, 8, 1873.	3.5	52
11	Technical approaches to inoculate micropropagated sugar cane plants were Acetobacter diazotrophicus. Plant and Soil, 1998, 206, 205-211.	3.7	44
12	Response of micropropagated sugarcane varieties to inoculation with endophytic diazotrophic bacteria. Brazilian Journal of Microbiology, 2003, 34, 59-61.	2.0	44
13	The Role of Rhizosphere Bacteriophages in Plant Health. Trends in Microbiology, 2020, 28, 709-718.	7.7	43
14	Diversity and plant growth-promoting functions of diazotrophic/N-scavenging bacteria isolated from the soils and rhizospheres of two species of Solanum. PLoS ONE, 2020, 15, e0227422.	2.5	39
15	Physical Properties, Photo- and Bio-degradation of Baked Foams Based on Cassava Starch, Sugarcane Bagasse Fibers and Montmorillonite. Journal of Polymers and the Environment, 2013, 21, 266-274.	5.0	38
16	Indole-3-acetic acid production via the indole-3-pyruvate pathway by plant growth promoter Rhizobium tropici CIAT 899 is strongly inhibited by ammonium. Research in Microbiology, 2017, 168, 283-292.	2.1	35
17	Inoculation with plant growth-promoting bacteria alters the rhizosphere functioning of tomato plants. Applied Soil Ecology, 2021, 158, 103784.	4.3	35
18	Plant growth-promoting bacteria improve leaf antioxidant metabolism of drought-stressed Neotropical trees. Planta, 2020, 251, 83.	3.2	34

André Luiz Martinez de

#	Article	IF	CITATIONS
19	Biochemical and Molecular Characterization of High Population Density Bacteria Isolated from Sunflower. Journal of Microbiology and Biotechnology, 2012, 22, 437-447.	2.1	33
20	Survival of endophytic diazotrophic bacteria in soil under different moisture levels. Brazilian Journal of Microbiology, 2004, 35, 295-299.	2.0	28
21	Genetic structure of Fusarium verticillioides populations and occurrence of fumonisins in maize grown in Southern Brazil. Crop Protection, 2017, 99, 160-167.	2.1	27
22	Enhanced drought tolerance in seedlings of Neotropical tree species inoculated with plant growth-promoting bacteria. Plant Physiology and Biochemistry, 2018, 130, 277-288.	5.8	27
23	Composition and activity of endophytic bacterial communities in field-grown maize plants inoculated with Azospirillum brasilense. Annals of Microbiology, 2015, 65, 2187-2200.	2.6	26
24	Development of biodegradable coatings for maize seeds and their application for Azospirillum brasilense immobilization. Applied Microbiology and Biotechnology, 2019, 103, 2193-2203.	3.6	26
25	Plant growth-promoting bacteria associated with nitrogen fertilization at topdressing in popcorn agronomic performance. Bragantia, 2016, 75, 33-40.	1.3	25
26	The influence of topdressing nitrogen on Azospirillum spp. inoculation in maize crops through meta-analysis. Bragantia, 2018, 77, 493-500.	1.3	24
27	The ammonium excreting Azospirillum brasilense strain HM053: a new alternative inoculant for maize. Plant and Soil, 2020, 451, 45-56.	3.7	24
28	Genetic diversity of thermoduric spoilage microorganisms of milk from Brazilian dairy farms. Journal of Dairy Science, 2018, 101, 6927-6936.	3.4	22
29	Formulations of polymeric biodegradable low-cost foam by melt extrusion to deliver plant growth-promoting bacteria in agricultural systems. Applied Microbiology and Biotechnology, 2016, 100, 7323-7338.	3.6	20
30	Plant-promoting rhizobacteria Methylobacterium komagatae increases crambe yields, root system and plant height. Industrial Crops and Products, 2018, 121, 277-281.	5.2	20
31	Associative bacteria influence maize (<i>Zea mays</i> L.) growth, physiology and root anatomy under different nitrogen levels. Plant Biology, 2018, 20, 870-878.	3.8	19
32	Identification of Genes Involved in Indole-3-Acetic Acid Biosynthesis by Gluconacetobacter diazotrophicus PAL5 Strain Using Transposon Mutagenesis. Frontiers in Microbiology, 2016, 7, 1572.	3.5	16
33	Genetic Diversity and a PCR-Based Method for <i>Xanthomonas axonopodis</i> Detection in Passion Fruit. Phytopathology, 2011, 101, 416-424.	2.2	15
34	The adaptive metabolomic profile and functional activity of tomato rhizosphere are revealed upon PGPB inoculation under saline stress. Environmental and Experimental Botany, 2021, 189, 104552.	4.2	15
35	Development of liquid inoculants for strains of Rhizobium tropici group using response surface methodology. African Journal of Biotechnology, 2018, 17, 411-421.	0.6	14
36	Biodegradable plastic designed to improve the soil quality and microbiological activity. Polymer Degradation and Stability, 2018, 158, 52-63.	5.8	12

André Luiz Martinez de

#	Article	IF	CITATIONS
37	β-(1 → 3)-Glucanolytic Yeasts from Brazilian Grape Microbiota: Production and Characterization of β-Glucanolytic Enzymes by <i>Aureobasidium pullulans</i> 1WA1 Cultivated on Fungal Mycelium. Journal of Agricultural and Food Chemistry, 2015, 63, 269-278.	5.2	11
38	Aplicações da biodiversidade bacteriana do solo para a sustentabilidade da agricultura. BBR - Biochemistry and Biotechnology Reports, 2014, 3, 56.	0.0	10
39	Can Inoculation With the Bacterial Biostimulant Enterobacter sp. Strain 15S Be an Approach for the Smarter P Fertilization of Maize and Cucumber Plants?. Frontiers in Plant Science, 2021, 12, 719873.	3.6	10
40	Root exudate supplemented inoculant of Azospirillum brasilense Ab-V5 is more effective in enhancing rhizosphere colonization and growth of maize. Environmental Sustainability, 2020, 3, 187-197.	2.8	8
41	Agrobacterium-mediated insertional mutagenesis of the ochratoxigenic fungus Aspergillus westerdijkiae. Canadian Journal of Microbiology, 2007, 53, 148-151.	1.7	7
42	Fast induction of biosynthetic polysaccharide genes lpxA, lpxE, and rkpl of Rhizobium sp. strain PRF 81 by common bean seed exudates is indicative of a key role in symbiosis. Functional and Integrative Genomics, 2013, 13, 275-283.	3.5	7
43	Invasion ecology applied to inoculation of plant growth promoting bacteria through a novel SIMPER-PCA approach. Plant and Soil, 2018, 422, 467-478.	3.7	7
44	Ammonium excretion, auxin production and effects of maize inoculation with ethylenediamine-resistant mutants of Pseudomonas sp Bragantia, 2018, 77, 415-428.	1.3	7
45	IAA production and phosphate solubilization performed by native rhizobacteria in western ParanÃį. Agronomy Science and Biotechnology, 2019, 5, 70.	0.3	7
46	Culturable bacterial pool from aged petroleum-contaminated soil: identification of oil-eating Bacillus strains. Annals of Microbiology, 2012, 62, 1681-1690.	2.6	6
47	Proteolytic and lipolytic potential of Pseudomonas spp. from goat and bovine raw milk. Pesquisa Veterinaria Brasileira, 2018, 38, 1577-1583.	0.5	6
48	Selection of <i>Leuconostoc</i> strains isolated from artisanal Serrano Catarinense cheese for use as adjuncts in cheese manufacture. Journal of the Science of Food and Agriculture, 2018, 98, 3899-3906.	3.5	5
49	Differential impacts of plant growth-promoting bacteria (PGPB) on seeds of neotropical tree species with contrasting tolerance to shade. Trees - Structure and Function, 2020, 34, 121-132.	1.9	5
50	Isolation and Identification of Aspergillus Section Nigri, and Genotype Associated with Ochratoxin A and Fumonisin B2 Production in Garlic Marketed in Brazil. Current Microbiology, 2020, 77, 1150-1158.	2.2	5
51	Biodegradation of poly(lactic acid)—cassava bagasse composites produced by injection molding. Journal of Applied Polymer Science, 2021, 138, 50667.	2.6	5
52	Evaluation of the biological nitrogen fixation contribution in sugarcane plants originated from seeds and inoculated with nitrogen-fixing endophytes. Brazilian Journal of Microbiology, 2003, 34, 62-64.	2.0	4
53	Spoilage potential of spore-forming bacteria from refrigerated raw milk. Semina:Ciencias Agrarias, 2018, 39, 2049.	0.3	4
54	Identification and characterization of a long-chain N-acyl homoserine lactone from Rhizobium sp. isolated from Zea x mays rhizosphere. Rhizosphere, 2019, 9, 34-37.	3.0	3

André Luiz Martinez de

#	Article	IF	CITATIONS
55	Effects of Rhizobium tropici azide-resistant mutants on growth, nitrogen nutrition and nodulation of common bean (Phaseolus vulgaris L.). Rhizosphere, 2021, 18, 100355.	3.0	3
56	Does inoculation with associative bacteria improve tolerance to nitrogen deficiency in seedlings of Neotropical tree species?. Environmental and Experimental Botany, 2021, 189, 104529.	4.2	3
57	Acyl-Homoserine Lactone from Plant-Associated Pseudomonas sp. Influences Solanum lycopersicum Germination and Root Growth. Journal of Chemical Ecology, 2020, 46, 699-706.	1.8	2
58	Performance of maize hybrids from a partial diallel in association with Azospirillum. African Journal of Agricultural Research Vol Pp, 2018, 13, 1297-1305.	0.5	1
59	Avaliação da Arquitetura de Plantas de Milho Inoculadas com Diferentes Stirpes de Bactérias Promotoras do Crescimento Vegetal. BBR - Biochemistry and Biotechnology Reports, 2013, 2, 384.	0.0	1
60	Influência do Meio de Cultivo sobre a População e Produção de ExopolissacarÃdeos por Azospirillum brasilense Ab-V5. BBR - Biochemistry and Biotechnology Reports, 2013, 2, 212.	0.0	0
61	Atividade Alelopática de Exsudatos Radiculares de Milho sobre a Germinação de um Milho. , 0, , .		0
62	Bactérias Promotoras do Crescimento Vegetal no Controle in vitro de Colletotrichum gloeosporioides, Agente Causal da Antracnose em Frutos de Pimenta. , 0, , .		0
63	Padronização das condições de indução de mutagênese por agentes fÃsicos e quÃmicos em Azomonas sp , 0, , .		0
64	Adubação Nitrogenada Associada à Inoculação com Bactérias Promotoras de Crescimento Vegetal na Cultura do Milho. , 0, , .		0
65	Efeitos Alelopáticos De Exsudatos Radiculares De Milho Na Fisiologia E Desenvolvimento Inicial De Genótipos HÃbridos De Milho. , 0, , .		0
66	Desenvolvimento e Caracterização de Compósitos Biodegradáveis à Base de Ãlcool PolivinÃlico, Amido e Fibras. , 0, , .		0
67	Influência da Incorporação de Tanino em CompÃ3sito Biodegradável na Viabilidade de Azospirillum brasilense AbV5, uma Bactéria Promotora do Crescimento de Plantas. , 0, , .		0
68	Caracterização QuÃmica e Avaliação dos Efeitos dos Exsudatos Radiculares de Genótipos de Milho (Zea) Tj	i ETQq0 () 0 rgBT /Over
69	Bactérias Promotoras de Crescimento Vegetal Associadas à Adubação Nitrogenada na Produtividade de Grãos de Milho. , 0, , .		0
70	EFEITO DE MICRORGANISMOS PROMOTORES DE CRESCIMENTO NO DESENVOLVIMENTO DE GÉRBERA EM VASO. , 0, , 106-112.		0
71	Title is missing!. , 2020, 15, e0227422.		0
72	Title is missing!. , 2020, 15, e0227422.		0

#	Article	IF	CITATIONS
73	Title is missing!. , 2020, 15, e0227422.		0
74	Title is missing!. , 2020, 15, e0227422.		0
75	Diversity and antimicrobial potential of the culturable rhizobacteria from medicinal plant Baccharis trimera Less D.C Brazilian Journal of Microbiology, 2022, , 1.	2.0	0