Yansong Miao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7923969/publications.pdf

Version: 2024-02-01

60 3,243 papers citations

26 55
h-index g-index

67 67 all docs citations

67 times ranked 4408 citing authors

#	Article	IF	CITATIONS
1	Molecular condensation and mechanoregulation of plant class I formin, an integrinâ€like actin nucleator. FEBS Journal, 2023, 290, 3336-3354.	2.2	3
2	Membrane nanodomains modulate formin condensation for actin remodeling in Arabidopsis innate immune responses. Plant Cell, 2022, 34, 374-394.	3.1	31
3	Potentiation of plant defense by bacterial outer membrane vesicles is mediated by membrane nanodomains. Plant Cell, 2022, 34, 395-417.	3.1	26
4	The small GTPase RABA2a recruits SNARE proteins to regulate the secretory pathway in parallel with the exocyst complex in Arabidopsis. Molecular Plant, 2022, 15, 398-418.	3.9	20
5	A teamwork promotion of formin-mediated actin nucleation by Bud6 and Aip5 in <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 2022, 33, mbcE21060285.	0.9	2
6	Leaf morphogenesis: The multifaceted roles of mechanics. Molecular Plant, 2022, 15, 1098-1119.	3.9	15
7	Salicylic acid regulates <i>PIN2</i> auxin transporter hyperclustering and root gravitropic growth via <i>Remorin</i> â€dependent lipid nanodomain organisation in <i>Arabidopsis thaliana</i> Phytologist, 2021, 229, 963-978.	3.5	40
8	Polarisome assembly mediates actin remodeling during polarized yeast and fungal growth. Journal of Cell Science, 2021, 134, .	1.2	11
9	Structure of $\langle i \rangle$ Arabidopsis $\langle i \rangle$ CESA3 catalytic domain with its substrate UDP-glucose provides insight into the mechanism of cellulose synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	22
10	Formin nanoclustering-mediated actin assembly during plant flagellin and DSF signaling. Cell Reports, 2021, 34, 108884.	2.9	25
11	Xanthomonas effector XopR hijacks host actin cytoskeleton via complex coacervation. Nature Communications, 2021, 12, 4064.	5.8	34
12	Discovery, biosynthesis and antifungal mechanism of the polyene-polyol meijiemycin. Chemical Communications, 2020, 56, 822-825.	2.2	16
13	Review: F-Actin remodelling during plant signal transduction via biomolecular assembly. Plant Science, 2020, 301, 110663.	1.7	4
14	Orchestrated actin nucleation by the Candida albicans polarisome complex enables filamentous growth. Journal of Biological Chemistry, 2020, 295, 14840-14854.	1.6	16
15	Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nature Communications, 2020, 11, 1857.	5.8	294
16	The bacterial quorum sensing signal DSF hijacks <i>Arabidopsis thaliana</i> sterol biosynthesis to suppress plant innate immunity. Life Science Alliance, 2020, 3, e202000720.	1.3	23
17	A Photolabile Semiconducting Polymer Nanotransducer for Nearâ€Infrared Regulation of CRISPR/Cas9 Gene Editing. Angewandte Chemie - International Edition, 2019, 58, 18197-18201.	7.2	114
18	Salicylic acid-mediated plasmodesmal closure via Remorin-dependent lipid organization. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21274-21284.	3.3	102

#	Article	IF	CITATIONS
19	Polarisome scaffolder Spa2-mediated macromolecular condensation of Aip5 for actin polymerization. Nature Communications, 2019, 10, 5078.	5.8	34
20	Structural and computational examination of the Arabidopsis profilin–Poly-P complex reveals mechanistic details in profilin-regulated actin assembly. Journal of Biological Chemistry, 2019, 294, 18650-18661.	1.6	12
21	A Photolabile Semiconducting Polymer Nanotransducer for Nearâ€Infrared Regulation of CRISPR/Cas9 Gene Editing. Angewandte Chemie, 2019, 131, 18365-18369.	1.6	15
22	Nearâ€Infrared Afterglow Semiconducting Nanoâ€Polycomplexes for the Multiplex Differentiation of Cancer Exosomes. Angewandte Chemie - International Edition, 2019, 58, 4983-4987.	7.2	170
23	Nearâ€Infrared Afterglow Semiconducting Nanoâ€Polycomplexes for the Multiplex Differentiation of Cancer Exosomes. Angewandte Chemie, 2019, 131, 5037-5041.	1.6	43
24	<i>Xanthomonas campestris</i> Promotes Diffusible Signal Factor Biosynthesis and Pathogenicity by Utilizing Glucose and Sucrose from Host Plants. Molecular Plant-Microbe Interactions, 2019, 32, 157-166.	1.4	12
25	Phosphoâ€regulation of intrinsically disordered proteins for actin assembly and endocytosis. FEBS Journal, 2018, 285, 2762-2784.	2.2	30
26	Intrinsically Disordered Region of Actin Binding Protein Regulates Dynamic Actin Assembly. Biophysical Journal, 2018, 114, 648a.	0.2	0
27	Profilin Negatively Regulates Formin-Mediated Actin Assembly to Modulate PAMP-Triggered Plant Immunity. Current Biology, 2018, 28, 1882-1895.e7.	1.8	42
28	An Effective Recombinant Protein Expression and Purification System in <i>Saccharomyces cerevisiae</i> . Current Protocols in Molecular Biology, 2018, 123, e62.	2.9	18
29	Purification of Globular Actin from Rabbit Muscle and Pyrene Fluorescent Assays to Investigate Actin Dynamics in vitro. Bio-protocol, 2018, 8, e3102.	0.2	2
30	Quantitative Analysis of Clathrin-Mediated Endocytosis in Yeast by Live Cell Fluorescence Microscopy. Methods in Molecular Biology, 2018, 1847, 225-237.	0.4	1
31	A rapid and efficient method to study the function of crop plant transporters in Arabidopsis. Protoplasma, 2017, 254, 737-747.	1.0	4
32	Dendronized Semiconducting Polymer as Photothermal Nanocarrier for Remote Activation of Gene Expression. Angewandte Chemie, 2017, 129, 9283-9287.	1.6	52
33	Dendronized Semiconducting Polymer as Photothermal Nanocarrier for Remote Activation of Gene Expression. Angewandte Chemie - International Edition, 2017, 56, 9155-9159.	7.2	147
34	Reaction-Based Semiconducting Polymer Nanoprobes for Photoacoustic Imaging of Protein Sulfenic Acids. ACS Nano, 2017, 11, 358-367.	7.3	145
35	Quantitative analysis of actin filament assembly in yeast and plant by live cell fluorescence microscopy. Micron, 2017, 103, 78-83.	1.1	2
36	Analysis of Membrane Protein Topology in the Plant Secretory Pathway. Methods in Molecular Biology, 2017, 1662, 87-95.	0.4	0

#	Article	IF	Citations
37	Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast. Nature Communications, 2016, 7, 11265.	5.8	32
38	Membrane anchors effectively traffic recombinant human glucocerebrosidase to the protein storage vacuole of Arabidopsis seeds but do not adequately control N-glycan maturation. Plant Cell Reports, 2014, 33, 2023-2032.	2.8	4
39	Cell-cycle regulation of formin-mediated actin cable assembly. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4446-55.	3.3	40
40	Isolation and proteomic analysis of the SYP61 compartment reveal its role in exocytic trafficking in Arabidopsis. Cell Research, 2012, 22, 413-424.	5.7	211
41	Orm protein phosphoregulation mediates transient sphingolipid biosynthesis response to heat stress via the Pkh-Ypk and Cdc55-PP2A pathways. Molecular Biology of the Cell, 2012, 23, 2388-2398.	0.9	125
42	Production of active human glucocerebrosidase in seeds of Arabidopsis thaliana complex-glycan-deficient (cgl) plants. Glycobiology, 2012, 22, 492-503.	1.3	48
43	QUASIMODO 3 (QUA3) is a putative homogalacturonan methyltransferase regulating cell wall biosynthesis in Arabidopsis suspension-cultured cells. Journal of Experimental Botany, 2011, 62, 5063-5078.	2.4	50
44	EXPO, an Exocyst-Positive Organelle Distinct from Multivesicular Endosomes and Autophagosomes, Mediates Cytosol to Cell Wall Exocytosis in <i>Arabidopsis</i> and Tobacco Cells Â. Plant Cell, 2011, 22, 4009-4030.	3.1	229
45	Plasma Membrane Localization and Potential Endocytosis of Constitutively Expressed XA21 Proteins in Transgenic Rice. Molecular Plant, 2010, 3, 917-926.	3.9	38
46	Homomeric Interaction of AtVSR1 Is Essential for Its Function as a Vacuolar Sorting Receptor. Plant Physiology, 2010, 154, 134-148.	2.3	34
47	Wortmannin induces homotypic fusion of plant prevacuolar compartments*. Journal of Experimental Botany, 2009, 60, 3075-3083.	2.4	134
48	Production and characterization of soluble human lysosomal enzyme \hat{l}_{\pm} -iduronidase with high activity from culture media of transgenic tobacco BY-2 cells. Plant Science, 2009, 177, 668-675.	1.7	15
49	The vacuolar transport of aleurainâ€GFP and 2S albuminâ€GFP fusions is mediated by the same preâ€vacuolar compartments in tobacco BYâ€⊋ and Arabidopsis suspension cultured cells. Plant Journal, 2008, 56, 824-839.	2.8	69
50	Plant Bioreactors for Pharmaceuticals. Biotechnology and Genetic Engineering Reviews, 2008, 25, 363-380.	2.4	21
51	Overexpression of Arabidopsis AGD7 Causes Relocation of Golgi-Localized Proteins to the Endoplasmic Reticulum and Inhibits Protein Trafficking in Plant Cells. Plant Physiology, 2007, 143, 1601-1614.	2.3	70
52	Transient expression of fluorescent fusion proteins in protoplasts of suspension cultured cells. Nature Protocols, 2007, 2, 2348-2353.	5.5	206
53	A role for theAtMTP11gene of Arabidopsis in manganese transport and tolerance. Plant Journal, 2007, 51, 198-210.	2.8	235
54	Molecular Characterization of Plant Prevacuolar and Endosomal Compartments. Journal of Integrative Plant Biology, 2007, 49, 1119-1128.	4.1	12

#	Article	IF	CITATIONS
55	Localization of Green Fluorescent Protein Fusions with the Seven Arabidopsis Vacuolar Sorting Receptors to Prevacuolar Compartments in Tobacco BY-2 Cells. Plant Physiology, 2006, 142, 945-962.	2.3	125
56	Response to Gomord et al.: Golgi-bypassing: delivery of biopharmaceutical proteins to protein storage vacuoles in plant bioreactors. Trends in Biotechnology, 2006, 24, 147-149.	4.9	6
57	Targeting and processing of membrane-anchored YFP fusion proteins to protein storage vacuoles in transgenic tobacco seeds. Seed Science Research, 2005, 15, 361-364.	0.8	7
58	Biogenesis of the compound seed protein storage vacuole, 0, , 112-119.		0
59	Molecular mechanisms of protein degradation in germinating seeds , 0, , 279-286.		O
60	PLANT BIOREACTORS FOR PHARMACEUTICALS., 0,, 363-380.		O