## Samuel Kenig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7922099/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Nanotechnology-based thermosets. , 2022, , 833-890.                                                                                                                                       |     | 1         |
| 2  | Radiation curing thermosets. , 2022, , 891-915.                                                                                                                                           |     | 2         |
| 3  | Hybrid Sol–Gel Superhydrophobic Coatings Based on Alkyl Silane-Modified Nanosilica. Polymers, 2021,<br>13, 539.                                                                           | 2.0 | 19        |
| 4  | Silaneâ€Modified Graphene Oxide as a Compatibilizer and Reinforcing Nanoparticle for Immiscible PP/PA<br>Blends. Polymer Engineering and Science, 2020, 60, 180-191.                      | 1.5 | 17        |
| 5  | Poly (Dimethylsiloxane) Coating for Repellency of Polar and Non-Polar Liquids. Polymers, 2020, 12, 2423.                                                                                  | 2.0 | 2         |
| 6  | Polymers in the Medical Antiviral Front-Line. Polymers, 2020, 12, 1727.                                                                                                                   | 2.0 | 26        |
| 7  | Electrical Properties Enhancement of Carbon Nanotube Yarns by Cyclic Loading. Molecules, 2020, 25,<br>4824.                                                                               | 1.7 | 8         |
| 8  | Silica aerogels as hosting matrices for WS2 nanotubes and their optical characterization. Journal of<br>Materials Science, 2020, 55, 7612-7623.                                           | 1.7 | 8         |
| 9  | The effect of composite interface morphology on wetting states for nanocomposite superhydrophobic coating. Surface and Coatings Technology, 2020, 387, 125457.                            | 2.2 | 7         |
| 10 | The effect of brominated epoxy on epoxy/phenolic reactive blends. Journal of Applied Polymer Science, 2019, 136, 47172.                                                                   | 1.3 | 4         |
| 11 | Broadband dielectric and ultrasonic properties of WS 2 nanotubes/polyurethane composites. Polymer<br>Composites, 2018, 39, 4477-4485.                                                     | 2.3 | 2         |
| 12 | Enhancement of mechanical and electrical properties of continuous-fiber-reinforced epoxy<br>composites with stacked graphene. Beilstein Journal of Nanotechnology, 2017, 8, 1909-1918.    | 1.5 | 5         |
| 13 | Dielectric and Electrical Properties of WS <sub>2</sub> Nanotubes/Epoxy Composites and Their Use<br>for Stress Monitoring of Structures. Journal of Nanomaterials, 2017, 2017, 1-13.      | 1.5 | 12        |
| 14 | The effect of composition and thermodynamics on the surface morphology of durable<br>superhydrophobic polymer coatings. Nanotechnology, Science and Applications, 2017, Volume 10, 53-68. | 4.6 | 15        |
| 15 | Easy-to-Clean Superhydrophobic Coatings Based on Sol-Gel Technology: A Critical Review. Reviews of<br>Adhesion and Adhesives, 2017, 5, 325-360.                                           | 3.3 | 10        |
| 16 | Analysis of variance in capillary rheometry. Polymer Engineering and Science, 2016, 56, 895-904.                                                                                          | 1.5 | 4         |
| 17 | Thermomechanical Mechanisms of Reducing Ice Adhesion on Superhydrophobic Surfaces. Langmuir, 2016, 32, 9664-9675.                                                                         | 1.6 | 23        |
| 18 | Carbon and Tungsten Disulfide Nanotubes and Fullerene-like Nanostructures in Thermoset Adhesives:<br>A Critical Review. Reviews of Adhesion and Adhesives, 2015, 3, 311-363.              | 3.3 | 9         |

SAMUEL KEND

SAMUEL KENIG

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Durable bonding of silica nanoparticles to polymers by photoradiation for control of surface properties. Polymers for Advanced Technologies, 2014, 25, 723-731.                                                      | 1.6 | 8         |
| 20 | Viscosity Ratio and Interfacial Tension as Carbon Nanotubes Distributing Factors in Meltâ€Mixed Blends<br>of Polyamide 12 and Highâ€Đensity Polyethylene. Advances in Polymer Technology, 2014, 33, .                | 0.8 | 23        |
| 21 | The effect of tungsten disulphide nanoparticles on the properties of polyurethane adhesives. Journal of Adhesion Science and Technology, 2014, 28, 38-52.                                                            | 1.4 | 15        |
| 22 | The effect of tungsten disulfide nanotubes on the properties of silicone adhesives. International<br>Journal of Adhesion and Adhesives, 2014, 55, 77-81.                                                             | 1.4 | 6         |
| 23 | The effect of multiwall carbon nanotubes on the properties of room temperature-vulcanized silicone adhesives. Journal of Adhesion Science and Technology, 2014, 28, 1661-1676.                                       | 1.4 | 4         |
| 24 | Super-hydrophilic coatings based on silica nanoparticles. Journal of Adhesion Science and Technology, 2014, 28, 466-478.                                                                                             | 1.4 | 23        |
| 25 | Pyridine modified polyethylene copolymer compatibilizer for melt blended carbon nanotube<br>composites: effects of chain structure and matrix viscosity. Polymers for Advanced Technologies,<br>2014, 25, 1509-1514. | 1.6 | 1         |
| 26 | Bisphenol-A free dental polymeric materials. Journal of Adhesion Science and Technology, 2013, 27, 354-370.                                                                                                          | 1.4 | 3         |
| 27 | The effect of carbon nanotubes on the thermal expansion isotropy of injection molded carbon fiber reinforced thermoplastics. Polymer Composites, 2013, 34, 1367-1374.                                                | 2.3 | 6         |
| 28 | Hierarchical Structures Composed of Confined Carbon Nanotubes in Cocontinuous Ternary Polymer<br>Blends. Macromolecules, 2013, 46, 1851-1859.                                                                        | 2.2 | 53        |
| 29 | Improving Weld Line Strength of Fiber Reinforced Plastics By Means of A "Flow Disruptor―<br>International Polymer Processing, 2013, 28, 314-321.                                                                     | 0.3 | 1         |
| 30 | Do Self-cleaning Surfaces Repel Ice?. Journal of Adhesion Science and Technology, 2012, 26, 701-714.                                                                                                                 | 1.4 | 36        |
| 31 | Characterization of Hybrid Epoxy Nanocomposites. Nanomaterials, 2012, 2, 348-365.                                                                                                                                    | 1.9 | 16        |
| 32 | The effect of carbon nanotubes on the rheology and electrical resistivity of polyamide 12/high density polyethylene blends. Polymer, 2011, 52, 5085-5091.                                                            | 1.8 | 69        |
| 33 | Impact of injectionâ€molding processing parameters on the electrical, mechanical, and thermal properties of thermoplastic/carbon nanotube nanocomposites. Journal of Applied Polymer Science, 2011, 120, 70-78.      | 1.3 | 20        |
| 34 | The Effect of WS2 Nanotubes on the Properties of Epoxy-Based Nanocomposites. Journal of Adhesion<br>Science and Technology, 2011, 25, 1603-1617.                                                                     | 1.4 | 57        |
| 35 | Barrier and mechanical properties of nanocomposites based on polymer blends and organoclays.<br>Journal of Applied Polymer Science, 2010, 116, 72-83.                                                                | 1.3 | 17        |
| 36 | The Effect of Tungsten Sulfide Fullerene-Like Nanoparticles on the Toughness of Epoxy Adhesives.<br>Journal of Adhesion Science and Technology, 2010, 24, 1083-1095.                                                 | 1.4 | 61        |

SAMUEL KENIG

| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The effect of hyperbranched polymers on processing and thermal stability of biodegradable polyesters. Polymer Engineering and Science, 2009, 49, 559-566.                  | 1.5 | 7         |
| 38 | Self-cleaning coatings. Surface Engineering, 2009, 25, 89-92.                                                                                                              | 1.1 | 21        |
| 39 | The Relationship between Water Wetting and Ice Adhesion. Journal of Adhesion Science and Technology, 2009, 23, 1907-1915.                                                  | 1.4 | 143       |
| 40 | Nanotailoring of Nanocomposite Hydrogels Containing POSS. Polymer Bulletin, 2008, 61, 257-265.                                                                             | 1.7 | 16        |
| 41 | Durable ultraâ€hydrophobic surfaces for selfâ€cleaning applications. Polymers for Advanced<br>Technologies, 2008, 19, 1684-1691.                                           | 1.6 | 19        |
| 42 | The effect of polymer surface on the wetting and adhesion of liquid systems. Journal of Adhesion<br>Science and Technology, 2007, 21, 227-241.                             | 1.4 | 79        |
| 43 | Transparent ultra-hydrophobic surfaces. Journal of Adhesion Science and Technology, 2007, 21, 399-408.                                                                     | 1.4 | 36        |
| 44 | Hydrophobic and self leaning coatings. Polymers for Advanced Technologies, 2007, 18, 746-750.                                                                              | 1.6 | 60        |
| 45 | The effects of nanostructure and composition on the hydrophobic properties of solid surfaces.<br>Journal of Adhesion Science and Technology, 2006, 20, 563-587.            | 1.4 | 34        |
| 46 | The Effect of Nanoclays on the Properties of PLLA-modified Polymers Part 1: Mechanical and Thermal Properties. Journal of Polymers and the Environment, 2006, 14, 171-177. | 2.4 | 100       |
| 47 | Polyurethane adhesives containing functionalized nanoclays. Journal of Adhesion Science and Technology, 2006, 20, 1345-1355.                                               | 1.4 | 38        |
| 48 | Nanotailoring of polyurethane adhesive by polyhedral oligomeric silsesquioxane (POSS). Journal of<br>Adhesion Science and Technology, 2006, 20, 1413-1430.                 | 1.4 | 29        |