Magdalena Götz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7924027/publications.pdf

Version: 2024-02-01

202 papers 28,757 citations

88 h-index 162 g-index

210 all docs

210 docs citations

times ranked

210

24659 citing authors

#	Article	IF	Citations
1	Direct neuronal reprogramming: Fast forward from new concepts toward therapeutic approaches. Neuron, 2022, 110, 366-393.	3.8	45
2	Innate Immune Pathways Promote Oligodendrocyte Progenitor Cell Recruitment to the Injury Site in Adult Zebrafish Brain. Cells, 2022, 11, 520.	1.8	4
3	Parkinson's disease motor symptoms rescue by CRISPRaâ€reprogramming astrocytes into GABAergic neurons. EMBO Molecular Medicine, 2022, 14, e14797.	3.3	26
4	The extracellular matrix molecule tenascin-C modulates cell cycle progression and motility of adult neural stem/progenitor cells from the subependymal zone. Cellular and Molecular Life Sciences, 2022, 79, 244.	2.4	8
5	Molecular Signature of Astrocytes for Gene Delivery by the Synthetic Adenoâ€Associated Viral Vector rAAV9P1. Advanced Science, 2022, 9, e2104979.	5.6	7
6	Spatial centrosome proteome of human neural cells uncovers disease-relevant heterogeneity. Science, 2022, 376, .	6.0	25
7	Excessive local host-graft connectivity in aging and amyloid-loaded brain. Science Advances, 2022, 8, .	4.7	5
8	Centrosome heterogeneity in stem cells regulates cell diversity. Trends in Cell Biology, 2022, 32, 707-719.	3.6	6
9	Brain injury environment critically influences the connectivity of transplanted neurons. Science Advances, 2022, 8, .	4.7	12
10	Repetitive injury and absence of monocytes promote astrocyte selfâ€renewal and neurological recovery. Glia, 2021, 69, 165-181.	2.5	9
11	CRISPR-Mediated Induction of Neuron-Enriched Mitochondrial Proteins Boosts Direct Glia-to-Neuron Conversion. Cell Stem Cell, 2021, 28, 524-534.e7.	5.2	39
12	Epigenetic regulation of neural lineage elaboration: Implications for therapeutic reprogramming. Neurobiology of Disease, 2021, 148, 105174.	2.1	8
13	Heterogeneity of astrocytes: Electrophysiological properties of juxtavascular astrocytes before and after brain injury. Glia, 2021, 69, 346-361.	2.5	19
14	The regulation of cortical neurogenesis. Current Topics in Developmental Biology, 2021, 142, 1-66.	1.0	39
15	Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, 2021, 24, 312-325.	7.1	1,098
16	Adult neural stem cell activation in mice is regulated by the day/night cycle and intracellular calcium dynamics. Cell, 2021, 184, 709-722.e13.	13.5	54
17	Brain gray matter astroglia-specific connexin 43 ablation attenuates spinal cord inflammatory demyelination. Journal of Neuroinflammation, 2021, 18, 126.	3.1	8
18	Non-codon Optimized PiggyBac Transposase Induces Developmental Brain Aberrations: A Call for in vivo Analysis. Frontiers in Cell and Developmental Biology, 2021, 9, 698002.	1.8	2

#	Article	IF	CITATIONS
19	Neuronal replacement: Concepts, achievements, and call for caution. Current Opinion in Neurobiology, 2021, 69, 185-192.	2.0	17
20	Editorial overview: Fluidity of cell fates – from reprogramming to repair. Current Opinion in Genetics and Development, 2021, 70, iii-v.	1.5	0
21	Molecular diversity of diencephalic astrocytes reveals adult astrogenesis regulated by Smad4. EMBO Journal, 2021, 40, e107532.	3.5	26
22	Cryo-section Dissection of the Adult Subependymal Zone for Accurate and Deep Quantitative Proteome Analysis. Journal of Visualized Experiments, 2021, , .	0.2	2
23	Filling the Gaps – A Call for Comprehensive Analysis of Extracellular Matrix of the Glial Scar in Region- and Injury-Specific Contexts. Frontiers in Cellular Neuroscience, 2020, 14, 32.	1.8	12
24	Defining the Adult Neural Stem Cell Niche Proteome Identifies Key Regulators of Adult Neurogenesis. Cell Stem Cell, 2020, 26, 277-293.e8.	5.2	109
25	Trnp1 organizes diverse nuclear membraneâ€less compartments in neural stem cells. EMBO Journal, 2020, 39, e103373.	3.5	16
26	Cystatin B is essential for proliferation and interneuron migration in individuals with <scp>EPM</scp> 1 epilepsy. EMBO Molecular Medicine, 2020, 12, e11419.	3.3	32
27	Choroid plexusâ€derived miRâ€204 regulates the number of quiescent neural stem cells in the adult brain. EMBO Journal, 2019, 38, e100481.	3.5	52
28	Inducing Different Neuronal Subtypes from Astrocytes in the Injured Mouse Cerebral Cortex. Neuron, 2019, 103, 1086-1095.e5.	3.8	106
29	Targeted removal of epigenetic barriers during transcriptional reprogramming. Nature Communications, 2019, 10, 2119.	5.8	58
30	Altered neuronal migratory trajectories in human cerebral organoids derived from individuals with neuronal heterotopia. Nature Medicine, 2019, 25, 561-568.	15.2	135
31	The centrosome protein AKNA regulates neurogenesis via microtubule organization. Nature, 2019, 567, 113-117.	13.7	67
32	Influence of white matter injury on gray matter reactive gliosis upon stab wound in the adult murine cerebral cortex. Glia, 2018, 66, 1644-1662.	2.5	24
33	Cortical progenitor biology: key features mediating proliferation versus differentiation. Journal of Neurochemistry, 2018, 146, 500-525.	2.1	77
34	Crossâ€ŧalk between monocyte invasion and astrocyte proliferation regulates scarring in brain injury. EMBO Reports, 2018, 19, .	2.0	98
35	Revising concepts about adult stem cells. Science, 2018, 359, 639-640.	6.0	7
36	A Primate-Specific Isoform of PLEKHG6 Regulates Neurogenesis and Neuronal Migration. Cell Reports, 2018, 25, 2729-2741.e6.	2.9	43

#	Article	IF	CITATIONS
37	Epithelial Sodium Channel Regulates Adult Neural Stem Cell Proliferation in a Flow-Dependent Manner. Cell Stem Cell, 2018, 22, 865-878.e8.	5.2	81
38	New approaches for brain repair—from rescue to reprogramming. Nature, 2018, 557, 329-334.	13.7	167
39	One step generation of customizable gRNA vectors for multiplex CRISPR approaches through string assembly gRNA cloning (STAgR). PLoS ONE, 2018, 13, e0196015.	1.1	27
40	Mob2 Insufficiency Disrupts Neuronal Migration in the Developing Cortex. Frontiers in Cellular Neuroscience, 2018, 12, 57.	1.8	23
41	DNA-Methylation: Master or Slave of Neural Fate Decisions?. Frontiers in Neuroscience, 2018, 12, 5.	1.4	59
42	Cell tracking $\langle i \rangle$ in vitro $\langle i \rangle$ reveals that the extracellular matrix glycoprotein Tenascin-C modulates cell cycle length and differentiation in neural stem/progenitor cells of the developing mouse spinal cord. Biology Open, 2018, 7, .	0.6	13
43	Understanding direct neuronal reprogramming â€" from pioneer factors to 3D chromatin. Current Opinion in Genetics and Development, 2018, 52, 65-69.	1.5	8
44	Direct pericyte-to-neuron reprogramming via unfolding of a neural stem cell-like program. Nature Neuroscience, 2018, 21, 932-940.	7.1	93
45	Time-Specific Effects of Spindle Positioning on Embryonic Progenitor Pool Composition and Adult Neural Stem Cell Seeding. Neuron, 2017, 93, 777-791.e3.	3.8	36
46	Transient CREB-mediated transcription is key in direct neuronal reprogramming. Neurogenesis (Austin,) Tj ETQq0	0 0 rgBT 1.5	/Oyerlock 10
47	Changes in the Proliferative Program Limit Astrocyte Homeostasis in the Aged Post-Traumatic Murine Cerebral Cortex. Cerebral Cortex, 2017, 27, 4213-4228.	1.6	17
48	Brain repair from intrinsic cell sources. Progress in Brain Research, 2017, 230, 69-97.	0.9	42
49	Respiration-Deficient Astrocytes Survive As Glycolytic Cells <i>In Vivo</i> . Journal of Neuroscience, 2017, 37, 4231-4242.	1.7	97
50	Neuronal replacement therapy: previous achievements and challenges ahead. Npj Regenerative Medicine, 2017, 2, 29.	2.5	92
51	Programming and reprogramming the brain: a meeting of minds in neural fate. Development (Cambridge), 2017, 144, 2714-2718.	1.2	4
52	Glial control of neurogenesis. Current Opinion in Neurobiology, 2017, 47, 188-195.	2.0	93
53	Direct Neuronal Reprogramming: Achievements, Hurdles, and New Roads to Success. Cell Stem Cell, 2017, 21, 18-34.	5.2	147
54	Neurogenesis in the Developing and Adult Brainâ€"Similarities and Key Differences. Cold Spring Harbor Perspectives in Biology, 2016, 8, a018853.	2.3	120

#	Article	IF	CITATIONS
55	Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability. Cell, 2016, 166, 867-880.	13.5	382
56	CORALINA: a universal method for the generation of gRNA libraries for CRISPR-based screening. BMC Genomics, 2016, 17, 917.	1.2	16
57	Direct neuronal reprogramming: learning from and for development. Development (Cambridge), 2016, 143, 2494-2510.	1.2	112
58	Transplanted embryonic neurons integrate into adult neocortical circuits. Nature, 2016, 539, 248-253.	13.7	130
59	A restricted period for formation of outer subventricular zone defined by Cdh1 and Trnp1 levels. Nature Communications, 2016, 7, 11812.	5.8	108
60	Single-cell in vivo imaging of adult neural stem cells in the zebrafish telencephalon. Nature Protocols, 2016, 11, 1360-1370.	5.5	15
61	Identification and Successful Negotiation of a Metabolic Checkpoint in Direct Neuronal Reprogramming. Cell Stem Cell, 2016, 18, 396-409.	5.2	307
62	Functional dissection of the Pax6 paired domain: Roles in neural tube patterning and peripheral nervous system development. Developmental Biology, 2016, 413, 86-103.	0.9	9
63	Reactive astrocytes as neural stem or progenitor cells: In vivo lineage, In vitro potential, and Genomeâ€wide expression analysis. Glia, 2015, 63, 1452-1468.	2.5	215
64	Astrocyte reactivity after brain injury—: The role of galectins 1 and 3. Glia, 2015, 63, 2340-2361.	2.5	107
65	Glial stem and progenitor cells shape the brain—in ontogeny, phylogeny, and disease. Glia, 2015, 63, 1288-1290.	2.5	0
66	Wnt/ \hat{l}^2 -Catenin Signaling Regulates Sequential Fate Decisions of Murine Cortical Precursor Cells. Stem Cells, 2015, 33, 170-182.	1.4	59
67	Astroglial Glutamate Transporter Deficiency Increases Synaptic Excitability and Leads to Pathological Repetitive Behaviors in Mice. Neuropsychopharmacology, 2015, 40, 1569-1579.	2.8	126
68	A Critical Period for Experience-Dependent Remodeling of Adult-Born Neuron Connectivity. Neuron, 2015, 85, 710-717.	3.8	176
69	Fast clonal expansion and limited neural stem cell self-renewal in the adult subependymal zone. Nature Neuroscience, 2015, 18, 490-492.	7.1	160
70	Transcriptional Mechanisms of Proneural Factors and REST in Regulating Neuronal Reprogramming of Astrocytes. Cell Stem Cell, 2015, 17, 74-88.	5.2	187
71	Live imaging of adult neural stem cell behavior in the intact and injured zebrafish brain. Science, 2015, 348, 789-793.	6.0	156
72	Mcidas and GemC1/Lynkeas are key regulators for the generation of multiciliated ependymal cells in the adult neurogenic niche. Development (Cambridge), 2015, 142, 3661-74.	1.2	91

#	Article	IF	CITATIONS
73	How to make neuronsâ€"thoughts on the molecular logic of neurogenesis in the central nervous system. Cell and Tissue Research, 2015, 359, 5-16.	1.5	13
74	The role of α-E-catenin in cerebral cortex development: radial glia specific effect on neuronal migration. Frontiers in Cellular Neuroscience, 2014, 8, 215.	1.8	29
75	Sox2-Mediated Conversion of NG2 Glia into Induced Neurons in the Injured Adult Cerebral Cortex. Stem Cell Reports, 2014, 3, 1000-1014.	2.3	274
76	Role of radial glial cells in cerebral cortex folding. Current Opinion in Neurobiology, 2014, 27, 39-46.	2.0	194
77	InÂVivo Targeting of Adult Neural Stem Cells in the Dentate Gyrus byÂaÂSplit-Cre Approach. Stem Cell Reports, 2014, 2, 153-162.	2.3	35
78	Meis2 is a Pax6 co-factor in neurogenesis and dopaminergic periglomerular fate specification in the adult olfactory bulb. Development (Cambridge), 2014, 141, 28-38.	1.2	99
79	The Cell Biology of Neurogenesis: Toward an Understanding of the Development and Evolution of the Neocortex. Annual Review of Cell and Developmental Biology, 2014, 30, 465-502.	4.0	616
80	A Time and Place for Understanding Neural Stem Cell Specification. Developmental Cell, 2014, 30, 114-115.	3.1	3
81	Glial Cells as Progenitors and Stem Cells: New Roles in the Healthy and Diseased Brain. Physiological Reviews, 2014, 94, 709-737.	13.1	214
82	The BAF Complex Interacts with Pax6 in Adult Neural Progenitors to Establish a Neurogenic Cross-Regulatory Transcriptional Network. Cell Stem Cell, 2013, 13, 403-418.	5.2	196
83	Amplification of progenitors in the mammalian telencephalon includes a new radial glial cell type. Nature Communications, 2013, 4, 2125.	5.8	178
84	Radial glia – from boring cables to stem cell stars. Development (Cambridge), 2013, 140, 483-486.	1.2	68
85	Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain. Nature Neuroscience, 2013, 16, 1370-1372.	7.1	181
86	Mutations in genes encoding the cadherin receptor-ligand pair DCHS1 and FAT4 disrupt cerebral cortical development. Nature Genetics, 2013, 45, 1300-1308.	9.4	247
87	Fate specification in the adult brain – lessons for eliciting neurogenesis from glial cells. BioEssays, 2013, 35, 242-252.	1.2	41
88	Functional dissection of the paired domain of Pax6 reveals molecular mechanisms of coordinating neurogenesis and proliferation. Development (Cambridge), 2013, 140, 1123-1136.	1.2	67
89	The transcription factor Otx2 regulates choroid plexus development and function. Development (Cambridge), 2013, 140, 1055-1066.	1.2	109
90	Dynamic changes in myelin aberrations and oligodendrocyte generation in chronic amyloidosis in mice and men. Glia, 2013, 61, 273-286.	2.5	155

#	Article	IF	Citations
91	Trnp1 Regulates Expansion and Folding of the Mammalian Cerebral Cortex by Control of Radial Glial Fate. Cell, 2013, 153, 535-549.	13.5	238
92	Reactive Glia in the Injured Brain Acquire Stem Cell Properties in Response to Sonic Hedgehog. Cell Stem Cell, 2013, 12, 426-439.	5.2	332
93	Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nature Neuroscience, 2013, 16, 580-586.	7.1	340
94	<i>In vivo</i> contribution of nestin―and GLASTâ€ineage cells to adult hippocampal neurogenesis. Hippocampus, 2013, 23, 708-719.	0.9	101
95	Potential of Glial Cells., 2013,, 347-361.		4
96	Radial Glial Cells., 2013,,.		8
97	Pax6 Interactions with Chromatin and Identification of Its Novel Direct Target Genes in Lens and Forebrain. PLoS ONE, 2013, 8, e54507.	1.1	72
98	Wnt Signaling Has Opposing Roles in the Developing and the Adult Brain That Are Modulated by Hipk1. Cerebral Cortex, 2012, 22, 2415-2427.	1.6	35
99	Shaping barrels: activity moves NG2+ glia. Nature Neuroscience, 2012, 15, 1176-1178.	7.1	6
100	Long-term genetic fate mapping of adult generated neurons in a mouse temporal lobe epilepsy model. Neurobiology of Disease, 2012, 48, 454-463.	2.1	11
101	Reprogramming of Postnatal Astroglia of the Mouse Neocortex into Functional, Synapse-Forming Neurons. Methods in Molecular Biology, 2012, 814, 485-498.	0.4	23
102	A Radial Glia-Specific Role of RhoA in Double Cortex Formation. Neuron, 2012, 73, 911-924.	3.8	157
103	Direct visualization of cell division using high-resolution imaging of M-phase of the cell cycle. Nature Communications, 2012, 3, 1076.	5.8	92
104	Reprogramming of Pericyte-Derived Cells of the Adult Human Brain into Induced Neuronal Cells. Cell Stem Cell, 2012, 11, 471-476.	5.2	282
105	Bergmann Glial AMPA Receptors Are Required for Fine Motor Coordination. Science, 2012, 337, 749-753.	6.0	191
106	Sox10â€iCreER ^{T2} : A mouse line to inducibly trace the neural crest and oligodendrocyte lineage. Genesis, 2012, 50, 506-515.	0.8	82
107	Stab wound injury of the zebrafish telencephalon: A model for comparative analysis of reactive gliosis. Glia, 2012, 60, 343-357.	2.5	189
108	Continuous live imaging of adult neural stem cell division and lineage progression in vitro. Development (Cambridge), 2011, 138, 1057-1068.	1.2	139

#	Article	IF	CITATIONS
109	Using an adherent cell culture of the mouse subependymal zone to study the behavior of adult neural stem cells on a single-cell level. Nature Protocols, 2011, 6, 1847-1859.	5.5	43
110	Prospective isolation of adult neural stem cells from the mouse subependymal zone. Nature Protocols, 2011, 6, 1981-1989.	5.5	58
111	Restrictions in time and space – new insights into generation of specific neuronal subtypes in the adult mammalian brain. European Journal of Neuroscience, 2011, 33, 1045-1054.	1.2	35
112	Generation of subtype-specific neurons from postnatal astroglia of the mouse cerebral cortex. Nature Protocols, 2011, 6, 214-228.	5 . 5	126
113	The stem cell potential of glia: lessons from reactive gliosis. Nature Reviews Neuroscience, 2011, 12, 88-104.	4.9	480
114	EGF induces CREB and ERK activation at the wall of the mouse lateral ventricles. Brain Research, 2011, 1376, 31-41.	1.1	22
115	Sequential generation of olfactory bulb glutamatergic neurons by Neurog2-expressing precursor cells. Neural Development, 2011, 6, 12.	1.1	66
116	Progenitors in the adult cerebral cortex: Cell cycle properties and regulation by physiological stimuli and injury. Glia, 2011, 59, 869-881.	2.5	262
117	Clonal analysis by distinct viral vectors identifies bona fide neural stem cells in the adult zebrafish telencephalon and characterizes their division properties and fate. Development (Cambridge), 2011, 138, 1459-1469.	1.2	170
118	The role of Pax6 in regulating the orientation and mode of cell division of progenitors in the mouse cerebral cortex. Development (Cambridge), 2011, 138, 5067-5078.	1.2	94
119	Neuronal Network Formation from Reprogrammed Early Postnatal Rat Cortical Glial Cells. Cerebral Cortex, 2011, 21, 413-424.	1.6	43
120	Genetic Deletion of <i> Cdc42 < /i > Reveals a Crucial Role for Astrocyte Recruitment to the Injury Site <i> In Vitro < /i > and <i> In Vivo < /i > . Journal of Neuroscience, 2011, 31, 12471-12482.</i></i></i>	1.7	77
121	Stem cells niches during development—lessons from the cerebral cortex. Current Opinion in Neurobiology, 2010, 20, 400-407.	2.0	44
122	What determines neurogenic competence in glia?. Brain Research Reviews, 2010, 63, 47-59.	9.1	68
123	Chondroitin Sulfates Are Required for Fibroblast Growth Factor-2-Dependent Proliferation and Maintenance in Neural Stem Cells and for Epidermal Growth Factor-Dependent Migration of Their Progeny. Stem Cells, 2010, 28, 775-787.	1.4	107
124	Making glutamatergic neurons from GABAergic progenitors. Nature Neuroscience, 2010, 13, 1308-1309.	7.1	2
125	The specific role of histone deacetylase 2 in adult neurogenesis. Neuron Glia Biology, 2010, 6, 93-107.	2.0	98
126	LRP2 in ependymal cells regulates BMP signaling in the adult neurogenic niche. Journal of Cell Science, 2010, 123, 1922-1930.	1,2	131

#	Article	IF	CITATIONS
127	Modulation of Fate Determinants Olig2 and Pax6 in Resident Glia Evokes Spiking Neuroblasts in a Model of Mild Brain Ischemia. Stroke, 2010, 41, 2944-2949.	1.0	46
128	Directing Astroglia from the Cerebral Cortex into Subtype Specific Functional Neurons. PLoS Biology, 2010, 8, e1000373.	2.6	447
129	The Transcription Factor Pax6 Regulates Survival of Dopaminergic Olfactory Bulb Neurons via Crystallin αA. Neuron, 2010, 68, 682-694.	3.8	98
130	Signaling through BMPR-IA Regulates Quiescence and Long-Term Activity of Neural Stem Cells in the Adult Hippocampus. Cell Stem Cell, 2010, 7, 78-89.	5.2	417
131	In Vivo Fate Mapping and Expression Analysis Reveals Molecular Hallmarks of Prospectively Isolated Adult Neural Stem Cells. Cell Stem Cell, 2010, 7, 744-758.	5.2	337
132	Vasculature Guides Migrating Neuronal Precursors in the Adult Mammalian Forebrain via Brain-Derived Neurotrophic Factor Signaling. Journal of Neuroscience, 2009, 29, 4172-4188.	1.7	310
133	Late Origin of Glia-Restricted Progenitors in the Developing Mouse Cerebral Cortex. Cerebral Cortex, 2009, 19, i135-i143.	1.6	70
134	Conditional deletion of β1â€integrin in astroglia causes partial reactive gliosis. Glia, 2009, 57, 1630-1647.	2.5	103
135	AP2 \hat{l}^3 regulates basal progenitor fate in a region- and layer-specific manner in the developing cortex. Nature Neuroscience, 2009, 12, 1229-1237.	7.1	101
136	Adult generation of glutamatergic olfactory bulb interneurons. Nature Neuroscience, 2009, 12, 1524-1533.	7.1	325
137	ldentification of midbrain floor plate radial gliaâ€like cells as dopaminergic progenitors. Glia, 2008, 56, 809-820.	2.5	119
138	Prospective isolation of functionally distinct radial glial subtypesâ€"Lineage and transcriptome analysis. Molecular and Cellular Neurosciences, 2008, 38, 15-42.	1.0	87
139	Brain Area-Specific Effect of TGF-β Signaling on Wnt-Dependent Neural Stem Cell Expansion. Cell Stem Cell, 2008, 2, 472-483.	5.2	123
140	Adult Neurogenesis Requires Smad4-Mediated Bone Morphogenic Protein Signaling in Stem Cells. Journal of Neuroscience, 2008, 28, 434-446.	1.7	228
141	Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3581-3586.	3.3	690
142	A Dlx2- and Pax6-Dependent Transcriptional Code for Periglomerular Neuron Specification in the Adult Olfactory Bulb. Journal of Neuroscience, 2008, 28, 6439-6452.	1.7	185
143	Progeny of Olig2-Expressing Progenitors in the Gray and White Matter of the Adult Mouse Cerebral Cortex. Journal of Neuroscience, 2008, 28, 10434-10442.	1.7	460
144	Deletion of TrkB in adult progenitors alters newborn neuron integration into hippocampal circuits and increases anxiety-like behavior. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15570-15575.	3.3	350

#	Article	IF	Citations
145	Par-complex proteins promote proliferative progenitor divisions in the developing mouse cerebral cortex. Development (Cambridge), 2008, 135, 11-22.	1.2	188
146	Glial Cells as the Source of Neurons and Glia in the Developing and Adult CNS. Journal of Medical Sciences, 2008, 1, 114-128.	0.2	0
147	Chondroitin sulfate glycosaminoglycans control proliferation, radial glia cell differentiation and neurogenesis in neural stem/progenitor cells. Development (Cambridge), 2007, 134, 2727-2738.	1.2	181
148	The Marginal Zone/Layer I as a Novel Niche for Neurogenesis and Gliogenesis in Developing Cerebral Cortex. Journal of Neuroscience, 2007, 27, 11376-11388.	1.7	55
149	Distinct Modes of Neuron Addition in Adult Mouse Neurogenesis. Journal of Neuroscience, 2007, 27, 10906-10911.	1.7	226
150	Neurotrophin Receptor-Mediated Death of Misspecified Neurons Generated from Embryonic Stem Cells Lacking Pax6. Cell Stem Cell, 2007, 1, 529-540.	5.2	45
151	Radial glial cell heterogeneityâ€"The source of diverse progeny in the CNS. Progress in Neurobiology, 2007, 83, 2-23.	2.8	240
152	Loss- and gain-of-function analyses reveal targets of Pax6 in the developing mouse telencephalon. Molecular and Cellular Neurosciences, 2007, 34, 99-119.	1.0	119
153	Functional Properties of Neurons Derived from <i>In Vitro</i> Reprogrammed Postnatal Astroglia. Journal of Neuroscience, 2007, 27, 8654-8664.	1.7	344
154	Zac1 functions through TGFl^2II to negatively regulate cell number in the developing retina. Neural Development, 2007, 2, 11.	1.1	41
155	Directing neurotransmitter identity of neurones derived from expanded adult neural stem cells. European Journal of Neuroscience, 2007, 25, 2581-2590.	1.2	76
156	Signaling in adult neurogenesis: from stem cell niche to neuronal networks. Current Opinion in Neurobiology, 2007, 17, 338-344.	2.0	135
157	Go with the flow: signaling from the ventricle directs neuroblast migration. Nature Neuroscience, 2006, 9, 470-472.	7.1	13
158	Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon. Developmental Biology, 2006, 295, 278-293.	0.9	387
159	The transcription factors Emx1 and Emx2 suppress choroid plexus development and promote neuroepithelial cell fate. Developmental Biology, 2006, 296, 239-252.	0.9	28
160	The Role of Pax6 in the Nervous System during Development and in Adulthood: Master Control Regulator or Modular Function?., 2006,, 23-51.		1
161	The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface. Nature Neuroscience, 2006, 9, 1099-1107.	7.1	350
162	Inducible gene deletion in astroglia and radial glia-A valuable tool for functional and lineage analysis. Glia, 2006, 54, 21-34.	2.5	356

#	Article	IF	Citations
163	P-GAP-43 Is Enriched in Horizontal Cell Divisions throughout Rat Cortical Development. Cerebral Cortex, 2006, 16, i121-i131.	1.6	21
164	Basement membrane attachment is dispensable for radial glial cell fate and for proliferation, but affects positioning of neuronal subtypes. Development (Cambridge), 2006, 133, 3245-3254.	1.2	138
165	Neuronal fate determinants of adult olfactory bulb neurogenesis. Nature Neuroscience, 2005, 8, 865-872.	7.1	549
166	The cell biology of neurogenesis. Nature Reviews Molecular Cell Biology, 2005, 6, 777-788.	16.1	1,809
167	Expression pattern of the transcription factor Olig2 in response to brain injuries: Implications for neuronal repair. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18183-18188.	3.3	350
168	The Novel Roles of Glial Cells Revisited: The Contribution of Radial Glia and Astrocytes to Neurogenesis. Current Topics in Developmental Biology, 2005, 69, 67-99.	1.0	174
169	Cortical development: the art of generating cell diversity. Development (Cambridge), 2005, 132, 3327-3332.	1.2	27
170	Radial Glial Cells. Neuron, 2005, 46, 369-372.	3.8	261
171	Molecular dissection of Pax6 function: the specific roles of the paired domain and homeodomain in brain development. Development (Cambridge), 2004, 131, 6131-6140.	1.2	168
172	BM88 is an early marker of proliferating precursor cells that will differentiate into the neuronal lineage. European Journal of Neuroscience, 2004, 20, 2509-2523.	1.2	34
173	Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II-IV of the cerebral cortex. Journal of Comparative Neurology, 2004, 479, 168-180.	0.9	461
174	Radial glia diversity: A matter of cell fate. Glia, 2003, 43, 37-43.	2.5	307
175	Editorial: To be glial or not-how glial are the precursors of neurons in development and adulthood?. Glia, 2003, 43, 1-3.	2.5	17
176	Doublecortin finds its place. Nature Neuroscience, 2003, 6, 1245-1247.	7.1	11
177	Neuronal or Glial Progeny. Neuron, 2003, 37, 751-764.	3.8	677
178	Reelin signaling directly affects radial glia morphology and biochemical maturation. Development (Cambridge), 2003, 130, 4597-4609.	1.2	212
179	Glial Cells Generate Neuronsâ€"Master Control within CNS Regions: Developmental Perspectives on Neural Stem Cells. Neuroscientist, 2003, 9, 379-397.	2.6	55
180	Brain development: glial cells generate neurons – implications for neuropsychiatric disorders. , 2003, , 59-73.		0

#	Article	IF	CITATIONS
181	Expression of Ngn1, Ngn2, Cash1, Gsh2 and Sfrp1 in the developing chick telencephalon. Mechanisms of Development, 2002, 110, 249-252.	1.7	27
182	Radial glial cells as neuronal precursors: a new perspective on the correlation of morphology and lineage restriction in the developing cerebral cortex of mice. Brain Research Bulletin, 2002, 57, 777-788.	1.4	208
183	Radial glia: multi-purpose cells for vertebrate brain development. Trends in Neurosciences, 2002, 25, 235-238.	4.2	330
184	Glial cells generate neurons: the role of the transcription factor Pax6. Nature Neuroscience, 2002, 5, 308-315.	7.1	701
185	Characterization of CNS Precursor Subtypes and Radial Glia. Developmental Biology, 2001, 229, 15-30.	0.9	670
186	Emx2 Promotes Symmetric Cell Divisions and a Multipotential Fate in Precursors from the Cerebral Cortex. Molecular and Cellular Neurosciences, 2001, 18, 485-502.	1.0	105
187	Gliazellen bilden Nervenzellen - Radiale Glia als Stammzellen des ZNS von Vertebraten. E-Neuroforum, 2001, 7, 3-10.	0.2	0
188	PC3 overexpression affects the pattern of cell division of rat cortical precursors. Mechanisms of Development, 2000, 90, 17-28.	1.7	36
189	Pax6 Controls Radial Glia Differentiation in the Cerebral Cortex. Neuron, 1998, 21, 1031-1044.	3.8	633
190	Tenascin-C Synthesis and Influence on Axonal Growth During Rat Cortical Development. European Journal of Neuroscience, 1997, 9, 496-506.	1.2	85
191	Selective Adhesion of Cells from Different Telencephalic Regions. Neuron, 1996, 16, 551-564.	3.8	89
192	Dual Action of a Carbohydrate Epitope on Afferent and Efferent Axons in Cortical Development. Journal of Neuroscience, 1996, 16, 4195-4206.	1.7	29
193	Guidance of Thalamocortical Axons by Growth-promoting Molecules in Developing Rat Cerebral Cortex. European Journal of Neuroscience, 1995, 7, 1963-1972.	1.2	37
194	The Specification of Neuronal Fate: A Common Precursor for Neurotransmitter Subtypes in the Rat Cerebral Cortex In Vitro. European Journal of Neuroscience, 1995, 7, 889-898.	1.2	59
195	The Generation of Cellular Diversity in the Cerebral Cortex. Novartis Foundation Symposium, 1995, 193, 71-84.	1.2	3
196	Differentiation of Transmitter Phenotypes in Rat Cerebral Cortex. European Journal of Neuroscience, 1994, 6, 18-32.	1.2	57
197	Cell fate and axonal projections from the cerebral cortex. Seminars in Developmental Biology, 1994, 5, 359-369.	1.3	5
198	Reconstructing cortical connections in a dish. Trends in Neurosciences, 1993, 16, 310-316.	4.2	68

#	Article	IF	CITATIONS
199	Formation and preservation of cortical layers in slice cultures. Journal of Neurobiology, 1992, 23, 783-802.	3.7	84
200	Mechanisms to Establish Specific Thalamocortical Connections in the Developing Brain. , 1992, , 179-192.		7
201	Formation of target-specific neuronal projections in organotypic slice cultures from rat visual cortex. Nature, 1990, 346, 359-362.	13.7	205
202	Development of vasoactive intestinal polypeptide (VIP)-containing neurons in organotypic slice cultures from rat visual cortex. Neuroscience Letters, 1989, 107, 6-11.	1.0	24