Yuanhong Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7923070/publications.pdf

Version: 2024-02-01

		57758	8	35541
105	5,505	44		71
papers	citations	h-index		g-index
106	106	106		7252
100	100	100		1232
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Oxygen-doped MoS2 nanoflowers with sulfur vacancies as electrocatalyst for efficient hydrazine oxidation. Journal of Electroanalytical Chemistry, 2022, 906, 115986.	3.8	9
2	Sugar-disguised bullets for combating multidrug-resistant bacteria infections based on an oxygen vacancy-engineered glucose-functionalized MoO3-x photo-coordinated bienzyme. Chemical Engineering Journal, 2022, 431, 133943.	12.7	8
3	Sulfurization enhancement of FeMoO4 for electrochemical ammonia synthesis with high Faradaic efficiency in neutral media. Journal of Electroanalytical Chemistry, 2022, 905, 115981.	3.8	8
4	Antibacterial Copolypeptoids with Potent Activity against Drug Resistant Bacteria and Biofilms, Excellent Stability, and Recycling Property. Small, 2022, 18, e2106936.	10.0	9
5	Antibacterial Copolypeptoids with Potent Activity against Drug Resistant Bacteria and Biofilms, Excellent Stability, and Recycling Property (Small 11/2022). Small, 2022, 18, .	10.0	O
6	Application of a Cascaded Nanozyme in Infected Wound Recovery of Diabetic Mice. ACS Biomaterials Science and Engineering, 2022, 8, 1522-1531.	5.2	13
7	Silver nanoparticles with vanadium oxide nanowires loaded into electrospun dressings for efficient healing of bacterium-infected wounds. Journal of Colloid and Interface Science, 2022, 622, 117-125.	9.4	15
8	An efficient photothermal-chemotherapy platform based on polyacrylamide/phytic acid/polydopamine hydrogel. Journal of Materials Chemistry B, 2022, , .	5 . 8	7
9	Hybridization chain reaction-mediated Fe2MoO4 bimetallic nanozyme for colorimetric risk prediction of bladder cancer. Biosensors and Bioelectronics, 2022, 210, 114272.	10.1	9
10	Simultaneously enhancing the selectivity and stability of enzymatic probes via bio-imprinting technology. Sensors and Actuators B: Chemical, 2022, 367, 132039.	7.8	2
11	Nearâ€Infrared Regulated Nanozymatic/Photothermal/Photodynamic Tripleâ€Therapy for Combating Multidrugâ€Resistant Bacterial Infections via Oxygenâ€Vacancy Molybdenum Trioxide Nanodots. Small, 2021, 17, e2005739.	10.0	116
12	Physiological effect of colloidal carbon quantum dots on <i>Bursaphelenchus xylophilus</i> Advances, 2021, 11, 6212-6220.	3 . 6	3
13	Sulfur defect-rich WS2â^'x nanosheet electrocatalysts for N2 reduction. Science China Materials, 2021, 64, 1910-1918.	6.3	13
14	Two-dimensional transition metal dichalcogenides for electrocatalytic nitrogen fixation to ammonia: Advances, challenges and perspectives. A mini review. Electrochemistry Communications, 2021, 125, 107002.	4.7	14
15	To Love and to Kill: Accurate and Selective Colorimetry for Both Chloride and Mercury Ions Regulated by Electro-Synthesized Oxidase-like SnTe Nanobelts. Analytical Chemistry, 2021, 93, 10132-10140.	6.5	16
16	Synergistical Starvation and Chemoâ€Dynamic Therapy for Combating Multidrugâ€Resistant Bacteria and Accelerating Diabetic Wound Healing. Advanced Healthcare Materials, 2021, 10, e2100716.	7.6	49
17	Visibleâ€Lightâ€Driven Photocatalysisâ€Enhanced Nanozyme of TiO ₂ Nanotubes@MoS ₂ Nanoflowers for Efficient Wound Healing Infected with Multidrugâ€Resistant Bacteria. Small, 2021, 17, e2103348.	10.0	58
18	Establishment of anti-oxidation platform based on few-layer molybdenum disulfide nanosheet-coated titanium dioxide nanobelt nanocomposite. Journal of Colloid and Interface Science, 2021, 601, 167-176.	9.4	12

#	Article	IF	CITATIONS
19	Environmental molybdate monitoring based on vanadium oxide quantum dots-derived fluorescent strategy. Microchemical Journal, 2021, 170, 106702.	4.5	3
20	Bienzymatic synergism of vanadium oxide nanodots to efficiently eradicate drug-resistant bacteria during wound healing in vivo. Journal of Colloid and Interface Science, 2020, 559, 313-323.	9.4	58
21	Clinically colorimetric diagnostics of blood glucose levels based on vanadium oxide quantum dots enzyme mimics. Microchemical Journal, 2020, 153, 104352.	4.5	13
22	Ti ₃ C ₂ T _x MXene-derived TiO ₂ /C-QDs as oxidase mimics for the efficient diagnosis of glutathione in human serum. Journal of Materials Chemistry B, 2020, 8, 3513-3518.	5.8	54
23	Electrochemical generation of Fe3C/N-doped graphitic carbon nanozyme for efficient wound healing inÂvivo. Carbon, 2020, 159, 149-160.	10.3	60
24	Sulfur doped molybdenum oxide quantum dots as efficient fluorescent labels and bacteriostatic. Inorganic Chemistry Communication, 2020, 122, 108275.	3.9	9
25	Heterogeneous Fenton-like magnetic nanosphere coated with vanadium oxide quantum dots for enhanced organic dyes decolorization. Journal of Colloid and Interface Science, 2020, 579, 269-281.	9.4	19
26	Efficient inhibition of Salmonella on chestnuts via Fe3C/N-C bacteriostatic suspension prepared by electrochemical method. Inorganic Chemistry Communication, 2020, 118, 108034.	3.9	3
27	A MoFe nitrogenase-mimicking electrocatalyst for nitrogen fixation with high faradaic efficiency. Journal of Materials Chemistry A, 2020, 8, 19278-19282.	10.3	18
28	Electrochemistry in Carbonâ€based Quantum Dots. Chemistry - an Asian Journal, 2020, 15, 1214-1224.	3.3	31
29	Recognition of the Enzymatically Active and Inhibitive Oxygenous Groups on WO _{3â€"<i>x</i>} Quantum Dots by Chemical Deactivation and Density Functional Theory Calculations. ACS Applied Bio Materials, 2020, 3, 1459-1468.	4.6	6
30	Recent advances of MXene as promising catalysts for electrochemical nitrogen reduction reaction. Chinese Chemical Letters, 2020, 31, 953-960.	9.0	75
31	Rational Design of Hydroxylâ€Rich Ti ₃ C ₂ T _x MXene Quantum Dots for Highâ€Performance Electrochemical N ₂ Reduction. Advanced Energy Materials, 2020, 10, 2000797.	19.5	153
32	A simple and effective flexible electrochemiluminescence sensor for lidocaine detection. Electrochemistry Communications, 2020, 116, 106760.	4.7	17
33	Y-Shaped Circular Aptamer–DNAzyme Conjugates for Highly Efficient in Vivo Gene Silencing. CCS Chemistry, 2020, 2, 631-641.	7.8	17
34	An MnO ₂ –Ti ₃ C ₂ T _x MXene nanohybrid: an efficient and durable electrocatalyst toward artificial N ₂ fixation to NH ₃ under ambient conditions. Journal of Materials Chemistry A, 2019, 7, 18823-18827.	10.3	107
35	Molybdenum Disulfide Quantum Dots Prepared by Bipolar-Electrode Electrochemical Scissoring. Nanomaterials, 2019, 9, 906.	4.1	15
36	A rational strategy to develop a boron nitride quantum dot-based molecular logic gate and fluorescent assay of alkaline phosphatase activity. Journal of Materials Chemistry B, 2019, 7, 897-902.	5.8	27

3

#	Article	IF	CITATIONS
37	Ambient electrochemical N ₂ -to-NH ₃ fixation enabled by Nb ₂ O ₅ nanowire array. Inorganic Chemistry Frontiers, 2019, 6, 423-427.	6.0	49
38	Rational Design of Hierarchical SiO2@TiO2 Composite with Large Internal Void Space for High-Performance Microwave Absorption. Russian Journal of Physical Chemistry A, 2019, 93, 1128-1132.	0.6	5
39	WO ₃ nanosheets rich in oxygen vacancies for enhanced electrocatalytic N ₂ reduction to NH ₃ . Nanoscale, 2019, 11, 19274-19277.	5.6	84
40	One-step hydrothermal synthesis of fluorescent MXene-like titanium carbonitride quantum dots. Inorganic Chemistry Communication, 2019, 105, 151-157.	3.9	38
41	VO _{<i>x</i>} Quantum Dots with Multienzyme-Mimic Activities and the Application in Constructing a Three-Dimensional (3D) Coordinate System for Accurate Discrimination of the Hydrogen Peroxide over a Broad Concentration Range. Analytical Chemistry, 2019, 91, 5753-5761.	6.5	38
42	Highâ€Performance Electrocatalytic Conversion of N ₂ to NH ₃ Using Oxygenâ€Vacancyâ€Rich TiO ₂ In Situ Grown on Ti ₃ C ₂ T <i>>_x</i> MXene. Advanced Energy Materials, 2019, 9, 1803406.	19.5	346
43	Ultra-efficient electromagnetic wave absorption with ethanol-thermally treated two-dimensional Nb2CTx nanosheets. Journal of Colloid and Interface Science, 2019, 537, 306-315.	9.4	61
44	Low-Cost and Highly Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction: Environment-Friendly Three-Dimensional B, N Co-doped Graphene Aerogels. Electrocatalysis, 2019, 10, 56-62.	3.0	12
45	A signal amplification system constructed by bi-enzymes and bi-nanospheres for sensitive detection of norepinephrine and miRNA. Biosensors and Bioelectronics, 2019, 124-125, 224-232.	10.1	21
46	A versatile signal-enhanced ECL sensing platform based on molecular imprinting technique via PET-RAFT cross-linking polymerization using bifunctional ruthenium complex as both catalyst and sensing probes. Biosensors and Bioelectronics, 2019, 124-125, 15-24.	10.1	33
47	One-step electrochemical strategy for in-situ synthesis of S,N-codoped graphene as metal-free catalyst for oxygen reduction reaction. Carbon, 2018, 134, 316-325.	10.3	61
48	Two-dimensional titanium carbide (MXene)-based solid-state electrochemiluminescent sensor for label-free single-nucleotide mismatch discrimination in human urine. Sensors and Actuators B: Chemical, 2018, 263, 400-407.	7.8	101
49	Design of Enzyme Micelles with Controllable Concavoâ€Convex Micromorphologies for Highly Enhanced Stability and Catalytical Activity. Macromolecular Bioscience, 2018, 18, 1700312.	4.1	4
50	<i>In situ</i> development of amorphous Mn–Co–P shell on MnCo ₂ O ₄ nanowire array for superior oxygen evolution electrocatalysis in alkaline media. Chemical Communications, 2018, 54, 1077-1080.	4.1	49
51	Molybdenum oxide quantum dots prepared <i>via</i> a one-step stirring strategy and their application as fluorescent probes for pyrophosphate sensing and efficient antibacterial materials. Journal of Materials Chemistry B, 2018, 6, 3240-3245.	5.8	35
52	Electrochemically generated green-fluorescent N-doped carbon quantum dots for facile monitoring alkaline phosphatase activity based on the Fe3+-mediating ON-OFF-ON-OFF fluorescence principle. Carbon, 2018, 127, 340-348.	10.3	125
53	Recent progress in two-dimensional inorganic quantum dots. Chemical Society Reviews, 2018, 47, 586-625.	38.1	230
54	Preparation of Ti ₃ C ₂ T <i>>_x</i>) MXeneâ€Derived Quantum Dots with White/Blueâ€Emitting Photoluminescence and Electrochemiluminescence. Advanced Optical Materials, 2018, 6, 1800951.	7.3	68

#	Article	IF	CITATIONS
55	Generation of Vanadium Oxide Quantum Dots with Distinct Fluorescence and Antibacterial Activity via a Roomâ€√emperature Agitation Strategy. ChemNanoMat, 2018, 4, 1048-1053.	2.8	20
56	Ambient N2 fixation to NH3 at ambient conditions: Using Nb2O5 nanofiber as a high-performance electrocatalyst. Nano Energy, 2018, 52, 264-270.	16.0	331
57	Multifunctional solid-state electrochemiluminescent chemosensors and aptasensor with free-standing active sites based on task-specific pyrene-terminated polymers via RAFT polymerization. Analytica Chimica Acta, 2018, 1039, 31-40.	5.4	8
58	Solvent-regulated preparation of well-intercalated Ti ₃ C ₂ T _x MXene nanosheets and application for highly effective electromagnetic wave absorption. Nanotechnology, 2018, 29, 355201.	2.6	62
59	Enzymatic bioactivity investigation of glucose oxidase modified with hydrophilic or hydrophobic polymers via in situ RAFT polymerization. Journal of Polymer Science Part A, 2017, 55, 1289-1293.	2.3	7
60	Simultaneous Synthesis of WO _{3â^'} <i>_x</i> Quantum Dots and Bundleâ€Like Nanowires Using a Oneâ€Pot Templateâ€Free Solvothermal Strategy and Their Versatile Applications. Small, 2017, 13, 1603689.	10.0	85
61	Controllable electrochemical/electroanalytical approach to generate nitrogen-doped carbon quantum dots from varied amino acids: pinpointing the utmost quantum yield and the versatile photoluminescent and electrochemiluminescent applications. Electrochimica Acta, 2017, 236, 239-251.	5.2	62
62	Boron Nitride Quantum Dots with Solventâ€Regulated Blue/Green Photoluminescence and Electrochemiluminescent Behavior for Versatile Applications. Advanced Optical Materials, 2017, 5, 1600661.	7.3	82
63	Simultaneous Enhancement of Bioactivity and Stability of Laccase by Cu ²⁺ /PAA/PPEGA Matrix for Efficient Biosensing and Recyclable Decontamination of Pyrocatechol. Analytical Chemistry, 2017, 89, 2065-2072.	6.5	48
64	Efficient and Facile Fabrication of Glucose Biosensor Based on Electrochemically Etched Porous HOPG Platform. Electroanalysis, 2017, 29, 944-949.	2.9	4
65	Enhanced-quantum yield sulfur/nitrogen co-doped fluorescent carbon nanodots produced from biomass Enteromorpha prolifera: synthesis, posttreatment, applications and mechanism study. Scientific Reports, 2017, 7, 4499.	3.3	57
66	Monolithically integrated CoP nanowire array: An on/off switch for effective on-demand hydrogen generation via hydrolysis of NaBH4 and NH3BH3. Nano Research, 2017, 10, 595-604.	10.4	67
67	A novel method to decorate Au clusters onto graphene via a mild co-reduction process for ultrahigh catalytic activity. Journal of Materials Chemistry A, 2017, 5, 230-239.	10.3	65
68	Graphene as Transparent Electrodes: Fabrication and New Emerging Applications. Small, 2016, 12, 1400-1419.	10.0	155
69	Lab-on-paper micro- and nano-analytical devices: Fabrication, modification, detection and emerging applications. Mikrochimica Acta, 2016, 183, 1521-1542.	5.0	110
70	Multifunctional N,S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon, 2016, 104, 169-178.	10.3	308
71	Cobalt Carbonate Hydroxide Nanowire Array on Ti Mesh: An Efficient and Robust 3D Catalyst for Onâ€Demand Hydrogen Generation from Alkaline NaBH ₄ Solution. Chemistry - A European Journal, 2016, 22, 14831-14835.	3.3	25
72	Simultaneous utilization of a bifunctional ruthenium complex as an efficient catalyst for RAFT controlled photopolymerization and a sensing probe for the facile fabrication of an ECL platform. Polymer Chemistry, 2016, 7, 5880-5887.	3.9	12

#	Article	IF	CITATIONS
73	Facile Fabrication of Solidâ€state Electrochemiluminescence Sensor via Nonâ€covalent Ï€â€Ï€ Stacking and Covalent Bonding on Graphite Electrode. Electroanalysis, 2016, 28, 936-939.	2.9	8
74	Well-controlled preparation of evenly distributed nanoporous HOPG surface via diazonium salt assisted electrochemical etching process. Carbon, 2016, 102, 419-425.	10.3	12
75	Bottom-up electrochemical preparation of solid-state carbon nanodots directly from nitriles/ionic liquids using carbon-free electrodes and the applications in specific ferric ion detection and cell imaging. Nanoscale, 2016, 8, 5470-5477.	5.6	66
76	Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging. Analyst, The, 2016, 141, 2657-2664.	3.5	226
77	One-step preparation of graphene nanosheets via ball milling of graphite and the application in lithium-ion batteries. Journal of Materials Science, 2016, 51, 3675-3683.	3.7	58
78	Electron transfer study on graphene modified glassy carbon substrate via electrochemical reduction and the application for tris(2,2′-bipyridyl)ruthenium(II) electrochemiluminescence sensor fabrication. Talanta, 2015, 139, 6-12.	5.5	14
79	Graphene/tri-block copolymer composites prepared via RAFT polymerizations for dual controlled drug delivery via pH stimulation and biodegradation. European Polymer Journal, 2015, 69, 559-572.	5.4	43
80	A highly conductive porous graphene electrode prepared via in situ reduction of graphene oxide using Cu nanoparticles for the fabrication of high performance supercapacitors. RSC Advances, 2015, 5, 54275-54282.	3.6	85
81	Graphene nanodots encaged 3-D gold substrate as enzyme loading platform for the fabrication of high performance biosensors. Sensors and Actuators B: Chemical, 2015, 220, 1186-1195.	7.8	27
82	Chip-based generation of carbon nanodots via electrochemical oxidation of screen printed carbon electrodes and the applications for efficient cell imaging and electrochemiluminescence enhancement. Nanoscale, 2015, 7, 9421-9426.	5.6	25
83	Graphene nanodots-encaged porous gold electrode fabricated via ion beam sputtering deposition for electrochemical analysis of heavy metal ions. Sensors and Actuators B: Chemical, 2015, 206, 592-600.	7.8	58
84	Precise, fast, and flexible determination of protein interactions by affinity capillary electrophoresis: <scp>P</scp> art 3: <scp>A</scp> nions. Electrophoresis, 2014, 35, 2203-2212.	2.4	12
85	New Design forDetection Cell Applied in Magnetic Particleâ€Based Electrochemiluminescence Assays. Electroanalysis, 2014, 26, 2563-2566.	2.9	0
86	Applications of electrochemical techniques in mineral analysis. Talanta, 2014, 127, 211-218.	5.5	22
87	Applications of carbon quantum dots in electrochemiluminescence: A mini review. Electrochemistry Communications, 2014, 48, 151-154.	4.7	158
88	One-step process for fabricating paper-based solid-state electrochemiluminescence sensor based on functionalized graphene. Electrochemistry Communications, 2014, 38, 57-60.	4.7	31
89	Paper-based solid-state electrochemiluminescence sensor using poly(sodium 4-styrenesulfonate) functionalized graphene/nafion composite film. Analytica Chimica Acta, 2013, 763, 20-27.	5.4	48
90	Discovered triethylamine as impurity in synthetic DNAs for and by electrochemiluminescence techniques. Talanta, 2013, 116, 308-314.	5.5	15

#	Article	IF	CITATION
91	Highly porous magnetite/graphene nanocomposites for a solid-state electrochemiluminescence sensor on paper-based chips. Analytical and Bioanalytical Chemistry, 2013, 405, 3549-3558.	3.7	30
92	Electrochemical biosensors based on magnetic micro/nano particles. Electrochimica Acta, 2012, 84, 62-73.	5.2	107
93	Review: Aptamers in microfluidic chips. Analytica Chimica Acta, 2010, 683, 12-20.	5.4	79
94	Successful establishment of MEKC with electrochemiluminescence detection based on one functionalized ionic liquid. Electrophoresis, 2009, 30, 365-371.	2.4	26
95	Ionic liquids used in and analyzed by capillary and microchip electrophoresis. Journal of Chromatography A, 2009, 1216, 4817-4823.	3.7	45
96	Solid-state electrochemiluminescence sensor based on the Nafion/poly(sodium 4-styrene sulfonate) composite film. Talanta, 2009, 79, 454-459.	5.5	26
97	Sensitive, labelâ€free protein assay using 1â€ethylâ€3â€methylimidazolium tetrafluoroborateâ€supported microchip electrophoresis with laserâ€induced fluorescence detection. Electrophoresis, 2008, 29, 1852-1858.	2.4	17
98	Ionic liquids supported growth of highly ordered microdroplets induced by fluidic leakage at poly(dimethylsiloxane) interfaces. Analytica Chimica Acta, 2008, 625, 35-40.	5.4	2
99	Microchip micellar electrokinetic chromatography based on one functionalized ionic liquid and its excellent performance on proteins separation. Journal of Chromatography A, 2008, 1207, 175-180.	3.7	46
100	Analysis of quinolizidine alkaloids in Sophora flavescens Ait. by capillary electrophoresis with tris(2,2′-bipyridyl) ruthenium (II)-based electrochemiluminescence detection. Talanta, 2008, 75, 38-42.	5. 5	46
101	Capillary Electrophoresis-Amperometric Determination of Antioxidant Propyl Gallate and Butylated Hydroxyanisole in Foods. Analytical Sciences, 2007, 23, 713-717.	1.6	27
102	Enhanced electrochemiluminescence sensor from tris(2,2′-bipyridyl)ruthenium(ii) incorporated into MCM-41 and an ionic liquid-based carbon paste electrode. Analyst, The, 2007, 132, 687-691.	3.5	44
103	Electrochemiluminescence Sensor Based on Partial Sulfonation of Polystyrene with Carbon Nanotubes. Analytical Chemistry, 2007, 79, 5439-5443.	6.5	82
104	lonic liquidâ€essisted PDMS microchannel modification for efficiently resolving fluorescent dye and protein adsorption. Electrophoresis, 2007, 28, 4597-4605.	2.4	38
105	Field-amplified sample stacking capillary electrophoresis with electrochemiluminescence applied to the determination of illicit drugs on banknotes. Journal of Chromatography A, 2006, 1115, 260-266.	3.7	67