
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7923435/publications.pdf Version: 2024-02-01

SHAOHUA XIE

#	Article	IF	CITATIONS
1	Mesoporous Co3O4-supported gold nanocatalysts: Highly active for the oxidation of carbon monoxide, benzene, toluene, and o-xylene. Journal of Catalysis, 2014, 309, 408-418.	3.1	320
2	Au–Pd/3DOM Co 3 O 4 : Highly active and stable nanocatalysts for toluene oxidation. Journal of Catalysis, 2015, 322, 38-48.	3.1	270
3	Three-dimensionally ordered macroporous La0.6Sr0.4MnO3 with high surface areas: Active catalysts for the combustion of methane. Journal of Catalysis, 2013, 307, 327-339.	3.1	206
4	Fe2O3/3DOM BiVO4: High-performance photocatalysts for the visible light-driven degradation of 4-nitrophenol. Applied Catalysis B: Environmental, 2017, 202, 569-579.	10.8	175
5	Au/3DOM La0.6Sr0.4MnO3: Highly active nanocatalysts for the oxidation of carbon monoxide and toluene. Journal of Catalysis, 2013, 305, 146-153.	3.1	146
6	Au/3DOM Co3O4: highly active nanocatalysts for the oxidation of carbon monoxide and toluene. Nanoscale, 2013, 5, 11207.	2.8	133
7	Three-dimensionally ordered macroporous CeO2-supported Pd@Co nanoparticles: Highly active catalysts for methane oxidation. Journal of Catalysis, 2016, 342, 17-26.	3.1	131
8	Three-dimensionally ordered mesoporous Co3O4-supported Au–Pd alloy nanoparticles: High-performance catalysts for methane combustion. Journal of Catalysis, 2015, 332, 13-24.	3.1	129
9	Effect of transition metal doping on the catalytic performance of Au–Pd/3DOM Mn2O3 for the oxidation of methane and o-xylene. Applied Catalysis B: Environmental, 2017, 206, 221-232.	10.8	129
10	Controlled Generation of Uniform Spherical LaMnO ₃ , LaCoO ₃ , Mn ₂ O ₃ , and Co ₃ O ₄ Nanoparticles and Their High Catalytic Performance for Carbon Monoxide and Toluene Oxidation. Inorganic Chemistry, 2013, 52, 8665-8676.	1.9	124
11	Ultralow Loading of Silver Nanoparticles on Mn ₂ O ₃ Nanowires Derived with Molten Salts: A High-Efficiency Catalyst for the Oxidative Removal of Toluene. Environmental Science & Technology, 2015, 49, 11089-11095.	4.6	123
12	Co–Pd/BiVO4: High-performance photocatalysts for the degradation of phenol under visible light irradiation. Applied Catalysis B: Environmental, 2018, 224, 350-359.	10.8	116
13	Au/3DOM LaCoO3: High-performance catalysts for the oxidation of carbon monoxide and toluene. Chemical Engineering Journal, 2013, 228, 965-975.	6.6	114
14	Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts. Chinese Journal of Catalysis, 2016, 37, 1193-1205.	6.9	101
15	3DOM BiVO 4 supported silver bromide and noble metals: High-performance photocatalysts for the visible-light-driven degradation of 4-chlorophenol. Applied Catalysis B: Environmental, 2015, 168-169, 274-282.	10.8	95
16	Insights into the active sites of ordered mesoporous cobalt oxide catalysts for the total oxidation of o-xylene. Journal of Catalysis, 2017, 352, 282-292.	3.1	95
17	Excellent catalytic performance, thermal stability, and water resistance of 3DOM Mn2O3-supported Au–Pd alloy nanoparticles for the complete oxidation of toluene. Applied Catalysis A: General, 2015, 507, 82-90.	2.2	90
18	Three-Dimensionally Ordered Macroporous La _{0.6} Sr _{0.4} MnO ₃ Supported Ag Nanoparticles for the Combustion of Methane. Journal of Physical Chemistry C, 2014, 118, 14913-14928.	1.5	89

#	Article	IF	CITATIONS
19	Probing toluene catalytic removal mechanism over supported Pt nano- and single-atom-catalyst. Journal of Hazardous Materials, 2020, 392, 122258.	6.5	85
20	Morphologically Controlled Synthesis of Porous Spherical and Cubic LaMnO ₃ with High Activity for the Catalytic Removal of Toluene. ACS Applied Materials & Interfaces, 2014, 6, 17394-17401.	4.0	84
21	Preparation and high catalytic performance of Au/3DOM Mn2O3 for the oxidation of carbon monoxide and toluene. Journal of Hazardous Materials, 2014, 279, 392-401.	6.5	84
22	Preparation and catalytic performance of Ag, Au, Pd or Pt nanoparticles supported on 3DOM CeO2–Al2O3 for toluene oxidation. Journal of Molecular Catalysis A, 2016, 414, 9-18.	4.8	83
23	PMMA-templating generation and high catalytic performance of chain-like ordered macroporous LaMnO3 supported gold nanocatalysts for the oxidation of carbon monoxide and toluene. Applied Catalysis B: Environmental, 2013, 140-141, 317-326.	10.8	74
24	Mesoporous Cr2O3-supported Au–Pd nanoparticles: High-performance catalysts for the oxidation of toluene. Microporous and Mesoporous Materials, 2016, 224, 311-322.	2.2	70
25	Ce–Si Mixed Oxide: A High Sulfur Resistant Catalyst in the NH ₃ –SCR Reaction through the Mechanism-Enhanced Process. Environmental Science & Technology, 2021, 55, 4017-4026.	4.6	66
26	Supported ultralow loading Pt catalysts with high H2O-, CO2-, and SO2-resistance for acetone removal. Applied Catalysis A: General, 2019, 579, 106-115.	2.2	65
27	Simulated solar light driven photothermal catalytic purification of toluene over iron oxide supported single atom Pt catalyst. Applied Catalysis B: Environmental, 2021, 298, 120612.	10.8	54
28	Efficient Removal of Methane over Cobalt-Monoxide-Doped AuPd Nanocatalysts. Environmental Science & Technology, 2017, 51, 2271-2279.	4.6	53
29	Porous Cubeâ€Aggregated Co ₃ O ₄ Microsphereâ€&upported Gold Nanoparticles for Oxidation of Carbon Monoxide and Toluene. ChemSusChem, 2014, 7, 1745-1754.	3.6	51
30	Dual-templating synthesis of three-dimensionally ordered macroporous La0.6Sr0.4MnO3-supported Ag nanoparticles: controllable alignments and super performance for the catalytic combustion of methane. Chemical Communications, 2013, 49, 10748.	2.2	49
31	Ce _{0.6} Zr _{0.3} Y _{0.1} O ₂ nanorod supported gold and palladium alloy nanoparticles: high-performance catalysts for toluene oxidation. Nanoscale, 2015, 7, 8510-8523.	2.8	49
32	3DOM InVO4-supported chromia with good performance for the visible-light-driven photodegradation of rhodamine B. Solid State Sciences, 2013, 24, 62-70.	1.5	48
33	Copper Single Atom-Triggered Niobia–Ceria Catalyst for Efficient Low-Temperature Reduction of Nitrogen Oxides. ACS Catalysis, 2022, 12, 2441-2453.	5.5	48
34	Mesoporous CoO-supported palladium nanocatalysts with high performance for <i>o</i> -xylene combustion. Catalysis Science and Technology, 2018, 8, 806-816.	2.1	47
35	Glucose-assisted hydrothermal preparation and catalytic performance of porous LaFeO3 for toluene combustion. Journal of Solid State Chemistry, 2013, 199, 164-170.	1.4	43
36	Enhanced catalytic performance for methane combustion of 3DOM CoFe2O4 by co-loading MnO and Pd–Pt alloy nanoparticles. Applied Surface Science, 2017, 403, 590-600.	3.1	43

#	Article	IF	CITATIONS
37	Revealing the effect of paired redox-acid sites on metal oxide catalysts for efficient NO removal by NH3-SCR. Journal of Hazardous Materials, 2021, 416, 125826.	6.5	43
38	Mn 3 O 4 -Au/3DOM La 0.6 Sr 0.4 CoO 3 : High-performance catalysts for toluene oxidation. Catalysis Today, 2017, 281, 437-446.	2.2	41
39	Gold Supported on Iron Oxide Nanodisk as Efficient Catalyst for The Removal of Toluene. Industrial & Engineering Chemistry Research, 2014, 53, 3486-3494.	1.8	38
40	Au/MnO /3DOM SiO2: Highly active catalysts for toluene oxidation. Applied Catalysis A: General, 2015, 507, 139-148.	2.2	37
41	Preparation and catalytic performance of cylinder- and cake-like Cr2O3 for toluene combustion. Catalysis Communications, 2013, 36, 43-47.	1.6	36
42	Pt/Co3O4/3DOM Al2O3: Highly effective catalysts for toluene combustion. Chinese Journal of Catalysis, 2016, 37, 934-946.	6.9	36
43	Graphitic carbon nitride-supported iron oxides: High-performance photocatalysts for the visible-light-driven degradation of 4-nitrophenol. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 336, 105-114.	2.0	36
44	Three-dimensionally ordered macroporous CoCr 2 O 4 -supported Au–Pd alloy nanoparticles: Highly active catalysts for methane combustion. Catalysis Today, 2017, 281, 467-476.	2.2	36
45	Supported ceria-modified silver catalysts with high activity and stability for toluene removal. Environment International, 2019, 128, 335-342.	4.8	36
46	Au/MnO _{<i>x</i>} /3DOM La _{0.6} Sr _{0.4} MnO ₃ : Highly Active Nanocatalysts for the Complete Oxidation of Toluene. Industrial & Engineering Chemistry Research, 2015, 54, 900-910.	1.8	35
47	Catalytic performance enhancement by alloying Pd with Pt on ordered mesoporous manganese oxide for methane combustion. Chinese Journal of Catalysis, 2017, 38, 92-105.	6.9	33
48	Catalytic performance of cobalt oxide-supported gold-palladium nanocatalysts for the removal of toluene and o -xylene. Chinese Journal of Catalysis, 2017, 38, 207-216.	6.9	30
49	Preparation and high catalytic performance of Co3O4–MnO2 for the combustion of o-xylene. Catalysis Today, 2019, 327, 246-253.	2.2	28
50	Highly Active and Stable Palladium Catalysts on Novel Ceria–Alumina Supports for Efficient Oxidation of Carbon Monoxide and Hydrocarbons. Environmental Science & Technology, 2021, 55, 7624-7633.	4.6	28
51	Tuning Singleâ€atom Pt ₁ â^CeO ₂ Catalyst for Efficient CO and C ₃ H ₆ Oxidation: Size Effect of Ceria on Pt Structural Evolution. ChemNanoMat, 2020, 6, 1797-1805.	1.5	27
52	Morphology-Sensitive Sulfation Effect on Ceria Catalysts for NH3-SCR. Topics in Catalysis, 2020, 63, 932-943.	1.3	24
53	Carbon Monoxide Oxidation over rGO-Mediated Gold/Cobalt Oxide Catalysts with Strong Metal–Support Interaction. ACS Applied Materials & Interfaces, 2020, 12, 31467-31476.	4.0	24
54	Structure-activity relationship of Pt catalyst on engineered ceria-alumina support for CO oxidation. Journal of Catalysis, 2022, 405, 236-248.	3.1	23

#	Article	IF	CITATIONS
55	Highly Active and Stable Pdâ^'GaO _{<i>x</i>} /Al ₂ O ₃ Catalysts Derived from Intermetallic Pd ₅ Ga ₃ Nanocrystals for Methane Combustion. ChemCatChem, 2018, 10, 5637-5648.	1.8	21
56	Transformation of Highly Stable Pt Single Sites on Defect Engineered Ceria into Robust Pt Clusters for Vehicle Emission Control. Environmental Science & Technology, 2021, 55, 12607-12618.	4.6	21
57	Au/Ce _{0.6} Zr _{0.3} Y _{0.1} O ₂ Nanorods: Highly Active Catalysts for the Oxidation of Carbon Monoxide and Toluene. Industrial & Engineering Chemistry Research, 2014, 53, 18452-18461.	1.8	19
58	Nanoplate-aggregate Co3O4 microspheres for toluene combustion. Chinese Journal of Catalysis, 2014, 35, 1475-1481.	6.9	19
59	Molybdenum oxide as an efficient promoter to enhance the NH3-SCR performance of CeO2-SiO2 catalyst for NO removal. Catalysis Today, 2022, 397-399, 475-483.	2.2	19
60	Engineering Platinum Catalysts <i>via</i> a Site-Isolation Strategy with Enhanced Chlorine Resistance for the Elimination of Multicomponent VOCs. Environmental Science & Technology, 2022, 56, 9672-9682.	4.6	17
61	Pt Co/meso-MnO : Highly efficient catalysts for low-temperature methanol combustion. Catalysis Today, 2019, 332, 168-176.	2.2	16
62	In situ molten salt derived iron oxide supported platinum catalyst with high catalytic performance for o-xylene elimination. Catalysis Today, 2020, 351, 30-36.	2.2	15
63	One-pot hydrothermal preparation and catalytic performance of porous strontium ferrite hollow spheres for the combustion of toluene. Journal of Molecular Catalysis A, 2013, 370, 189-196.	4.8	14
64	Au â~ Pd/mesoporous Fe2O3: Highly active photocatalysts for the visible-light-driven degradation of acetone. Journal of Environmental Sciences, 2018, 70, 74-86.	3.2	14
65	3DOM LaMnAl11019-supported AuPd alloy nanoparticles: Highly active catalysts for methane combustion in a continuous-flow microreactor. Catalysis Today, 2018, 308, 71-80.	2.2	13
66	Nickel foam supported porous copper oxide catalysts with noble metal-like activity for aqueous phase reactions. Catalysis Science and Technology, 2022, 12, 3804-3816.	2.1	7
67	Highly efficient and anti-poisoning single-atom cobalt catalyst for selective hydrogenation of nitroarenes. Nano Research, 2022, 15, 10006-10013.	5.8	7
68	Ultralow Loading Ruthenium on Alumina Monoliths for Facile, Highly Recyclable Reduction of p-Nitrophenol. Catalysts, 2021, 11, 165.	1.6	6
69	CeO2 doping boosted low-temperature NH3-SCR activity of FeTiOx catalyst: A microstructure analysis and reaction mechanistic study. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	3.3	5
70	Catalytic Removal of Volatile Organic Compounds over Porous Catalysts. The Global Environmental Engineers, 2015, 2, 1-14.	0.3	4
71	Role of active metals Cu, Co, and Ni on ceria towards CO2 thermo-catalytic hydrogenation. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 699-711.	0.8	2