
Ricardo N Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7925005/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phaeodactylum tricornutum extracts as structuring agents for food applications: Physicochemical and functional properties. Food Hydrocolloids, 2022, 124, 107276.	10.7	10
2	Pulsed electric fields for the extraction of proteins and carbohydrates from marine resources. , 2022, , 173-195.		1
3	Future food proteins—Trends and perspectives. , 2022, , 267-285.		3
4	Exploring the bioactive potential of brewers spent grain ohmic extracts. Innovative Food Science and Emerging Technologies, 2022, 76, 102943.	5.6	15
5	Bioactivity and Bioaccessibility of Bioactive Compounds in Gastrointestinal Digestion of Tomato Bagasse Extracts. Foods, 2022, 11, 1064.	4.3	3
6	Effects of Innovative Processing Methods on Microalgae Cell Wall: Prospects towards Digestibility of Protein-Rich Biomass. Biomass, 2022, 2, 80-102.	2.8	23
7	Unveiling the Antioxidant Therapeutic Functionality of Sustainable Olive Pomace Active Ingredients. Antioxidants, 2022, 11, 828.	5.1	14
8	Ohmic heating as a new tool for protein scaffold engineering. Materials Science and Engineering C, 2021, 120, 111784.	7.3	5
9	Effects of electric fields and electromagnetic wave on food structure and functionality. , 2021, , 95-113.		4
10	Ohmic Heating—An Emergent Technology in Innovative Food Processing. , 2021, , 107-123.		2
11	Effects of Moderate Electric Fields on the Post-harvest Preservation of Chestnuts. Food and Bioprocess Technology, 2021, 14, 920-934.	4.7	8
12	Anthocyanin Recovery from Grape by-Products by Combining Ohmic Heating with Food-Grade Solvents: Phenolic Composition, Antioxidant, and Antimicrobial Properties. Molecules, 2021, 26, 3838.	3.8	20
13	Continuous pressurized extraction versus electric fields-assisted extraction of cyanobacterial pigments. Journal of Biotechnology, 2021, 334, 35-42.	3.8	12
14	Extraction of Pigments from Microalgae and Cyanobacteria—A Review on Current Methodologies. Applied Sciences (Switzerland), 2021, 11, 5187.	2.5	39
15	Algal proteins: Production strategies and nutritional and functional properties. Bioresource Technology, 2021, 332, 125125.	9.6	90
16	Influence of ohmic heating on the structural and immunoreactive properties of soybean proteins. LWT - Food Science and Technology, 2021, 148, 111710.	5.2	23
17	Influence of ohmic heating in the composition of extracts from Gracilaria vermiculophylla. Algal Research, 2021, 58, 102360.	4.6	19
18	Unraveling the nature of ohmic heating effects in structural aspects of whey proteins – The impact of electrical and electrochemical effects. Innovative Food Science and Emerging Technologies, 2021, 74, 102831.	5.6	11

RICARDO N PEREIRA

#	Article	IF	CITATIONS
19	Emergent Proteins-Based Structures—Prospects towards Sustainable Nutrition and Functionality. Gels, 2021, 7, 161.	4.5	5
20	Multi-step thermally induced transitions of β-lactoglobulin – An in situ spectroscopy approach. International Dairy Journal, 2020, 100, 104562.	3.0	6
21	Influence of moderate electric fields in β-lactoglobulin thermal unfolding and interactions. Food Chemistry, 2020, 304, 125442.	8.2	36
22	Electrosprayed whey protein-based nanocapsules for β-carotene encapsulation. Food Chemistry, 2020, 314, 126157.	8.2	36
23	Effects of moderate electric fields on cold-set gelation of whey proteins – From molecular interactions to functional properties. Food Hydrocolloids, 2020, 101, 105505.	10.7	38
24	Using Ohmic Heating effect on grape skins as a pretreatment for anthocyanins extraction. Food and Bioproducts Processing, 2020, 124, 320-328.	3.6	36
25	The use of emergent technologies to extract added value compounds from grape by-products. Trends in Food Science and Technology, 2020, 106, 182-197.	15.1	49
26	Electric field effects on proteins – Novel perspectives on food and potential health implications. Food Research International, 2020, 137, 109709.	6.2	30
27	Effects of ohmic heating on the immunoreactivity of β-lactoglobulin – a relationship towards structural aspects. Food and Function, 2020, 11, 4002-4013.	4.6	26
28	Ohmic heating as an innovative approach for the production of keratin films. International Journal of Biological Macromolecules, 2020, 150, 671-680.	7.5	21
29	Ohmic heating polyphenolic extracts from vine pruning residue with enhanced biological activity. Food Chemistry, 2020, 316, 126298.	8.2	53
30	Emergent food proteins – Towards sustainability, health and innovation. Food Research International, 2019, 125, 108586.	6.2	141
31	Extraction of tomato by-products' bioactive compounds using ohmic technology. Food and Bioproducts Processing, 2019, 117, 329-339.	3.6	86
32	Nanostructures of whey proteins for encapsulation of food ingredients. , 2019, , 69-100.		3
33	Moderate Electric Fields as a Potential Tool for Sustainable Recovery of Phenolic Compounds from <i>Pinus pinaster</i> Bark. ACS Sustainable Chemistry and Engineering, 2019, 7, 8816-8826.	6.7	49
34	Bioactive compounds recovery optimization from vine pruning residues using conventional heating and microwave-assisted extraction methods. Industrial Crops and Products, 2019, 132, 99-110.	5.2	59
35	Protein-Based Nanostructures for Food Applications. Gels, 2019, 5, 9.	4.5	33

Ohmic heating for preservation, transformation, and extraction. , 2019, , 159-191.

RICARDO N PEREIRA

#	Article	IF	CITATIONS
37	Effect of Ohmic heating on functionality of sodium caseinate – A relationship with protein gelation. Food Research International, 2019, 116, 628-636.	6.2	34
38	Electric field effects on β-lactoglobulin thermal unfolding as a function of pH – Impact on protein functionality. Innovative Food Science and Emerging Technologies, 2019, 52, 1-7.	5.6	42
39	New Insights on Bio-Based Micro- and Nanosystems in Food. , 2019, , 708-714.		4
40	Food Structure Development/Production Through Flexible Processes: The Use of Electric Fields to Enable Food Manufacturing. Food Chemistry, Function and Analysis, 2019, , 422-438.	0.2	1
41	Electric field-based technologies for valorization of bioresources. Bioresource Technology, 2018, 254, 325-339.	9.6	108
42	Ohmic heating for the dairy industry: a potential technology to develop probiotic dairy foods in association with modifications of whey protein structure. Current Opinion in Food Science, 2018, 22, 95-101.	8.0	57
43	Antioxidant Compounds Recovery from Juçara Residue by Thermal Assisted Extraction. Plant Foods for Human Nutrition, 2018, 73, 68-73.	3.2	16
44	Cold gel-like emulsions of lactoferrin subjected to ohmic heating. Food Research International, 2018, 103, 371-379.	6.2	35
45	Electric Field Processing: Novel Perspectives on Allergenicity of Milk Proteins. Journal of Agricultural and Food Chemistry, 2018, 66, 11227-11233.	5.2	26
46	Electrotechnologies applied to microalgal biotechnology – Applications, techniques and future trends. Renewable and Sustainable Energy Reviews, 2018, 94, 656-668.	16.4	80
47	Bio-Based Nanocomposites for Food Packaging and Their Effect in Food Quality and Safety. , 2018, , 271-306.		16
48	Design of whey protein nanostructures for incorporation and release of nutraceutical compounds in food. Critical Reviews in Food Science and Nutrition, 2017, 57, 1377-1393.	10.3	83
49	Development of iron-rich whey protein hydrogels following application of ohmic heating – Effects of moderate electric fields. Food Research International, 2017, 99, 435-443.	6.2	39
50	Assessment of synergistic interactions between environmental factors on Microcystis aeruginosa growth and microcystin production. Algal Research, 2017, 27, 235-243.	4.6	17
51	Effect of moderate electric fields in the properties of starch and chitosan films reinforced with microcrystalline cellulose. Carbohydrate Polymers, 2017, 174, 1181-1191.	10.2	44
52	Whey and Whey Powders: Production and Uses. , 2016, , 498-505.		31
53	Effects of ohmic heating on extraction of food-grade phytochemicals from colored potato. LWT - Food Science and Technology, 2016, 74, 493-503.	5.2	93
54	InÂvitro digestion and stability assessment of β-lactoglobulin/riboflavin nanostructures. Food Hydrocolloids, 2016, 58, 89-97.	10.7	50

RICARDO N PEREIRA

#	Article	IF	CITATIONS
55	Design of bio-based supramolecular structures through self-assembly of α-lactalbumin and lysozyme. Food Hydrocolloids, 2016, 58, 60-74.	10.7	19
56	Production of Whey Protein-Based Aggregates Under Ohmic Heating. Food and Bioprocess Technology, 2016, 9, 576-587.	4.7	63
57	Development and characterization of lactoferrin-GMP nanohydrogels: Evaluation of pH, ionic strength and temperature effect. Food Hydrocolloids, 2015, 48, 292-300.	10.7	58
58	Development of polyhydroxyalkanoate/beer spent grain fibers composites for film blowing applications. Polymer Composites, 2015, 36, 1859-1865.	4.6	50
59	Influence of moderate electric fields on gelation of whey protein isolate. Food Hydrocolloids, 2015, 43, 329-339.	10.7	82
60	Physical effects upon whey protein aggregation for nano-coating production. Food Research International, 2014, 66, 344-355.	6.2	66
61	Quantification of metal release from stainless steel electrodes during conventional and pulsed ohmic heating. Innovative Food Science and Emerging Technologies, 2014, 21, 66-73.	5.6	51
62	Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocolloids, 2013, 30, 110-122.	10.7	360
63	Exploring the Denaturation of Whey Proteins upon Application of Moderate Electric Fields: A Kinetic and Thermodynamic Study. Journal of Agricultural and Food Chemistry, 2011, 59, 11589-11597.	5.2	54
64	Moderate electric fields can inactivate Escherichia coli at room temperature. Journal of Food Engineering, 2010, 96, 520-527.	5.2	67
65	Environmental impact of novel thermal and non-thermal technologies in food processing. Food Research International, 2010, 43, 1936-1943.	6.2	433
66	Effects of Electric Fields on Protein Unfolding and Aggregation: Influence on Edible Films Formation. Biomacromolecules, 2010, 11, 2912-2918.	5.4	137
67	Effects of Pulsed Electric Field on the Viscoelastic Properties of Potato Tissue. Food Biophysics, 2009, 4, 229-239.	3.0	34
68	Goat Milk Free Fatty Acid Characterization During Conventional and Ohmic Heating Pasteurization. Journal of Dairy Science, 2008, 91, 2925-2937.	3.4	49
69	Enhanced Gasâ~'Liquid Mass Transfer of an Oscillatory Constricted-Tubular Reactor. Industrial & Engineering Chemistry Research, 2008, 47, 7190-7201.	3.7	28
70	Comparison of chemical properties of food products processed by conventional and ohmic heating. Chemical Papers, 2007, 61, .	2.2	8
71	Death kinetics of Escherichia coli in goat milk and Bacillus licheniformis in cloudberry jam treated by ohmic heating. Chemical Papers, 2007, 61, .	2.2	59
72	CASEINATO DE SÓDIO COMO CHAPERONA DAS PROTEÃNAS DO SORO DO LEITE SOB AQUECIMENTO ÔHMICO. , 0, , .		0