Diego T Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7923712/publications.pdf

Version: 2024-02-01

257450 233421 2,142 76 24 45 h-index citations g-index papers 82 82 82 2894 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Non-thermal stabilization mechanisms of anthocyanins in model and food systems—An overview. Food Research International, 2011, 44, 499-509.	6.2	420
2	Optimization and economic evaluation of pressurized liquid extraction of phenolic compounds from jabuticaba skins. Journal of Food Engineering, 2012, 108, 444-452.	5.2	185
3	Stabilization of anthocyanin extract from jabuticaba skins by encapsulation using supercritical CO2 as solvent. Food Research International, 2013, 50, 617-624.	6.2	130
4	Extraction of antioxidant compounds from Jabuticaba (Myrciaria cauliflora) skins: Yield, composition and economical evaluation. Journal of Food Engineering, 2010, 101, 23-31.	5 . 2	118
5	Comparative analysis of key technologies for cellulosic ethanol production from Brazilian sugarcane bagasse at a commercial scale. Biofuels, Bioproducts and Biorefining, 2019, 13, 994-1014.	3.7	85
6	Use of sugarcane bagasse as biomaterial for cell immobilization for xylitol production. Journal of Food Engineering, 2008, 86, 542-548.	5.2	80
7	Intensification of bioactive compounds extraction from medicinal plants using ultrasonic irradiation. Pharmacognosy Reviews, 2014, 8, 88.	1.2	69
8	Effects of supercritical carbon dioxide on waste banana peels for heavy metal removal. Journal of Supercritical Fluids, 2011, 58, 343-351.	3.2	68
9	Production of stabilized sub-micrometric particles of carotenoids using supercritical fluid extraction of emulsions. Journal of Supercritical Fluids, 2012, 61, 167-174.	3.2	59
10	MICRONIZATION AND ENCAPSULATION OF FUNCTIONAL PIGMENTS USING SUPERCRITICAL CARBON DIOXIDE. Journal of Food Process Engineering, 2013, 36, 36-49.	2.9	57
11	Optimization of bioactive compounds extraction from jabuticaba (Myrciaria cauliflora) skins assisted by high pressure CO2. Innovative Food Science and Emerging Technologies, 2011, 12, 398-406.	5 . 6	40
12	Obtaining prebiotic carbohydrates and beta-ecdysone from Brazilian ginseng by subcritical water extraction. Innovative Food Science and Emerging Technologies, 2017, 42, 73-82.	5.6	37
13	Use of Ca–alginate as a novel support for TiO2 immobilization in methylene blue decolorisation. Water Science and Technology, 2009, 60, 1081-1087.	2.5	36
14	Carotenoid Pigments Encapsulation: Fundamentals, Techniques and Recent Trends~!2009-10-20~!2009-12-08~!2010-03-25~!. Open Chemical Engineering Journal, 2010, 4, 42-50.	0.5	35
15	Anthocyanin extraction from Jabuticaba (Myrciaria cauliflora) skins by different techniques: economic evaluation. Procedia Food Science, 2011, 1, 1725-1731.	0.6	32
16	Supercritical Carbon Dioxide Extraction of Polyphenols from Pomegranate (Punica granatum L.) Leaves: Chemical Composition, Economic Evaluation and Chemometric Approach. Journal of Food Research, 2012, 1, 282.	0.3	32
17	Cell immobilization and xylitol production using sugarcane bagasse as raw material. Applied Biochemistry and Biotechnology, 2007, 141, 215-227.	2.9	31
18	Techno-economic evaluation of obtaining Brazilian ginseng extracts in potential production scenarios. Food and Bioproducts Processing, 2017, 101, 45-55.	3.6	31

#	Article	IF	CITATIONS
19	Economic Analysis of an Integrated Annatto Seeds-Sugarcane Biorefinery Using Supercritical CO2 Extraction as a First Step. Materials, 2016, 9, 494.	2.9	30
20	Comparison of extraction techniques for product diversification in a supercritical water gasification-based sugarcane-wet microalgae biorefinery: Thermoeconomic and environmental analysis. Journal of Cleaner Production, 2018, 201, 697-705.	9.3	30
21	Subcritical and supercritical technology for the production of second generation bioethanol. Critical Reviews in Biotechnology, 2015, 35, 302-312.	9.0	29
22	New proposal for production of bioactive compounds by supercritical technology integrated to a sugarcane biorefinery. Clean Technologies and Environmental Policy, 2014, 16, 1455-1468.	4.1	26
23	Energetic and economic evaluation of waste glycerol cogeneration in Brazil. Brazilian Journal of Chemical Engineering, 2011, 28, 691-698.	1.3	25
24	Product diversification in the sugarcane biorefinery through algae growth and supercritical CO 2 extraction: Thermal and economic analysis. Renewable Energy, 2018, 129, 776-785.	8.9	25
25	Carotenoid Pigments Encapsulation: Fundamentals, Techniques and Recent Trends. Open Chemical Engineering Journal, 2010, 4, 42-50.	0.5	24
26	Antioxidant dye and pigment extraction using a homemade pressurized solvent extraction system. Procedia Food Science, 2011, 1, 1581-1588.	0.6	23
27	Obtaining annatto seed oil miniemulsions by ultrasonication using aqueous extract from Brazilian ginseng roots as a biosurfactant. Journal of Food Engineering, 2016, 168, 68-78.	5.2	23
28	Biotechnological production of xylitol in a three-phase fluidized bed bioreactor with immobilized yeast cells in Ca-alginate beads. Biotechnology Journal, 2007, 2, 759-763.	3 . 5	22
29	Trends in Particle Formation of Bioactive Compounds Using Supercritical Fluids and Nanoemulsions. Food and Public Health, 2012, 2, 142-152.	2.0	22
30	Extraction of Polyphenols and Anthocyanins from the Jambul (Syzygium cumini) Fruit Peels. Food and Public Health, 2013, 3, 12-20.	2.0	22
31	Supercritical anti-solvent process as an alternative technology for vitamin complex encapsulation using zein as wall material: Technical-economic evaluation. Journal of Supercritical Fluids, 2020, 159, 104499.	3.2	21
32	Kinetic behavior, mathematical modeling, and economic evaluation of extracts obtained by supercritical fluid extraction from defatted assaĀ-waste. Food and Bioproducts Processing, 2018, 107, 25-35.	3.6	20
33	Quercetin loaded particles production by means of supercritical fluid extraction of emulsions: Process scale-upstudy and thermo-economic evaluation. Food and Bioproducts Processing, 2017, 103, 27-38.	3.6	19
34	Pressurized Liquid Extraction as a Promising and Economically Feasible Technique for Obtaining Beta-Ecdysone-Rich Extracts from Brazilian Ginseng (<i>Pfaffia glomerata</i>) Roots. Separation Science and Technology, 2015, 50, 1647-1657.	2.5	18
35	Extraction of Volatile Oils by Supercritical Fluid Extraction: Patent Survey. Recent Patents on Engineering, 2011, 5, 17-22.	0.4	16
36	Perspectives on small-scale integrated biorefineries using supercritical CO2 as a green solvent. Current Opinion in Green and Sustainable Chemistry, 2019, 18, 1-12.	5.9	16

#	Article	IF	Citations
37	Technical/Economical Evaluation of Sugarcane Bagasse Hydrolysis for Bioethanol Production. Chemical Engineering and Technology, 2007, 30, 270-275.	1.5	15
38	Pressurized Organic Solvent Extraction with On-line Particle Formation by Supercritical Anti Solvent Processes. Food and Public Health, 2012, 2, 231-240.	2.0	15
39	Sensitizer immobilization in photochemistry: evaluation of a novel green support. Journal of Chemical Technology and Biotechnology, 2009, 84, 1026-1030.	3.2	12
40	Optimization of Supercritical Fluid Extraction of Antioxidant Compounds from Venezuelan Rosemary Leaves. International Journal of Food Engineering, 2012, 8, .	1.5	12
41	Study of an Extraction Process as the Pretreatment Step for Sugar Production from Acid Hydrolysis. Food and Public Health, 2015, 5, 47-55.	2.0	12
42	Valorization of sugarcane biorefinery residues using supercritical water gasification: A case study and perspectives. Journal of Supercritical Fluids, 2015, 96, 133-143.	3.2	10
43	Thermo-economic and environmental comparison of supercritical water and enzymatic hydrolysis of sugarcane bagasse in a biorefinery concept. Energy, 2017, 141, 139-148.	8.8	10
44	Perspectives on the integration of a supercritical fluid extraction plant to a sugarcane biorefinery: thermo-economical evaluation of CO2 recycle systems. Food Science and Technology, 2018, 38, 13-18.	1.7	10
45	Proposal for fractionating Brazilian ginseng extracts: Process intensification approach. Journal of Food Engineering, 2017, 196, 73-80.	5.2	9
46	Perspectives on the Application of Supercritical Antisolvent Fractionation Process for the Purification of Plant Extracts: Effects of Operating Parameters and Patent Survey. Recent Patents on Engineering, 2016, 10, 88-97.	0.4	8
47	Thermo-economic evaluation of a new approach to extract sugarcane wax integrated to a first and second generation biorefinery. Biomass and Bioenergy, 2018, 119, 69-74.	5.7	8
48	Novel Extraction Method to Produce Active Solutions from Plant Materials. Food and Public Health, 2015, 5, 38-46.	2.0	8
49	A novel process for CO2 purification and recycling based on subcritical adsorption in oat bran. Journal of CO2 Utilization, 2019, 34, 362-374.	6.8	7
50	Trends on the Rapid Expansion of Supercritical Solutions Process Applied to Food and Non-food Industries. Recent Patents on Food, Nutrition & Samp; Agriculture, 2019, 10, 82-92.	0.9	7
51	Production of Biosurfactant from Brazilian Ginseng Roots by Low- Pressure Solvent Extraction with and Without the Assistance of Ultrasound. Recent Patents on Engineering, 2014, 8, 69-81.	0.4	5
52	Extraction of Polyphenols and Anthocyanins from the Jambul (Syzygium cumini) Fruit Peels. Food and Public Health, 2013, 3, 119-129.	2.0	5
53	Developing novel one-step processes for obtaining food-grade O/W emulsions from pressurized fluid extracts: processes description, state of the art and perspectives. Food Science and Technology, 2015, 35, 579-587.	1.7	4
54	Techno-economic analysis of production of ammonia-borane confined in silica aerogel microparticles by subcritical CO2 drying. Journal of Supercritical Fluids, 2018, 138, 147-153.	3.2	4

#	Article	IF	CITATIONS
55	Novel Method to Produce Emulsions Containing Essential Oils from Saponin-Rich Pressurized Aqueous Plant Extracts. Journal of Colloid Science and Biotechnology, 2013, 2, 93-99.	0.2	4
56	Recent Developments in Particle Formation with Supercritical Fluid Extraction of Emulsions Process for Encapsulation. SpringerBriefs in Applied Sciences and Technology, 2019, , 51-64.	0.4	4
57	Recent Trends in Integrated Biorefineries Development for Sustainable Production. International Journal of Chemical Engineering, 2014, 2014, 1-2.	2.4	3
58	Tecnologia supercrÃtica como uma alternativa para purificar xilitol biotecnolÃ ³ gico. Semina:Ciencias Agrarias, 2011, 32, 621-632.	0.3	2
59	Evaluation of supercritical fluid extraction of tacamahaco (Protium heptaphyllum) resin. Journal of Essential Oil Research, 2017, 29, 443-450.	2.7	2
60	CHAPTER 11. Integration of Pressurized Fluidâ€based Technologies for Natural Product Processing. RSC Green Chemistry, 2013, , 399-441.	0.1	1
61	Supercritical Antisolvent Precipitation Process. SpringerBriefs in Applied Sciences and Technology, 2019, , .	0.4	1
62	Construction and Validation of an Online Subcritical Adsorption-based Device for Assisting CO2 Recycling during a Supercritical Fluid Extraction Process. The Open Food Science Journal, 2018, 10, 46-61.	1.0	1
63	Experimental and Simulation Study on Formulation of Clove Essential Oil Products Using Alternative Surfactant. Journal of Colloid Science and Biotechnology, 2013, 2, 112-122.	0.2	1
64	Economical Effects of Supercritical Antisolvent Precipitation Process Conditions. SpringerBriefs in Applied Sciences and Technology, 2019, , 75-82.	0.4	1
65	Pretreatment Effect on the Thermal Degradation of a Feedstock with Low Hemicellulose Content: Brazilian Ginseng. Energy & Samp; Fuels, 2017, 31, 7123-7131.	5.1	0
66	Multi-objective Optimization of Supercritical Water Gasification of Leftover Brazilian Ginseng Roots After Phytochemical Recovery Steps. Brazilian Journal of Chemical Engineering, 2017, 34, 841-850.	1.3	0
67	Use The Solid Fermentation as a New and Alternative Way for Xylitol Bioproduction. , 2009, , .		0
68	Cogeneration Systems in Brazilian Sugarcane Industry: Current and Future Perspectives. Recent Patents on Engineering, 2016, 10, 111-120.	0.4	0
69	Precipitation of Particles Using Combined High Turbulence Extraction Assisted by Ultrasound and Supercritical Antisolvent Fractionation. SpringerBriefs in Applied Sciences and Technology, 2019, , 35-49.	0.4	0
70	Effect of Process Conditions on the Morphological Characteristics of Particles Obtained by Supercritical Antisolvent Precipitation. SpringerBriefs in Applied Sciences and Technology, 2019, , 17-33.	0.4	0
71	Evaluation of Nutritional Supplementation with Palm Oil in High-Gravity Beer Production. Recent Patents on Food, Nutrition & Agriculture, 2019, 10, 48-56.	0.9	0
72	Supercritical Fluid Extraction of Emulsion Obtained by Ultrasound Emulsification Assisted by Nitrogen Hydrostatic Pressure Using Novel Biosurfactant. SpringerBriefs in Applied Sciences and Technology, 2019, , 65-74.	0.4	0

#	Article	IF	CITATIONS
73	Supercritical Fluid Biorefining Using Supercritical CO2 as an Antisolvent for Micronization, Coprecipitation, and Fractionation: Recent Applications. SpringerBriefs in Applied Sciences and Technology, 2020, , 13-32.	0.4	0
74	Perspectives on Vanillin Production from Sugarcane Bagasse Lignin Using Supercritical CO2 as a Solvent in a Novel Integrated Second-Generation Ethanol Biorefinery. SpringerBriefs in Applied Sciences and Technology, 2020, , 49-56.	0.4	0
75	Integrated Biorefinery Approach for the Valorization of Plant Materials Using Supercritical Antisolvent-Based Precipitation Technique for Obtaining Bioactive Compounds. SpringerBriefs in Applied Sciences and Technology, 2020, , 33-47.	0.4	0
76	Supercritical Fluid Biorefining Using Supercritical CO2 as an Antisolvent for Micronization, Coprecipitation, and Fractionation: Fundamentals, Processing, and Effect of Process Conditions. SpringerBriefs in Applied Sciences and Technology, 2020, , 1-12.	0.4	0