Yushi Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7924376/publications.pdf

Version: 2024-02-01

		933447	996975	
15	275	10	15	
papers	citations	h-index	g-index	
15	15	15	339	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Brassinosteroids modulate nitrogen physiological response and promote nitrogen uptake in maize (Zea mays L.). Crop Journal, 2022, 10, 166-176.	5.2	19
2	Fertilizer stabilizers reduce nitrous oxide emissions from agricultural soil by targeting microbial nitrogen transformations. Science of the Total Environment, 2022, 806, 151225.	8.0	11
3	Nitrification inhibitor 3,4â€dimethylpyrazole phosphate (<scp>DMPP</scp>) reduces <scp>N₂O</scp> emissions by altering the soil microbial community in a wheat–maize rotation on the North China Plain. European Journal of Soil Science, 2021, 72, 1270-1291.	3.9	10
4	Efficient carbon recycling and modulation of antioxidants involved in elongation of the parasitic plant dodder (Cuscuta spp.) in vitro. Plant Science, 2021, 303, 110770.	3.6	2
5	A (conditional) role for labdaneâ€related diterpenoid natural products in rice stomatal closure. New Phytologist, 2021, 230, 698-709.	7.3	18
6	Coronatine Modulated the Generation of Reactive Oxygen Species for Regulating the Water Loss Rate in the Detaching Maize Seedlings. Agriculture (Switzerland), 2021, 11, 685.	3.1	7
7	Glycine Betaine-Mediated Root Priming Improves Water Stress Tolerance in Wheat (Triticum aestivum) Tj ETQq1 I	1 <u>9.7</u> 8431	4 ₇ gBT /Over
8	Ethephon Reduces Maize Nitrogen Uptake but Improves Nitrogen Utilization in Zea mays L Frontiers in Plant Science, 2021, 12, 762736.	3.6	5
9	Ethephon-regulated maize internode elongation associated with modulating auxin and gibberellin signal to alter cell wall biosynthesis and modification. Plant Science, 2020, 290, 110196.	3.6	35
10	Copalyl Diphosphate Synthase Mutation Improved Salt Tolerance in Maize (Zea mays. L) via Enhancing Vacuolar Na+ Sequestration and Maintaining ROS Homeostasis. Frontiers in Plant Science, 2020, 11 , 457.	3.6	11
11	The Role of Gibberellins in Regulation of Nitrogen Uptake and Physiological Traits in Maize Responding to Nitrogen Availability. International Journal of Molecular Sciences, 2020, 21, 1824.	4.1	23
12	Introducing selective agrochemical manipulation of gibberellin metabolism into a cereal crop. Nature Plants, 2020, 6, 67-72.	9.3	17
13	Ethephon Improved Stalk Strength of Maize (Zea Mays L.) Mainly through Altering Internode Morphological Traits to Modulate Mechanical Properties under Field Conditions. Agronomy, 2019, 9, 186.	3.0	15
14	Ethephon improved drought tolerance in maize seedlings by modulating cuticular wax biosynthesis and membrane stability. Journal of Plant Physiology, 2017, 214, 123-133.	3.5	27
15	Increased abscisic acid levels in transgenic maize overexpressing <i>AtLOS5 </i> mediated root ion fluxes and leaf water status under salt stress. Journal of Experimental Botany, 2016, 67, 1339-1355.	4.8	68