Jeehye Byun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7922231/publications.pdf Version: 2024-02-01

		430874	454955
31	1,724	18	30
papers	citations	h-index	g-index
32	32	32	2479
all docs	docs citations	times ranked	citing authors

IFFHVF RVIIN

#	Article	IF	CITATIONS
1	Carbon Dioxide Capture Adsorbents: Chemistry and Methods. ChemSusChem, 2017, 10, 1303-1317.	6.8	313
2	Asymmetric Covalent Triazine Framework for Enhanced Visibleâ€Light Photoredox Catalysis via Energy Transfer Cascade. Angewandte Chemie - International Edition, 2018, 57, 8316-8320.	13.8	169
3	Highly Stable Nanoporous Sulfurâ€Bridged Covalent Organic Polymers for Carbon Dioxide Removal. Advanced Functional Materials, 2013, 23, 2270-2276.	14.9	135
4	Charge-specific size-dependent separation of water-soluble organic molecules by fluorinated nanoporous networks. Nature Communications, 2016, 7, 13377.	12.8	132
5	Designing conjugated porous polymers for visible light-driven photocatalytic chemical transformations. Materials Horizons, 2020, 7, 15-31.	12.2	130
6	Poly(benzothiadiazoles) and Their Derivatives as Heterogeneous Photocatalysts for Visible-Light-Driven Chemical Transformations. ACS Catalysis, 2018, 8, 4735-4750.	11.2	119
7	Highly Efficient Catalytic Cyclic Carbonate Formation by Pyridyl Salicylimines. ACS Applied Materials & Interfaces, 2018, 10, 9478-9484.	8.0	103
8	Nanoporous covalent organic polymers incorporating Tröger's base functionalities for enhanced CO ₂ capture. Journal of Materials Chemistry A, 2014, 2, 12507.	10.3	90
9	CO ₂ â€Triggered Switchable Hydrophilicity of a Heterogeneous Conjugated Polymer Photocatalyst for Enhanced Catalytic Activity in Water. Angewandte Chemie - International Edition, 2018, 57, 2967-2971.	13.8	85
10	Conjugated Polymer Hydrogel Photocatalysts with Expandable Photoactive Sites in Water. Chemistry of Materials, 2019, 31, 3381-3387.	6.7	47
11	Observation of the wrapping mechanism in amine carbon dioxide molecular interactions on heterogeneous sorbents. Physical Chemistry Chemical Physics, 2016, 18, 14177-14181.	2.8	42
12	Rapid extraction of uranium ions from seawater using novel porous polymeric adsorbents. RSC Advances, 2016, 6, 45968-45976.	3.6	38
13	Nanoporous networks as effective stabilisation matrices for nanoscale zero-valent iron and groundwater pollutant removal. Journal of Materials Chemistry A, 2016, 4, 632-639.	10.3	36
14	Hydrophilic photocatalytic membrane via grafting conjugated polyelectrolyte for visible-light-driven biofouling control. Applied Catalysis B: Environmental, 2021, 282, 119587.	20.2	33
15	Reversible water capture by a charged metal-free porous polymer. Polymer, 2017, 126, 308-313.	3.8	33
16	N-Rich Carbon Catalysts with Economic Feasibility for the Selective Oxidation of Hydrogen Sulfide to Sulfur. Environmental Science & Technology, 2020, 54, 12621-12630.	10.0	26
17	Quantitative evaluation of the antibacterial factors of ZnO nanorod arrays under dark conditions: Physical and chemical effects on Escherichia coli inactivation. Science of the Total Environment, 2020, 712, 136574.	8.0	25
18	Controllable Homogeneity/Heterogeneity Switch of Imidazolium Ionic Liquids for CO ₂ Utilization. ChemCatChem, 2018, 10, 4610-4616.	3.7	22

Јеенуе Вуил

#	Article	IF	CITATIONS
19	Arsenic removal by magnetic nanocrystalline barium hexaferrite. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	18
20	Nanoporous networks as caging supports for uniform, surfactant-free Co ₃ O ₄ nanocrystals and their applications in energy storage and conversion. Journal of Materials Chemistry A, 2015, 3, 15489-15497.	10.3	18
21	Synthesis and Easy Functionalization of Highly Porous Networks through Exchangeable Fluorines for Target Specific Applications. Chemistry of Materials, 2016, 28, 5592-5595.	6.7	18
22	Optimization of coagulation and sedimentation conditions by turbidity measurement for nano- and microplastic removal. Chemosphere, 2022, 306, 135572.	8.2	18
23	Controllable porous membrane actuator by gradient infiltration of conducting polymers. Journal of Materials Chemistry A, 2021, 9, 5007-5015.	10.3	17
24	Magnetic BaFe12O19 nanofiber filter for effective separation of Fe3O4 nanoparticles and removal of arsenic. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	13
25	CO ₂ â€ausgelöste schaltbare Hydrophilie von heterogen konjugierten Polymerphotokatalysatoren für verbesserte katalytische AktivitÃ∉in Wasser. Angewandte Chemie, 2018, 130, 3019-3023.	2.0	10
26	Incorporation of Metal Active Sites on Porous Polycarbazoles for Photocatalytic CO ₂ Reduction. ChemCatChem, 2022, 14, .	3.7	10
27	Multifunctional photo-Fenton-active membrane for solar-driven water purification. Journal of Membrane Science, 2022, 660, 120832.	8.2	10
28	Magnetic Conjugated Polymer Nanoparticles with Tunable Wettability for Versatile Photocatalysis under Visible Light. , 2020, 2, 557-562.		5
29	Beyond the batch: Process and material design of polymeric photocatalysts for flow photochemistry. Chem Catalysis, 2021, 1, 771-781.	6.1	5
30	Processing nanoporous organic polymers in liquid amines. Beilstein Journal of Nanotechnology, 2019, 10, 1844-1850.	2.8	3
31	Changes in levels of N-nitrosamine formed from amine-containing compounds during chloramination via photocatalytic pretreatment with immobilized TiO2: Effect of source water and pH. Journal of Hazardous Materials, 2022, 424, 127398.	12.4	1