Michael C Wimberly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7922781/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent land use change in the Western Corn Belt threatens grasslands and wetlands. Proceedings of the United States of America, 2013, 110, 4134-4139.	3.3	713
2	Associations of supermarket accessibility with obesity and fruit and vegetable consumption in the conterminous United States. International Journal of Health Geographics, 2010, 9, 49.	1.2	159
3	Simulating Historical Variability in the Amount of Old Forests in the Oregon Coast Range. Conservation Biology, 2000, 14, 167-180.	2.4	140
4	Factors Affecting the Geographic Distribution of West Nile Virus in Georgia, USA: 2002–2004. Vector-Borne and Zoonotic Diseases, 2006, 6, 73-82.	0.6	122
5	Climateâ€driven global changes in carbon use efficiency. Global Ecology and Biogeography, 2014, 23, 144-155.	2.7	111
6	Assessment of fire severity and species diversity in the southern Appalachians using Landsat TM and ETM+ imagery. Remote Sensing of Environment, 2007, 108, 189-197.	4.6	108
7	Estimation of wildfire size and risk changes due to fuels treatments. International Journal of Wildland Fire, 2012, 21, 357.	1.0	108
8	Influences of forest roads on the spatial patterns of human- and lightning-caused wildfire ignitions. Applied Geography, 2012, 32, 878-888.	1.7	97
9	Remote sensing-based time series models for malaria early warning in the highlands of Ethiopia. Malaria Journal, 2012, 11, 165.	0.8	91
10	Distance-dependent and distance-independent models of Douglas-fir and western hemlock basal area growth following silvicultural treatment. Forest Ecology and Management, 1996, 89, 1-11.	1.4	79
11	Cropland expansion and grassland loss in the eastern Dakotas: New insights from a farm-level survey. Land Use Policy, 2017, 63, 160-173.	2.5	79
12	INFLUENCES OF ENVIRONMENT AND DISTURBANCE ON FOREST PATTERNS IN COASTAL OREGON WATERSHEDS. Ecology, 2001, 82, 1443-1459.	1.5	77
13	Direct and indirect effects of climate change on projected future fire regimes in the western United States. Science of the Total Environment, 2016, 542, 65-75.	3.9	76
14	Assessing fuel treatment effectiveness using satellite imagery and spatial statistics. Ecological Applications, 2009, 19, 1377-1384.	1.8	75
15	Grassland connectivity in fragmented agricultural landscapes of the north-central United States. Biological Conservation, 2018, 217, 121-130.	1.9	75
16	A multi-scale assessment of human and environmental constraints on forest land cover change on the Oregon (USA) coast range. Landscape Ecology, 2004, 19, 631-646.	1.9	71
17	Species Dynamics in Disturbed Landscapes: When does a Shifting Habitat Mosaic Enhance Connectivity?. Landscape Ecology, 2006, 21, 35-46.	1.9	71
18	Mapping wildland fuels and forest structure for land management: a comparison of nearest neighbor imputation and other methods. Canadian Journal of Forest Research, 2009, 39, 1901-1916.	0.8	69

#	Article	IF	CITATIONS
19	Weather and Land Cover Influences on Mosquito Populations in Sioux Falls, South Dakota. Journal of Medical Entomology, 2011, 48, 669-679.	0.9	67
20	Spatial Patterns of Obesity and Associated Risk Factors in the Conterminous U.S American Journal of Preventive Medicine, 2010, 39, e1-e12.	1.6	65
21	Spatial simulation of historical landscape patterns in coastal forests of the Pacific Northwest. Canadian Journal of Forest Research, 2002, 32, 1316-1328.	0.8	62
22	Regional Variation of Climatic Influences on West Nile Virus Outbreaks in the United States. American Journal of Tropical Medicine and Hygiene, 2014, 91, 677-684.	0.6	61
23	Divergent projections of future land use in the United States arising from different models and scenarios. Ecological Modelling, 2016, 337, 281-297.	1.2	61
24	Wildfire effects on plant species richness at multiple spatial scales in forest communities of the southern Appalachians. Journal of Ecology, 2006, 94, 118-130.	1.9	56
25	Ecological Niche of the 2003 West Nile Virus Epidemic in the Northern Great Plains of the United States. PLoS ONE, 2008, 3, e3744.	1.1	56
26	Seasonal associations of climatic drivers and malaria in the highlands of Ethiopia. Parasites and Vectors, 2015, 8, 339.	1.0	56
27	Remote Sensing of Climatic Anomalies and West Nile Virus Incidence in the Northern Great Plains of the United States. PLoS ONE, 2012, 7, e46882.	1.1	55
28	Satellite microwave remote sensing for environmental modeling of mosquito population dynamics. Remote Sensing of Environment, 2012, 125, 147-156.	4.6	52
29	Spatial heterogeneity of climate and landâ€cover constraints on distributions of tickâ€borne pathogens. Global Ecology and Biogeography, 2008, 17, 189-202.	2.7	50
30	Climatic and genetic controls of yields of switchgrass, a model bioenergy species. Agriculture, Ecosystems and Environment, 2012, 146, 121-129.	2.5	50
31	Influences of forest roads on the spatial pattern of wildfire boundaries. International Journal of Wildland Fire, 2011, 20, 792.	1.0	46
32	Natural Environments, Obesity, and Physical Activity in Nonmetropolitan Areas of the United States. Journal of Rural Health, 2012, 28, 398-407.	1.6	46
33	Interactions of climate, fire, and management in future forests of the Pacific Northwest. Forest Ecology and Management, 2014, 327, 270-279.	1.4	43
34	Landscape-Level Spatial Patterns of West Nile Virus Risk in the Northern Great Plains. American Journal of Tropical Medicine and Hygiene, 2012, 86, 724-731.	0.6	40
35	Climate change and wildfire risk in an expanding wildland–urban interface: a case study from the Colorado Front Range Corridor. Landscape Ecology, 2015, 30, 1943-1957	1.9	39
36	Land cover affects microclimate and temperature suitability for arbovirus transmission in an urban landscape. PLoS Neglected Tropical Diseases, 2020, 14, e0008614.	1.3	39

#	Article	IF	CITATIONS
37	Enhanced spatial models for predicting the geographic distributions of tick-borne pathogens. International Journal of Health Geographics, 2008, 7, 15.	1.2	37
38	SPATIAL ANALYSIS OF THE DISTRIBUTION OF EHRLICHIA CHAFFEENSIS, CAUSATIVE AGENT OF HUMAN MONOCYTOTROPIC EHRLICHIOSIS, ACROSS A MULTI-STATE REGION. American Journal of Tropical Medicine and Hygiene, 2005, 72, 840-850.	0.6	37
39	Climatic and Landscape Influences on Fire Regimes from 1984 to 2010 in the Western United States. PLoS ONE, 2015, 10, e0140839.	1.1	36
40	Improving the prediction of arbovirus outbreaks: A comparison of climate-driven models for West Nile virus in an endemic region of the United States. Acta Tropica, 2018, 185, 242-250.	0.9	34
41	Satellite Observations and Malaria: New Opportunities for Research and Applications. Trends in Parasitology, 2021, 37, 525-537.	1.5	34
42	Fire and forest landscapes in the Georgia Piedmont: an assessment of spatial modeling assumptions. Ecological Modelling, 2004, 180, 41-56.	1.2	33
43	Integrating malaria surveillance with climate data for outbreak detection and forecasting: the EPIDEMIA system. Malaria Journal, 2017, 16, 89.	0.8	30
44	Determinants of Motives for Land Use Decisions at the Margins of the Corn Belt. Ecological Economics, 2017, 134, 227-237.	2.9	29
45	Vegetation Dynamics in the Upper Guinean Forest Region of West Africa from 2001 to 2015. Remote Sensing, 2017, 9, 5.	1.8	26
46	Forest degradation promotes fire during drought in moist tropical forests of Ghana. Forest Ecology and Management, 2019, 440, 158-168.	1.4	26
47	Integrating Environmental Monitoring and Mosquito Surveillance to Predict Vector-borne Disease: Prospective Forecasts of a West Nile Virus Outbreak. PLOS Currents, 2017, 9, .	1.4	26
48	Spatial synchrony of malaria outbreaks in a highland region of Ethiopia. Tropical Medicine and International Health, 2012, 17, 1192-1201.	1.0	25
49	Fire regimes and forest resilience: alternative vegetation states in the West African tropics. Landscape Ecology, 2017, 32, 1849-1865.	1.9	25
50	Software to facilitate remote sensing data access for disease early warning systems. Environmental Modelling and Software, 2015, 74, 247-257.	1.9	23
51	Geographic variability in geocoding success for West Nile virus cases in South Dakota. Health and Place, 2009, 15, 1108-1114.	1.5	22
52	Historical fire and vegetation dynamics in dry forests of the interior Pacific Northwest, USA, and relationships to Northern Spotted Owl (Strix occidentalis caurina) habitat conservation. Forest Ecology and Management, 2009, 258, 554-566.	1.4	22
53	Spatio-Temporal Epidemiology of Human West Nile Virus Disease in South Dakota. International Journal of Environmental Research and Public Health, 2013, 10, 5584-5602.	1.2	22
54	Fire Regimes and Their Drivers in the Upper Guinean Region of West Africa. Remote Sensing, 2017, 9, 1117.	1.8	22

#	Article	IF	CITATIONS
55	A proposed framework for the development and qualitative evaluation of West Nile virus models and their application to local public health decision-making. PLoS Neglected Tropical Diseases, 2021, 15, e0009653.	1.3	22
56	Multisensor earth observations to characterize wetlands and malaria epidemiology in Ethiopia. Water Resources Research, 2014, 50, 8791-8806.	1.7	21
57	Assessment of Forest Degradation in Vietnam Using Landsat Time Series Data. Forests, 2017, 8, 238.	0.9	21
58	Wildfire effects on Î ² -diversity and species turnover in a forested landscape. Journal of Vegetation Science, 2006, 17, 447.	1.1	21
59	Identifying Environmental Risk Factors and Mapping the Distribution of West Nile Virus in an Endemic Region of North America. GeoHealth, 2018, 2, 395-409.	1.9	20
60	Spatial and temporal heterogeneity of agricultural fires in the central United States in relation to land cover and land use. Landscape Ecology, 2011, 26, 211-224.	1.9	19
61	A genetic algorithm for identifying spatially-varying environmental drivers in a malaria time series model. Environmental Modelling and Software, 2019, 119, 275-284.	1.9	19
62	Habitat Factors Influencing Distributions of <i>Anaplasma phagocytophilum</i> and <i>Ehrlichia chaffeensis</i> in the Mississippi Alluvial Valley. Vector-Borne and Zoonotic Diseases, 2007, 7, 563-574.	0.6	17
63	Addressing the interplay of poverty and the ecology of landscapes: a Grand Challenge Topic for landscape ecologists?. Landscape Ecology, 2010, 25, 5-16.	1.9	17
64	Interannual variability of crop residue potential in the north central region of the United States. Biomass and Bioenergy, 2013, 49, 231-238.	2.9	16
65	Spatially explicit modeling of mixed-severity fire regimes and landscape dynamics. Forest Ecology and Management, 2008, 254, 511-523.	1.4	15
66	Evapotranspiration in the Nile Basin: Identifying Dynamics and Drivers, 2002–2011. Water (Switzerland), 2015, 7, 4914-4931.	1.2	15
67	Spatial pattern of pika holes and their effects on vegetation coverage on the Tibetan Plateau: An analysis using unmanned aerial vehicle imagery. Ecological Indicators, 2019, 107, 105551.	2.6	15
68	The food environment and adult obesity in US metropolitan areas. Geospatial Health, 2015, 10, 368.	0.3	14
69	Habitat and prey availability attributes associated with juvenile and early adult pallid sturgeon occurrence in the Missouri River, USA. Endangered Species Research, 2012, 16, 225-234.	1.2	14
70	Wildfire effects on ßâ€diversity and species turnover in a forested landscape. Journal of Vegetation Science, 2006, 17, 447-454.	1.1	13
71	Response of switchgrass yield to future climate change. Environmental Research Letters, 2012, 7, 045903.	2.2	13
72	Remote sensing of environmental risk factors for malaria in different geographic contexts. International Journal of Health Geographics, 2021, 20, 28.	1.2	13

#	Article	IF	CITATIONS
73	Historical trends of degradation, loss, and recovery in the tropical forest reserves of Ghana. International Journal of Digital Earth, 2022, 15, 30-51.	1.6	13
74	Historical range of variability in live and dead wood biomass: a regional-scale simulation study. Canadian Journal of Forest Research, 2007, 37, 2349-2364.	0.8	12
75	Influences of forest roads and their edge effects on the spatial pattern of burn severity. International Journal of Applied Earth Observation and Geoinformation, 2013, 23, 62-70.	1.4	11
76	Patterns of tree-cover loss along the Indonesia–Malaysia border on Borneo. International Journal of Remote Sensing, 2013, 34, 5748-5760.	1.3	11
77	Spatial analysis of the distribution of Ehrlichia chaffeensis, causative agent of human monocytotropic ehrlichiosis, across a multi-state region. American Journal of Tropical Medicine and Hygiene, 2005, 72, 840-50.	0.6	11
78	Rapid assessment of juniper distribution in prairie landscapes of the northern Great Plains. International Journal of Applied Earth Observation and Geoinformation, 2019, 83, 101946.	1.4	10
79	Landscape- vs Gap-level Controls on the Abundance of a Fire-sensitive, Late-successional Tree Species. Ecosystems, 2002, 5, 232-243.	1.6	7
80	Spatial Analysis of Northern Goshawk Territories in the Black Hills, South Dakota. Condor, 2012, 114, 532-543.	0.7	7
81	Epidemic West Nile Virus Infection Rates and Endemic Population Dynamics Among South Dakota Mosquitoes: A 15-yr Study from the United States Northern Great Plains. Journal of Medical Entomology, 2020, 57, 862-871.	0.9	7
82	Comparing malaria early detection methods in a declining transmission setting in northwestern Ethiopia. BMC Public Health, 2021, 21, 788.	1.2	7
83	Spatial analysis of pallid sturgeon <i>Scaphirhynchus albus</i> distribution in the Missouri River, South Dakota. Journal of Applied Ichthyology, 2009, 25, 8-13.	0.3	6
84	Reply to Kline et al.: Cropland data layer provides a valid assessment of recent grassland conversion in the Western Corn Belt. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2864.	3.3	6
85	Evaluation of Remotely Sensed and Interpolated Environmental Datasets for Vector-Borne Disease Monitoring Using In Situ Observations over the Amhara Region, Ethiopia. Sensors, 2020, 20, 1316.	2.1	6
86	Cloud-based applications for accessing satellite Earth observations to support malaria early warning. Scientific Data, 2022, 9, 208.	2.4	6
87	Simulating Forest Landscape Disturbances as Coupled Human and Natural Systems. , 2015, , 233-261.		5
88	Understanding Landscapes Through Spatial Modeling. World Forests, 2012, , 111-128.	0.1	3
89	Permethrin Susceptibility for the Vector <i> Culex tarsalis</i> and a Nuisance Mosquito <i> Aedes vexans</i> in an Area Endemic for West Nile Virus. BioMed Research International, 2018, 2018, 1-7.	0.9	3
90	On the construction of eastweb framework — A plug-in framework for processing earth observation data streams. , 2014, , .		2

#	Article	IF	CITATIONS
91	Estimating the Potential for Forest Degradation in the Eastern United States Woodlands from an Introduction of Sudden Oak Death. Forests, 2020, 11, 1334.	0.9	2
92	Hydro-Epidemiology of the Nile Basin: Understanding the Complex Linkages Between Water and Infectious Diseases. , 2014, , 219-233.		2
93	A GeoHealth Response to a Geoscience Community Climate Change Position Statement. GeoHealth, 2020, 4, e2020CH000265.	1.9	1
94	Predictive Mapping of Low-Density Juniper Stands in Prairie Landscapes of the Northern Great Plains. Rangeland Ecology and Management, 2022, 83, 81-90.	1.1	1
95	On the construction of framework of web-based atlas (FWA). , 2010, , .		0
96	Building Geospatial Health Applications from the EASTWeb Framework. Communications in Computer and Information Science, 2017, , 451-464.	0.4	0