Vasilios I Manousiouthakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7922147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of mass exchange networks. AICHE Journal, 1989, 35, 1233-1244.	1.8	622
2	Automatic synthesis of mass-exchange networks with single-component targets. Chemical Engineering Science, 1990, 45, 2813-2831.	1.9	224
3	Simultaneous synthesis of mass-exchange and regeneration networks. AICHE Journal, 1990, 36, 1209-1219.	1.8	156
4	Strict detailed balance is unnecessary in Monte Carlo simulation. Journal of Chemical Physics, 1999, 110, 2753-2756.	1.2	141
5	Mass/heat-exchange network representation of distillation networks. AICHE Journal, 1992, 38, 1769-1800.	1.8	121
6	Synthesis of decentralized process control structures using the concept of block relative gain. AICHE Journal, 1986, 32, 991-1003.	1.8	118
7	On the theory of optimal sensor placement. AICHE Journal, 2002, 48, 1001-1012.	1.8	113
8	On the state space approach to mass/heat exchanger network design**First presented in the 1990 Annual AIChE Meeting in Chicago, paper #22d Chemical Engineering Science, 1998, 53, 2595-2621.	1.9	76
9	A GLOBAL OPTIMIZATION APPROACH TO RATIONALLY CONSTRAINED RATIONAL PROGRAMMING. Chemical Engineering Communications, 1992, 115, 127-147.	1.5	63
10	Infinite DimEnsionAl State-space approach to reactor network synthesis: application to attainable region construction. Computers and Chemical Engineering, 2002, 26, 849-862.	2.0	52
11	Euclidean condition and block relative gain: Connections, conjectures, and clarifications. IEEE Transactions on Automatic Control, 1987, 32, 405-407.	3.6	49
12	IDEAS approach to process network synthesis: Application to multicomponent MEN. AICHE Journal, 2000, 46, 2408-2416.	1.8	49
13	Minimum hot/cold/electric utility cost for heat exchange networks. Computers and Chemical Engineering, 2002, 26, 3-16.	2.0	49
14	A Review of Sustainability Assessment Models as System of Systems. IEEE Systems Journal, 2010, 4, 15-25.	2.9	42
15	Heat and Power Integration of Methane Reforming Based Hydrogen Productionâ€. Industrial & Engineering Chemistry Research, 2005, 44, 9113-9119.	1.8	38
16	The Shrink–Wrap algorithm for the construction of the attainable region: an application of the IDEAS framework. Computers and Chemical Engineering, 2004, 28, 1563-1575.	2.0	37
17	On constrained infinite-time nonlinear optimal control. Chemical Engineering Science, 2002, 57, 105-114.	1.9	36
18	Dually driven radio frequency plasma simulation with a three moment model. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 2162-2172.	0.9	34

#	Article	IF	CITATIONS
19	Process intensification of reactive separator networks through the IDEAS conceptual framework. Computers and Chemical Engineering, 2017, 105, 39-55.	2.0	33
20	Non-ideal reactor network synthesis through IDEAS: Attainable region construction. Chemical Engineering Science, 2006, 61, 6936-6945.	1.9	31
21	Waste reduction through multicomponent mass exchange network synthesis. Computers and Chemical Engineering, 1994, 18, S585-S590.	2.0	30
22	Hydrogen car fill-up process modeling and simulation. International Journal of Hydrogen Energy, 2013, 38, 3401-3418.	3.8	30
23	IDEAS approach to process network synthesis: minimum utility cost for complex distillation networks. Chemical Engineering Science, 2002, 57, 3095-3106.	1.9	28
24	Global optimization of reactive distillation networks using IDEAS. Computers and Chemical Engineering, 2004, 28, 2509-2521.	2.0	27
25	A carbon molecular sieve membrane-based reactive separation process for pre-combustion CO2 capture. Journal of Membrane Science, 2020, 605, 118028.	4.1	27
26	Variable density fluid reactor network synthesis—Construction of the attainable region through the IDEAS approach. Chemical Engineering Journal, 2007, 129, 91-103.	6.6	25
27	Infinite DimEnsionAl State-space as a systematic process intensification tool: Energetic intensification of hydrogen production. Chemical Engineering Research and Design, 2017, 120, 372-395.	2.7	25
28	On dimensionality of attainable region construction for isothermal reactor networks. Computers and Chemical Engineering, 2008, 32, 439-450.	2.0	24
29	Conversion targets for plug flow membrane reactors. Chemical Engineering Science, 1999, 54, 2979-2984.	1.9	23
30	Natural gas based hydrogen production with zero carbon dioxide emissions. International Journal of Hydrogen Energy, 2011, 36, 12853-12868.	3.8	22
31	Minimum utility cost of mass exchange networks with variable single component supplies and targets. Industrial & Engineering Chemistry Research, 1993, 32, 1937-1950.	1.8	21
32	On an Implicit ENO Scheme. Journal of Computational Physics, 1994, 115, 376-389.	1.9	21
33	A stochastic approach to global optimization of chemical processes. Computers and Chemical Engineering, 1999, 23, 1351-1356.	2.0	21
34	Simulation of a three-moment fluid model of a two-dimensional radio frequency discharge. Chemical Engineering Science, 1996, 51, 1089-1106.	1.9	20
35	Facile Synthesis of Flame Spray Pyrolysis-Derived Magnesium Oxide Nanoparticles for CO ₂ Sorption: Effect of Precursors, Morphology, and Structural Properties. Industrial & Engineering Chemistry Research, 2018, 57, 9054-9061.	1.8	20
36	Membrane-based reactive separations for process intensification during power generation. Catalysis Today, 2019, 331, 18-29.	2.2	20

#	Article	IF	CITATIONS
37	On the parametrization of all decentralized stabilizing controllers. Systems and Control Letters, 1993, 21, 397-403.	1.3	19
38	IDEAS Approach to Process Network Synthesis:Â Minimum Plate Area for Complex Distillation Networks with Fixed Utility Costâ€. Industrial & Engineering Chemistry Research, 2002, 41, 4984-4992.	1.8	19
39	Infinite-Dimensional State-Space (IDEAS) Approach to Globally Optimal Design of Distillation Networks Featuring Heat and Power Integration. Industrial & Engineering Chemistry Research, 2004, 43, 7826-7842.	1.8	19
40	Experimental Study of an Intensified Water–Gas Shift Reaction Process Using a Membrane Reactor/Adsorptive Reactor Sequence. Industrial & Engineering Chemistry Research, 2018, 57, 13650-13660.	1.8	19
41	Global optimization methods for chemical process design: Deterministic and stochastic approaches. Korean Journal of Chemical Engineering, 2002, 19, 227-232.	1.2	18
42	Multi-feed attainable region construction using the Shrink–Wrap algorithm. Chemical Engineering Science, 2008, 63, 5571-5592.	1.9	18
43	Globally optimal power cycle synthesis via the Infinite-DimEnsionAl State-space (IDEAS) approach featuring minimum area with fixed utility. Chemical Engineering Science, 2003, 58, 4291-4305.	1.9	17
44	Multi-scale membrane reactor (MR) modeling and simulation for the water gas shift reaction. Chemical Engineering and Processing: Process Intensification, 2018, 133, 245-262.	1.8	17
45	Automatic synthesis of thermodynamically feasible reaction clusters. AICHE Journal, 1998, 44, 164-173.	1.8	16
46	ldentification of the Attainable Region for Batch Reactor Networks. Industrial & Engineering Chemistry Research, 2008, 47, 3388-3400.	1.8	16
47	Natural-Gas-Derived Hydrogen in the Presence of Carbon Fuel Taxes and Concentrated Solar Power. ACS Sustainable Chemistry and Engineering, 2018, 6, 3029-3038.	3.2	16
48	Global optimization of chemical processes using the interval analysis. Korean Journal of Chemical Engineering, 1997, 14, 270-276.	1.2	15
49	IDEAS approach to the synthesis of globally optimal separation networks: application to chromium recovery from wastewater. Journal of Environmental Management, 2003, 7, 549-562.	1.7	15
50	On infinite-time nonlinear quadratic optimal control. Systems and Control Letters, 2004, 51, 259-268.	1.3	15
51	Gas tank fill-up in globally minimum time: Theory and application to hydrogen. International Journal of Hydrogen Energy, 2014, 39, 12138-12157.	3.8	15
52	Total annualized cost optimality properties of state space models for mass and heat exchanger networks. Chemical Engineering Science, 2001, 56, 5835-5851.	1.9	14
53	A minimum area (MA) targeting scheme for single component MEN and HEN synthesis. Computers and Chemical Engineering, 2004, 28, 1237-1247.	2.0	14
54	Multiscale model based design of an energyâ€intensified novel adsorptive reactor process for the water gas shift reaction. AICHE Journal, 2019, 65, e16608.	1.8	14

#	Article	IF	CITATIONS
55	Parametric Studies of Steam Methane Reforming Using a Multiscale Reactor Model. Industrial & Engineering Chemistry Research, 2017, 56, 14123-14139.	1.8	13
56	Process Intensification of Multipressure Reactive Distillation Networks Using Infinite Dimensional State-Space (IDEAS). Industrial & Engineering Chemistry Research, 2019, 58, 5968-5983.	1.8	13
57	On the carbon cycle impact of combustion of harvested plant biomass vs. fossil carbon resources. Computers and Chemical Engineering, 2020, 140, 106942.	2.0	13
58	On conduction-cooling of a high-temperature superconducting cable. Cryogenics, 2006, 46, 458-467.	0.9	12
59	Global optimization of a simple mathematical model for a proton exchange membrane fuel cell. Computers and Chemical Engineering, 2006, 30, 1226-1234.	2.0	12
60	Automating the AR construction for non-isothermal reactor networks. Computers and Chemical Engineering, 2009, 33, 176-180.	2.0	12
61	CO2 capturing from power plant flue gases: Energetic comparison of amine absorption with MgO based, heat integrated, pressure–temperature-swing adsorption. International Journal of Greenhouse Gas Control, 2014, 22, 256-271.	2.3	12
62	Hydrogen/formic acid production from natural gas with zero carbon dioxide emissions. Journal of Natural Gas Science and Engineering, 2018, 49, 84-93.	2.1	12
63	Techno-Economic Analysis of an Intensified Integrated Gasification Combined Cycle (IGCC) Power Plant Featuring a Combined Membrane Reactor - Adsorptive Reactor (MR-AR) System. Industrial & Engineering Chemistry Research, 2020, 59, 2430-2440.	1.8	12
64	Multi-scale model based design of membrane reactor/separator processes for intensified hydrogen production through the water gas shift reaction. International Journal of Hydrogen Energy, 2020, 45, 7339-7353.	3.8	12
65	Variable target mass-exchange network synthesis through linear programming. AICHE Journal, 1996, 42, 1326-1340.	1.8	11
66	Global Capital/Total Annualized Cost Minimization of Homogeneous and Isothermal Reactor Networks. Industrial & Engineering Chemistry Research, 2008, 47, 3771-3782.	1.8	11
67	Globally Optimal Networks for Multipressure Distillation of Homogeneous Azeotropic Mixtures. Industrial & Engineering Chemistry Research, 2012, 51, 11183-11200.	1.8	11
68	Technical economic analysis of an intensified Integrated Gasification Combined Cycle (IGCC) power plant featuring a sequence of membrane reactors. Journal of Membrane Science, 2019, 579, 266-282.	4.1	11
69	Multi-scale modeling and simulation of a novel membrane reactor (MR)/adsorptive reactor (AR) process. Chemical Engineering and Processing: Process Intensification, 2019, 137, 148-158.	1.8	11
70	Simulation based plasma reactor design for improved ion bombardment uniformity. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 841.	1.6	10
71	Coproduction of acetic acid and hydrogen/power from natural gas with zero carbon dioxide emissions. AICHE Journal, 2018, 64, 860-876.	1.8	10
72	A reactive separation process for pre-combustion CO2 capture employing oxygen-blown coal gasifier off-gas. Chemical Engineering Journal, 2021, 420, 127694.	6.6	10

#	Article	IF	CITATIONS
73	Analysis and Simulation of Hollow-Fiber Reverse-Osmosis Modules. Separation Science and Technology, 1996, 31, 2505-2529.	1.3	9
74	Hydrogen and dry ice production through phase equilibrium separation and methane reforming. Journal of Power Sources, 2006, 156, 480-488.	4.0	9
75	Best Achievable Isomerization Reaction Conversion in a Membrane Reactor. Industrial & Engineering Chemistry Research, 1998, 37, 3551-3560.	1.8	8
76	Attainable Composition, Energy Consumption, and Entropy Generation Properties for Isothermal/Isobaric Reactor Networks. Industrial & Engineering Chemistry Research, 2013, 52, 3225-3238.	1.8	8
77	On the attainable region for process networks. AICHE Journal, 2014, 60, 193-212.	1.8	8
78	Minimum entropy generation for isothermal endothermic/exothermic reactor networks. AICHE Journal, 2015, 61, 103-117.	1.8	8
79	Optimizing the throughput of hazardous waste incinerators. AICHE Journal, 1990, 36, 1707-1714.	1.8	7
80	Minimum hot-cold and electric utility cost for a finite-capacity reservoir system. Computers and Chemical Engineering, 1999, 23, 1263-1276.	2.0	7
81	Sustainability Over Sets. Environmental Progress and Sustainable Energy, 2018, 37, 1093-1100.	1.3	7
82	Equilibrium analysis of <scp>CH₄</scp> , <scp>CO</scp> , <scp>CO₂</scp> , <scp>H₂O</scp> , <scp>H₂O</scp> , <scp>H₂</scp> atom space using Gibbs free energy global minimization. AICHE Journal, 2021, 67, .	1.8	7
83	On the Parametrization of All Decentralized Stabilizing Controllers. , 1989, , .		7
84	Pollution prevention through reactor network synthesis: the IDEAS approach. International Journal of Environment and Pollution, 2007, 29, 206.	0.2	6
85	On a sustainability interval index and its computation through global optimization. AICHE Journal, 2012, 58, 2743-2757.	1.8	6
86	Thermodynamic feasibility analysis of a water-splitting thermochemical cycle based on sodium carbonate decomposition. International Journal of Hydrogen Energy, 2019, 44, 4041-4061.	3.8	6
87	Minimum utility cost for a multicomponent mass exchange operation. Chemical Engineering Science, 1998, 53, 3887-3896.	1.9	4
88	Dust transport phenomena in a capacitively coupled plasma reactor. Journal of Applied Physics, 2001, 89, 34-41.	1.1	4
89	Global optimality properties of total annualized and operating cost problems for compressor sequences. AICHE Journal, 2014, 60, 4134-4149.	1.8	4
90	From sustainability to sustainizability. AICHE Journal, 2019, 65, e16704.	1.8	4

#	Article	IF	CITATIONS
91	On a minimax approach to robust controller synthesis and model selection. , 1988, , .		4
92	On a Finite Branch and Bound Algorithm for the Global Minimization of a Concave Power Law Over a Polytope. Journal of Optimization Theory and Applications, 2011, 151, 121-134.	0.8	3
93	IDEAS based synthesis of minimum volume reactor networks featuring residence time density/distribution models. Computers and Chemical Engineering, 2014, 60, 124-142.	2.0	3
94	Intensified energetically enhanced steam methane reforming through the use of membrane reactors. AICHE Journal, 2020, 66, e16827.	1.8	3
95	Optimization of a 3-D isothermal plug-flow model of a monolith reactor featuring first order reactions. Chemical Engineering Research and Design, 2019, 146, 528-539.	2.7	2
96	On process intensification through storage reactors: A case study on methane steam reforming. Computers and Chemical Engineering, 2020, 133, 106601.	2.0	2
97	On the Intensification of Natural Gas-Based Hydrogen Production Utilizing Hybrid Energy Resources. Smart and Sustainable Manufacturing Systems, 2018, 2, 20170016.	0.3	2
98	On multidomain multiscale modeling and simulation of a novel partial pressure and temperature swing adsorptive reactor (PPTSAR) with application to the water gas shift reaction. Chemical Engineering Journal, 2022, 442, 136161.	6.6	2
99	Coproduction of dimethyl-ether and hydrogen/power from natural gas with no carbon dioxide emissions. Journal of Natural Gas Science and Engineering, 2022, 102, 104546.	2.1	2
100	An ecological application of sustainability and sustainizability over sets. Environmental Progress and Sustainable Energy, 2020, 39, 13336.	1.3	1
101	On Process Intensification through Membrane Storage Reactors. Separations, 2021, 8, 195.	1.1	1
102	Sustainability analysis of ecological systems in fire prone areas using the concept of Sustainability over Sets (SOS). , 2021, , .		0
103	Continuum Fluid Models for Plasma Etching Reactor Control. , 1993, , .		0
104	Chemical-Phase Equilibrium of CO–CO ₂ –H ₂ –CH ₃ OH–DME–H ₂ O Mixtures in Câr Atom-Mol Fraction Space Using Gibbs Free Energy Minimization. Industrial & Engineering Chemistry Research, 2022, 61, 6551-6561.	€"Hậ€"O 1.8	0