Geert Js Litjens

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/7925084/publications.pdf
Version: 2024-02-01

Using deep learning for quantification of cellularity and cell lineages in bone marrow biopsies and
11 Artificial intelligence assistance significantly improves Gleason grading of prostate biopsies by pathologists. Modern Pathology, 2021, 34, 660-671.
Neural Image Compression for Gigapixel Histopathology Image Analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2021, 43, 567-578.

14 Mini Review: The Last Mileâ€"Opportunities and Challenges for Machine Learning in Digital Toxicologic
19
20

> Artificial Intelligence for Diagnosis and Gleason Grading of Prostate Cancer in Biopsiesâ€"Current
> Status and Next Steps. European Urology Focus, 2021, 7, 687-691.
1.6

18

Detection of Prostate Cancer in Whole-Slide Images Through End-to-End Training With Image-Level
5.4

48
Labels. IEEE Transactions on Medical Imaging, 2021, 40, 1817-1826.
Automated deep-learning system for Cleason grading of prostate cancer using biopsies: a diagnostic
study. Lancet Oncology, The, 2020, $21,233-241$.
5.1

The 2019 International Society of Urological Pathology (ISUP) Consensus Conference on Grading of
Prostatic Carcinoma. American Journal of Surgical Pathology, 2020, 44, e87-e99.
2.1

292
23 Impact of rescanning and normalization on convolutional neural network performance in
multi-center, whole-slide classification of prostate cancer. Scientific Reports, 2020, 10, 14398 .

$24 \quad$| Predicting MYC translocation in HE specimens of diffuse large B-cell lymphoma through deep |
| :--- |
| learning. , 2020, , |

$25 \quad$| Multi-class semantic cell segmentation and classification of aplasia in bone marrow histology images. |
| :--- |
| , 2020, , . |

26 State-of-the-Art Deep Learning in Cardiovascular Image Analysis. JACC: Cardiovascular Imaging, 2019, 12

1549-1565.
2.3

238

27 No pixel-level annotations needed. Nature Biomedical Engineering, 2019, 3, 855-856.
11.6

14

28 Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology. Medical Image Analysis, 2019, 58, 101544.
29 Learning to detect lymphocytes in immunohistochemistry with deep learning. Medical Image Analysis,
29 2019,58, 101547.
7.0

311

Epithelium segmentation using deep learning in H\&E-stained prostate specimens with
30 immunohistochemistry as reference standard. Scientific Reports, 2019, 9, 864.
1.6

107

Computer aided quantification of intratumoral stroma yields an independent prognosticator in
rectal cancer. Cellular Oncology (Dordrecht), 2019, 42, 331-341.
A Single-Arm, Multicenter Validation Study of Prostate Cancer Localization and Aggressiveness With a
32 Quantitative Multiparametric Magnetic Resonance Imaging Approach. Investigative Radiology, 2019, 54,
437-447.

33 From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level:
The CAMELYON17 Challenge. IEEE Transactions on Medical Imaging, 2019, 38, 550-560.
5.4

269

Robust and accurate quantification of biomarkers of immune cells in lung cancer micro-environment

H\&E stain augmentation improves generalization of convolutional networks for histopathological mitosis detection. , 2018, , .

45	Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Medical Physics, 2017, 44, 533-546.	1.6	173
46	A survey on deep learning in medical image analysis. Medical Image Analysis, 2017, 42, 60-88.	7.0	7,976
47	Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA - Journal of the American Medical Association, 2017, 318, 2199.	3.8	2,003
48	Comparison of different methods for tissue segmentation in histopathological whole-slide images. , 2017, , .		29
49	Location Sensitive Deep Convolutional Neural Networks for Segmentation of White Matter Hyperintensities. Scientific Reports, 2017, 7, 5110.	1.6	171

50 The importance of stain normalization in colorectal tissue classification with convolutional networks. , 2017, , .

Evaluation of tongue squamous cell carcinoma resection margins using ex-vivo MR. International
Journal of Computer Assisted Radiology and Surgery, 2017, 12, 821-828.
1.7

20

Large scale deep learning for computer aided detection of mammographic lesions. Medical Image
Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis.
Scientific Reports, $2016,6,26286$.

Automated multistructure atlasâ€essisted detection of lymph nodes using pelvic MR lymphography in prostate cancer patients. Medical Physics, 2016, 43, 3132-3142.

Automated Detection of DCIS in Whole-Slide H\&E Stained Breast Histopathology Images. IEEE
Transactions on Medical Imaging, 2016, 35, 2141-2150.

In-depth tissue profiling using multiplexed immunohistochemical consecutive staining on single slide.
Science Immunology, 2016, 1, aaf6925.
5.6

Pulmonary Nodule Detection in CT Images: False Positive Reduction Using Multi-View Convolutional
Networks. IEEE Transactions on Medical Imaging, 2016, 35, 1160-1169.
5.4

Stain Specific Standardization of Whole-Slide Histopathological Images. IEEE Transactions on Medical
Imaging, 2016, 35, 404-415.
5.4

218

61 Computer-extracted Features Can Distinguish Noncancerous Confounding Disease from Prostatic

Adenocarcinoma at Multiparametric MR Imaging. Radiology, 2016, 278, 135-145.
3.6

43
 comparison of ferumoxtran-10 and ferumoxytol. PeerJ, 2016, 4, e2471.
0.9

Multiparametric Magnetic Resonance Imaging for Discriminating Low-Grade From High-Grade Prostate
Cancer. Investigative Radiology, 2015, 50, 490-497.

Automated detection of prostate cancer in digitized whole-slide images of H and E -stained biopsy
specimens. , 2015, , .
Prostate Cancer: The European Society of Urogenital Radiology Prostate Imaging Reporting and Data
65 System Criteria for Predicting Extraprostatic Extension by Using 3-T Multiparametric MR Imaging.
3.6

Radiology, 2015, 276, 479-489.

A multi-scale superpixel classification approach to the detection of regions of interest in whole slide
66 histopathology images. Proceedings of SPIE, 2015, , .
0.8

19

Clinical evaluation of a computer-aided diagnosis system for determining cancer aggressiveness in
67 Clinical evaluation of a computer-aided diagnosis system
2.3

57

Quantitative identification of magnetic resonance imaging features of prostate cancer response following laser ablation and radical prostatectomy. Journal of Medical Imaging, 2014, 1, 035001.

Distinguishing prostate cancer from benign confounders via a cascaded classifier on
multi-parametric MRI. Proceedings of SPIE, 2014, , .
0.8

Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge. Medical Image
Analysis, 2014, 18, 359-373.

Computer-Aided Detection of Prostate Cancer in MRI. IEEE Transactions on Medical Imaging, 2014, 33,
1083-1092.
73
74
Assessment of Prostate Cancer Aggressiveness Using Dynamic Contrast-enhanced Magnetic Resonance Imaging at 3 T. European Urology, 2013, 64, 448-455.

Differentiation of Prostatitis and Prostate Cancer by Using Diffusion-weighted MR Imaging and
Automated computer-aided detection of prostate cancer in MR images: from a whole-organ to a
zone-based approach. Proceedings of SPIE, 2012, ,.

6 Interpatient Variation in Normal Peripheral Zone Apparent Diffusion Coefficient: Effect on the
3.6

77	A Pattern Recognition Approach to Zonal Segmentation of the Prostate on MRI. Lecture Notes in Computer Science, 2012, 15, 413-420.	1.0
78	Automated 3â€dimensional segmentation of pelvic lymph nodes in magnetic resonance images. Medical Physics, 2011, 38, 6178-6187.	1.6
79	Automatic computer aided detection of abnormalities in multi-parametric prostate MRI. Proceedings of SPIE, 2011, , .	0.8
80	Required Accuracy of MR-US Registration for Prostate Biopsies. Lecture Notes in Computer Science, 2011, , 92-99.	1.0

81 Pharmacokinetic models in clinical practice: What model to use for DCE-MRI of the breast?. , 2010, , .

