Sang-Joon Ahn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/79234/publications.pdf

Version: 2024-02-01

34 1,469 22 34
papers citations h-index g-index

36 36 1093
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Multilevel Control of Competence Development and Stress Tolerance in Streptococcus mutans UA159. Infection and Immunity, 2006, 74, 1631-1642.	1.0	181
2	Effects of Oxygen on Biofilm Formation and the AtlA Autolysin of <i>Streptococcus mutans</i> Journal of Bacteriology, 2007, 189, 6293-6302.	1.0	117
3	A Highly Arginolytic Streptococcus Species That Potently Antagonizes Streptococcus mutans. Applied and Environmental Microbiology, 2016, 82, 2187-2201.	1.4	109
4	Role of HtrA in Growth and Competence of Streptococcus mutans UA159. Journal of Bacteriology, 2005, 187, 3028-3038.	1.0	98
5	Effects of Oxygen on Virulence Traits of Streptococcus mutans. Journal of Bacteriology, 2007, 189, 8519-8527.	1.0	93
6	The atlA Operon of Streptococcus mutans: Role in Autolysin Maturation and Cell Surface Biogenesis. Journal of Bacteriology, 2006, 188, 6877-6888.	1.0	75
7	RNA-Seq Reveals Enhanced Sugar Metabolism in Streptococcus mutans Co-cultured with Candida albicans within Mixed-Species Biofilms. Frontiers in Microbiology, 2017, 8, 1036.	1.5	71
8	The Streptococcus mutans Cid and Lrg systems modulate virulence traits in response to multiple environmental signals. Microbiology (United Kingdom), 2010, 156, 3136-3147.	0.7	69
9	A Transcriptional Regulator and ABC Transporters Link Stress Tolerance, (p)ppGpp, and Genetic Competence in <i>Streptococcus mutans</i>). Journal of Bacteriology, 2011, 193, 862-874.	1.0	68
10	Identification of the Streptococcus mutans LytST two-component regulon reveals its contribution to oxidative stress tolerance. BMC Microbiology, 2012, 12, 187.	1.3	50
11	Changes in Biochemical and Phenotypic Properties of Streptococcus mutans during Growth with Aeration. Applied and Environmental Microbiology, 2009, 75, 2517-2527.	1.4	48
12	Sharply Tuned pH Response of Genetic Competence Regulation in Streptococcus mutans: a Microfluidic Study of the Environmental Sensitivity of <i>comX</i> . Applied and Environmental Microbiology, 2015, 81, 5622-5631.	1.4	46
13	Effects of Carbohydrate Source on Genetic Competence in Streptococcus mutans. Applied and Environmental Microbiology, 2016, 82, 4821-4834.	1.4	38
14	Discovery of Novel Peptides Regulating Competence Development in Streptococcus mutans. Journal of Bacteriology, 2014, 196, 3735-3745.	1.0	35
15	Bidirectional signaling in the competence regulatory pathway of Streptococcus mutans. FEMS Microbiology Letters, 2015, 362, fnv159.	0.7	35
16	Understanding the Streptococcus mutans Cid/Lrg System through CidB Function. Applied and Environmental Microbiology, 2016, 82, 6189-6203.	1.4	35
17	A unique open reading frame within the <scp><i>comX</i></scp> gene of <scp><i>S</i></scp> <i>treptococcus mutans</i> regulates genetic competence and oxidative stress tolerance. Molecular Microbiology, 2015, 96, 463-482.	1.2	33
18	An Essential Role for (p)ppGpp in the Integration of Stress Tolerance, Peptide Signaling, and Competence Development in Streptococcus mutans. Frontiers in Microbiology, 2016, 7, 1162.	1.5	33

#	Article	IF	CITATIONS
19	Characterization of LrgAB as a stationary phase-specific pyruvate uptake system in Streptococcus mutans. BMC Microbiology, 2019, 19, 223.	1.3	30
20	Genetics and Physiology of Acetate Metabolism by the Pta-Ack Pathway of Streptococcus mutans. Applied and Environmental Microbiology, 2015, 81, 5015-5025.	1.4	29
21	Transcriptional Organization and Physiological Contributions of the relQ Operon of Streptococcus mutans. Journal of Bacteriology, 2012, 194, 1968-1978.	1.0	24
22	Modification of the Streptococcus mutans transcriptome by LrgAB and environmental stressors. Microbial Genomics, 2017, 3, e000104.	1.0	24
23	Remodeling of the Streptococcus mutans proteome in response to LrgAB and external stresses. Scientific Reports, 2017, 7, 14063.	1.6	23
24	Regulation of cid and Irg expression by CcpA in Streptococcus mutans. Microbiology (United) Tj ETQq0 0 0 rgB	T /Oyerloch	k 10 Tf 50 542
25	Regulation of competence and gene expression in <i>Streptococcus mutans</i> by the RcrR transcriptional regulator. Molecular Oral Microbiology, 2015, 30, 147-159.	1.3	16
26	Pluronics-Formulated Farnesol Promotes Efficient Killing and Demonstrates Novel Interactions with Streptococcus mutans Biofilms. PLoS ONE, 2015, 10, e0133886.	1.1	15
27	Environmental Triggers of IrgA Expression in Streptococcus mutans. Frontiers in Microbiology, 2020, 11, 18.	1.5	11
28	Regulation ofcidandlrgexpression by CodY inStreptococcus mutans. MicrobiologyOpen, 2020, 9, e1040.	1.2	9
29	Acetate and Potassium Modulate the Stationary-Phase Activation of IrgAB in Streptococcus mutans. Frontiers in Microbiology, 2020, 11, 401.	1.5	7
30	Understanding LrgAB Regulation of Streptococcus mutans Metabolism. Frontiers in Microbiology, 2020, 11, 2119.	1.5	7
31	Genomic instability of TnSMU2 contributes to Streptococcus mutans biofilm development and competence in a cidB mutant. MicrobiologyOpen, 2019, 8, e934.	1.2	6
32	The Pta-AckA Pathway Regulates LrgAB-Mediated Pyruvate Uptake in Streptococcus mutans. Microorganisms, 2020, 8, 846.	1.6	3
33	Characterization of the Streptococcus mutans <i>SMU.1703c-SMU.1702c</i> Operon Reveals Its Role in Riboflavin Import and Response to Acid Stress. Journal of Bacteriology, 2020, 203, .	1.0	2
34	Peptides encoded in the Streptococcus mutans RcrRPQ operon are essential for thermotolerance. Microbiology (United Kingdom), 2020, 166, 306-317.	0.7	2