
Shengchun Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7922042/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chemical Society Reviews, 2013, 42, 2880-2904.	18.7	499
2	Urchin-like NiCo ₂ O ₄ hollow microspheres and FeSe ₂ micro-snowflakes for flexible solid-state asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 5568-5576.	5.2	144
3	Constructing ultrathin CoP nanomeshes by Er-doping for highly efficient bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 5769-5778.	5.2	128
4	Electrochemically Modifying the Electronic Structure of IrO ₂ Nanoparticles for Overall Electrochemical Water Splitting with Extensive Adaptability. Advanced Energy Materials, 2020, 10, 2001600.	10.2	123
5	Mesoporous nano/micro noble metal particles: synthesis and applications. Nanoscale, 2014, 6, 4438-4457.	2.8	106
6	Understanding the doping effect on hydrogen evolution activity of transition-metal phosphides: Modeled with Ni2P. Applied Catalysis B: Environmental, 2021, 295, 120283.	10.8	90
7	Orienting the charge transfer path of type-II heterojunction for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 256, 117853.	10.8	65
8	A green chemical approach for preparation of PtxCuy nanoparticles with a concave surface in molten salt for methanol and formic acid oxidation reactions. Journal of Materials Chemistry, 2012, 22, 4780.	6.7	58
9	Pt-Frame@Ni <i>quasi</i> Core–Shell Concave Octahedral PtNi ₃ Bimetallic Nanocrystals for Electrocatalytic Methanol Oxidation and Hydrogen Evolution. Journal of Physical Chemistry C, 2015, 119, 27938-27945.	1.5	58
10	Structural and Electronic Stabilization of PtNi Concave Octahedral Nanoparticles by P Doping for Oxygen Reduction Reaction in Alkaline Electrolytes. ACS Applied Materials & Interfaces, 2018, 10, 27009-27018.	4.0	57
11	Tuning Surface Properties of Low Dimensional Materials via Strain Engineering. Small, 2016, 12, 4028-4047.	5.2	56
12	Improving the plasmonic efficiency of the Au nanorod-semiconductor photocatalysis toward water reduction by constructing a unique hot-dog nanostructure. Nano Energy, 2017, 33, 469-475.	8.2	55
13	Halide ion-induced formation of single crystalline mesoporous PtPd bimetallic nanoparticles with hollow interiors for electrochemical methanol and ethanol oxidation reaction. Nano Research, 2017, 10, 1064-1077.	5.8	51
14	Synergistic Effect Induced High Photothermal Performance of Au Nanorod@Cu ₇ S ₄ Yolk–Shell Nanooctahedron Particles. Journal of Physical Chemistry C, 2016, 120, 24533-24541.	1.5	49
15	CO Oxidation over Strained Pt(100) Surface: A DFT Study. Journal of Physical Chemistry C, 2015, 119, 15500-15505.	1.5	48
16	Strain and Ligand Effects on CO ₂ Reduction Reactions over Cu–Metal Heterostructure Catalysts. Journal of Physical Chemistry C, 2017, 121, 22139-22146.	1.5	46
17	Improving the electrocatalytic property of CoP for hydrogen evolution by constructing porous ternary CeO2-CoP-C hybrid nanostructure via ionic exchange of MOF. International Journal of Hydrogen Energy, 2018, 43, 20372-20381.	3.8	45
18	Surface-engineered mesoporous Pt nanodendrites with Ni dopant for highly enhanced catalytic performance in hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 12800-12807.	5.2	45

SHENGCHUN YANG

#	Article	IF	CITATIONS
19	Neighboring effect induced by V and Cr doping in FeCoP nanoarrays for the hydrogen evolution reaction with Pt-like performance. Journal of Materials Chemistry A, 2020, 8, 1184-1192.	5.2	45
20	N-doped CNT as electron transport promoter by bridging CoP and carbon cloth toward enhanced alkaline hydrogen evolution. Chemical Engineering Journal, 2022, 430, 132824.	6.6	42
21	Phosphorus and Yttrium Codoped Co(OH)F Nanoarray as Highly Efficient and Bifunctional Electrocatalysts for Overall Water Splitting. Small, 2019, 15, e1904105.	5.2	40
22	Boosting photocatalytic hydrogen evolution of g-C3N4 catalyst via lowering the Fermi level of co-catalyst. Nano Research, 2022, 15, 1128-1134.	5.8	38
23	Electrochemical formation of PtRu bimetallic nanoparticles for highly efficient and pH-universal hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 2090-2098.	5.2	33
24	Control of manganese dioxide crystallographic structure in the redox reaction between graphene and permanganate ions and their electrochemical performance. RSC Advances, 2015, 5, 21978-21987.	1.7	32
25	Fe ₂ O ₃ /NiO Interface for the Electrochemical Oxygen Evolution in Seawater and Domestic Sewage. ACS Applied Materials & Interfaces, 2021, 13, 37152-37161.	4.0	32
26	Porous platinum mesoflowers with enhanced activity for methanol oxidation reaction. Journal of Solid State Chemistry, 2012, 191, 239-245.	1.4	31
27	Tailoring the electronic structure by constructing the heterointerface of RuO ₂ –NiO for overall water splitting with ultralow overpotential and extra-long lifetime. Journal of Materials Chemistry A, 2020, 8, 18945-18954.	5.2	29
28	Localized surface plasmon enhanced electrocatalytic methanol oxidation of AgPt bimetallic nanoparticles with an ultra-thin shell. Chemical Communications, 2019, 55, 3943-3946.	2.2	24
29	Organics- and Surfactant-Free Molten Salt Medium Controlled Synthesis of Pt-M (M = Cu and Pd) Bi- and Trimetallic Nanocubes and Nanosheets. ACS Sustainable Chemistry and Engineering, 2017, 5, 4205-4213.	3.2	23
30	Lattice-mismatch-induced growth of ultrathin Pt shells with high-index facets for boosting oxygen reduction catalysis. Journal of Materials Chemistry A, 2020, 8, 16477-16486.	5.2	21
31	Graphene induced formation of single crystal Pt nanosheets through 2-dimensional aggregation and sintering of nanoparticles in molten salt medium. Carbon, 2014, 77, 1123-1131.	5.4	19
32	Intrinsic insight on localized surface plasmon resonance enhanced methanol electro-oxidation over a Au@AgPt hollow urchin-like nanostructure. Journal of Materials Chemistry A, 2020, 8, 6638-6646.	5.2	19
33	Recent Progress in Perovskiteâ€Based Reversible Photon–Electricity Conversion Devices. Advanced Functional Materials, 2022, 32, 2108926.	7.8	18
34	In situ chemical vapor reaction in molten salts for preparation of platinum nanosheets via bubble breakage. Journal of Materials Chemistry, 2012, 22, 12046.	6.7	16
35	Synthesis of porous gold nanoparticle/MoS ₂ nanocomposites based on redox reactions. RSC Advances, 2015, 5, 86558-86563.	1.7	16
36	Modification of Carbon Nanotubes via Birch Reaction for Enhanced HER Catalyst by Constructing Pearl Necklace‣ike NiCo ₂ P ₂ –CNT Composite. Small, 2018, 14, e1804388.	5.2	15

SHENGCHUN YANG

#	Article	IF	CITATIONS
37	Morphological transition of gold nanostructures induced by continuous ultraviolet irradiation. Nanotechnology, 2006, 17, 5639-5643.	1.3	14
38	The "electric-dipole―effect of Pt–Ni for enhanced catalytic dehydrogenation of ammonia borane. Journal of Alloys and Compounds, 2020, 844, 156253.	2.8	14
39	Reaction mechanism, norbornene and ligand effects, and origins of meta-selectivity of Pd/norbornene-catalyzed C–H activation. Chemical Science, 2020, 11, 113-125.	3.7	11
40	2D hydrogenated boride as a reductant and stabilizer for <i>in situ</i> synthesis of ultrafine and surfactant-free carbon supported noble metal electrocatalysts with enhanced activity and stability. Journal of Materials Chemistry A, 2020, 8, 18856-18862.	5.2	11
41	Synthesis of surfactant-free Pt concave nanoparticles in a freshly-made or recycled molten salt. Green Chemistry, 2012, 14, 3197.	4.6	10
42	Highly surface-roughened caterpillar-like Au/Ag nanotubes for sensitive and reproducible substrates for surface enhanced Raman spectroscopy. RSC Advances, 2014, 4, 45856-45861.	1.7	9
43	Scalable approach to high coverages on oxides via iterative training of a machineâ€learning algorithm. ChemCatChem, 2020, 12, 4317-4330.	1.8	9
44	Applications of 2D MXenes for Electrochemical Energy Conversion and Storage. Energies, 2021, 14, 8183.	1.6	9
45	Coadsorption of CO and O over strained metal surfaces. Chemical Physics Letters, 2019, 722, 18-25.	1.2	8
46	In situ sodium chloride template synthesis of cobalt oxide hollow octahedra for lithium-ion batteries. RSC Advances, 2015, 5, 23326-23330.	1.7	5
47	Molten salt medium synthesis of wormlike platinum silver nanotubes without any organic surfactant or solvent for methanol and formic acid oxidation. Physical Chemistry Chemical Physics, 2015, 17, 31170-31176.	1.3	5
48	Synthesis and electrocatalytic performance of ultrathin noble metal nanosheets. CrystEngComm, 2022, 24, 1319-1333.	1.3	5
49	Boosting the hydrogen evolution reaction of N-C@CoP through an N atom induced p-d orbital coupling. Chemical Engineering Journal, 2022, 446, 137132.	6.6	5
50	Laying down of gold nanorods monolayers on solid surfaces for surface enhanced Raman spectroscopy applications. Physical Chemistry Chemical Physics, 2021, 23, 26822-26828.	1.3	3