Peter Stephan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7921924/publications.pdf Version: 2024-02-01

DETED STEDHAN

#	Article	IF	CITATIONS
1	Influence of DMC percentage in fuel on deposit formation and emission behaviour. International Journal of Heat and Fluid Flow, 2022, 95, 108949.	2.4	2
2	Numerical simulation of the evaporation process of pinned urea-water droplets in cavities. International Journal of Heat and Fluid Flow, 2022, 95, 108970.	2.4	2
3	Influence of flow rate and surface thickness on heat transfer characteristics of two consecutively impinging droplets on a heated surface. International Journal of Heat and Mass Transfer, 2021, 165, 120688.	4.8	14
4	Heat transfer during pulsating liquid jet impingement onto a vertical wall. Heat and Mass Transfer, 2021, 57, 617-629.	2.1	7
5	Thermal Characteristics of a Three-Dimensional Coil Type Pulsating Heat Pipe at Different Heating Modes. Journal of Thermal Science and Engineering Applications, 2021, 13, .	1.5	6
6	Numerical Investigation of Successively Nucleating Bubbles During Subcooled Flow Boiling of FC-72 in Microgravity. Microgravity Science and Technology, 2021, 33, 1.	1.4	7
7	Heat Transfer Characteristics of a Train of Droplets Impinging Over a Hot Surface: From Film Evaporation to Leidenfrost Point. Journal of Heat Transfer, 2021, 143, .	2.1	10
8	Evaluation of the waste heat utilization from a hot-water-cooled high performance computer via a heat pump. Energy Reports, 2021, 7, 70-78.	5.1	2
9	Exergoeconomic analysis of a pumped heat electricity storage system based on a Joule/Brayton cycle. Energy Science and Engineering, 2021, 9, 645-660.	4.0	5
10	Wetting and evaporation of pinned urea–water-droplets on substrates of different wettability. International Journal of Heat and Fluid Flow, 2021, 92, 108886.	2.4	1
11	Insights into the interplay of wetting and transport in mesoporous silica films. Journal of Colloid and Interface Science, 2020, 560, 369-378.	9.4	11
12	Influence of System Pressure on Pool Boiling Regimes on A Microstructured Surface Compared to A Smooth Surface. Experimental Heat Transfer, 2020, 33, 318-334.	3.2	16
13	A comparative study of transient capillary rise using direct numerical simulations. Applied Mathematical Modelling, 2020, 86, 142-165.	4.2	15
14	A fully coupled numerical model for deposit formation from evaporating urea-water drops. International Journal of Heat and Mass Transfer, 2020, 159, 120069.	4.8	8
15	Experimental Investigation of Single Bubble Nucleate Boiling in Microgravity. Microgravity Science and Technology, 2020, 32, 597-607.	1.4	11
16	The effect of wetting characteristics, thermophysical properties, and roughness on spray-wall heat transfer in selective catalytic reduction systems. International Journal of Heat and Mass Transfer, 2020, 152, 119554.	4.8	12
17	Heat transfer during drop impingement onto a hot wall: The influence of wall superheat, impact velocity, and drop diameter. International Journal of Heat and Mass Transfer, 2020, 153, 119661.	4.8	40
18	Experimental investigation of hydrodynamics and heat transport during vertical coalescence of multiple successive drops impacting a hot wall under saturated vapor atmosphere. Experimental Thermal and Fluid Science, 2020, 118, 110145.	2.7	25

#	Article	IF	CITATIONS
19	Potential for waste heat utilization of hotâ€waterâ€cooled data centers: A case study. Energy Science and Engineering, 2020, 8, 1793-1810.	4.0	19
20	Professor Satish G. Kandlikar on His 70th Birthday. Journal of Thermal Science and Engineering Applications, 2020, 12, .	1.5	0
21	Spreading of Micrometer-Sized Droplets under the Influence of Insoluble and Soluble Surfactants: A Numerical Study. Colloids and Interfaces, 2019, 3, 56.	2.1	1
22	On the transition between contact line evaporation and microlayer evaporation during the dewetting of a superheated wall. International Journal of Thermal Sciences, 2019, 145, 106025.	4.9	19
23	Gas-driven thin liquid films: Effect of interfacial shear on the film waviness and convective heat transfer. International Journal of Thermal Sciences, 2019, 146, 106077.	4.9	9
24	The influence of splattering on the development of the wall film after horizontal jet impingement onto a vertical wall. Experiments in Fluids, 2019, 60, 1.	2.4	8
25	Temperature measurement using infrared thermometry within semi-transparent media. Experimental Heat Transfer, 2019, 32, 545-565.	3.2	6
26	Numerical simulation of liquid film formation and its heat transfer through vapor bubble expansion in a microchannel. International Journal of Heat and Mass Transfer, 2019, 136, 1241-1249.	4.8	17
27	Combined direct numerical simulation and long-wave simulation of a liquid film sheared by a turbulent gas flow in a channel. Physics of Fluids, 2019, 31, .	4.0	9
28	HEAT FLUX DURING DIP-COATING OF A SUPERHEATED SUBSTRATE. Interfacial Phenomena and Heat Transfer, 2019, 7, 269-281.	0.8	8
29	A Novel Twoâ€Step Model to Investigate Turbulent Gas Flows Shearing Thin Liquid Films. Proceedings in Applied Mathematics and Mechanics, 2019, 19, e201900083.	0.2	2
30	Drop evaporation of hydrocarbon fluids with deposit formation. International Journal of Heat and Mass Transfer, 2019, 128, 115-124.	4.8	11
31	A comparative study of flow regimes and thermal performance between flat plate pulsating heat pipe and capillary tube pulsating heat pipe. Applied Thermal Engineering, 2019, 149, 613-624.	6.0	68
32	Numerical investigation of the evolution and breakup of an evaporating liquid film on a structured wall. International Journal of Heat and Fluid Flow, 2018, 70, 104-113.	2.4	6
33	Experimental investigations of fuel film evaporation with deposit formation. International Journal of Heat and Fluid Flow, 2018, 70, 125-130.	2.4	4
34	Direct Numerical Simulation of the Microscale Fluid Flow and Heat Transfer in the Three-Phase Contact Line Region During Evaporation. Journal of Heat Transfer, 2018, 140, .	2.1	7
35	Improving the operation of a district heating and a district cooling network. Energy Procedia, 2018, 149, 539-548.	1.8	9
36	Effect of nano-textured heater surfaces on evaporation at a single meniscus. International Journal of Heat and Mass Transfer, 2017, 108, 2444-2450.	4.8	18

#	Article	IF	CITATIONS
37	Solid–Liquid Interface Thermal Resistance Affects the Evaporation Rate of Droplets from a Surface: A Study of Perfluorohexane on Chromium Using Molecular Dynamics and Continuum Theory. Langmuir, 2017, 33, 5336-5343.	3.5	31
38	Two dye combinations suitable for two-color/two-dye laser-induced fluorescence thermography for ethanol. Experiments in Fluids, 2017, 58, 1.	2.4	2
39	Heat transfer during simultaneous impact of two drops onto a hot solid substrate. International Journal of Heat and Mass Transfer, 2017, 113, 898-907.	4.8	44
40	Thin liquid films with time-dependent chemical reactions sheared by an ambient gas flow. Physical Review Fluids, 2017, 2, .	2.5	10
41	Exergy analyses of heat supply systems for a building cluster with CARNOT. International Journal of Thermodynamics, 2017, 20, 191-198.	1.0	1
42	Trains of Taylor bubbles over hot nano-textured mini-channel surface. International Journal of Heat and Mass Transfer, 2016, 93, 827-833.	4.8	14
43	Exergoeconomic Analysis of a Pumped Heat Electricity Storage System with Concrete Thermal Energy Storage. International Journal of Thermodynamics, 2016, 19, 43.	1.0	12
44	On the development of a thin evaporating liquid film at a receding liquid/vapour-interface. International Journal of Heat and Mass Transfer, 2015, 88, 346-356.	4.8	32
45	Professor Issam Mudawar on his 60th birthday. International Journal of Heat and Mass Transfer, 2015, 89, A1-A3.	4.8	0
46	Numerical and experimental analysis of short-scale Marangoni convection on heated structured surfaces. International Journal of Heat and Mass Transfer, 2015, 86, 764-779.	4.8	6
47	Experimental investigation on the thermo-hydrodynamics of oscillatory meniscus in a capillary tube using FC-72 as working fluid. International Journal of Multiphase Flow, 2015, 75, 82-87.	3.4	3
48	A numerical study on the hydrodynamic and heat transfer characteristics of oscillating Taylor bubble in a capillary tube. Applied Thermal Engineering, 2015, 89, 628-639.	6.0	9
49	Numerical simulation and modeling of liquid film evaporation inside axisymmetric reentrant cavities. MATEC Web of Conferences, 2014, 18, 01005.	0.2	0
50	Local Heat Flux Investigation During Pool Boiling Single Bubble Cycles Under Reduced Gravity. Heat Transfer Engineering, 2014, 35, 482-491.	1.9	9
51	The Influence of System Pressure on Bubble Coalescence in Nucleate Boiling. Heat Transfer Engineering, 2014, 35, 420-429.	1.9	20
52	A parametric study on phase change heat transfer due to Taylor-Bubble coalescence in a square minichannel. International Journal of Heat and Mass Transfer, 2014, 76, 16-32.	4.8	17
53	Evaporation of a thin viscous liquid film sheared by gas in a microchannel. International Journal of Heat and Mass Transfer, 2014, 68, 527-541.	4.8	51
54	High Resolution Heat Transfer Measurements at the Three Phase Contact Line of a Moving Single Meniscus. , 2014, , .		2

#	Article	IF	CITATIONS
55	Numerical Investigation of Taylor-Bubble Characteristics During Flow Boiling in a Square Minichannel. , 2014, , .		1
56	EXPERIMENTAL STUDY OF A LOOP HEAT PIPE SYSTEM FOR AUTOMOTIVE EXHAUST GAS HEAT RECOVERY. Heat Pipe Science and Technology an International Journal, 2014, 5, 603-610.	0.2	0
57	Experimental investigation of free-surface jet impingement quenching process. International Journal of Heat and Mass Transfer, 2013, 64, 1118-1126.	4.8	43
58	Influence of the substrate thermal properties on sessile droplet evaporation: Effect of transient heat transport. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 432, 64-70.	4.7	49
59	Numerical Simulations of Hydrodynamics and Heat Transfer in Wavy Falling Liquid Films on Vertical and Inclined Walls. Journal of Heat Transfer, 2013, 135, .	2.1	13
60	Hydrodynamics and Heat Transfer in a Liquid Film Flowing Over a Spinning Disk With Wall Topography. Heat Transfer Engineering, 2013, 34, 266-278.	1.9	1
61	Investigation of wall temperature and heat flux distribution during nucleate boiling in the presence of an electric field and in variable gravity. Experimental Thermal and Fluid Science, 2013, 44, 419-430.	2.7	26
62	Influence of the governing dimensionless parameters on heat transfer during single drop impingement onto a hot wall. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 432, 57-63.	4.7	47
63	Textured CrN thin coatings enhancing heat transfer in nucleate boiling processes. Surface and Coatings Technology, 2013, 215, 465-471.	4.8	16
64	Local heat transfer and phase change phenomena during single drop impingement on a hot surface. International Journal of Heat and Mass Transfer, 2013, 61, 605-614.	4.8	75
65	Development of a Miniaturized Energy Converter Without Moving Parts. Flow, Turbulence and Combustion, 2013, 90, 741-761.	2.6	9
66	Bubble Coalescence and Moving Contact Line Evaporation During Flow Boiling in a Single Minichannel. , 2013, , .		4
67	HEAT TRANSFER IN SHEAR-DRIVEN THIN LIQUID FILM FLOWS. Computational Thermal Sciences, 2013, 5, 303-315.	0.9	3
68	EXPERIMENTAL INVESTIGATION OF DYNAMICS AND ATOMIZATION OF A LIQUID FILM FLOWING OVER A SPINNING DISK. Atomization and Sprays, 2013, 23, 589-603.	0.8	0
69	Liquid Crystal Technique for Measuring Temperature. , 2013, , 1-16.		0
70	Falling liquid films on longitudinal grooved geometries: Integral boundary layer approach. Physics of Fluids, 2012, 24, 014104.	4.0	7
71	Using microencapsulated fluorescent dyes for simultaneous measurement of temperature and velocity fields. Measurement Science and Technology, 2012, 23, 105306.	2.6	11
72	Heat Transfer to Suspensions of Microencapsulated Phase Change Material Flowing Through Minichannels. Journal of Heat Transfer, 2012, 134, .	2.1	45

#	Article	IF	CITATIONS
73	Influence of Surface Topography on Heat Transfer in Shear-Driven Liquid Films. Journal of Physics: Conference Series, 2012, 395, 012164.	0.4	1
74	Enhancement of nucleate boiling heat transfer by micro-structured chromium nitride surfaces. Journal of Physics: Conference Series, 2012, 395, 012128.	0.4	6
75	Jet Impingement Quenching: Effect of Coolant Accumulation. Journal of Physics: Conference Series, 2012, 395, 012131.	0.4	5
76	Design and Operation of a Novel Capillary Pumped Two-Loop System for Cooling of Electronic Devices. Heat Transfer Engineering, 2012, 33, 12-20.	1.9	2
77	Molecular Dynamics simulation of the microregion. International Journal of Thermal Sciences, 2012, 59, 21-28.	4.9	11
78	Unidirectional bubble growth in microchannels with asymmetric surface features. International Journal of Heat and Mass Transfer, 2012, 55, 7056-7062.	4.8	6
79	Experimental Investigation of Nucleate Boiling on a Thermal Capacitive Heater Under Variable Gravity Conditions. Microgravity Science and Technology, 2012, 24, 139-146.	1.4	29
80	Fingering instability of partially wetting evaporating liquids. Journal of Engineering Mathematics, 2012, 73, 31-38.	1.2	11
81	The effect of three-phase contact line speed on local evaporative heat transfer: Experimental and numerical investigations. International Journal of Heat and Mass Transfer, 2012, 55, 1896-1904.	4.8	78
82	Contact line behavior for a highly wetting fluid under superheated conditions. International Journal of Heat and Mass Transfer, 2012, 55, 2664-2675.	4.8	64
83	Hydrodynamics of quenching with impinging free-surface jet. International Journal of Heat and Mass Transfer, 2012, 55, 3677-3685.	4.8	32
84	EVAPORATION FROM MICROPOROUS SURFACES IN A MECHANICALLY PUMPED TWO-PHASE LOOP. Heat Pipe Science and Technology an International Journal, 2012, 3, 187-201.	0.2	1
85	HEAT TRANSFER IN SHEAR-DRIVEN THIN LIQUID FILM FLOWS. , 2012, , .		1
86	Long-Wave and Integral Boundary Layer Analysis of Falling Film Flow on Walls With Three-Dimensional Periodic Structures. Heat Transfer Engineering, 2011, 32, 705-713.	1.9	11
87	Hydrodynamics and Heat Transfer in a Liquid Film Flowing Over a Spinning Disk With Specific Wall Topography. , 2011, , .		0
88	A hydrodynamic model for subcooled liquid jet impingement at the Leidenfrost condition. International Journal of Thermal Sciences, 2011, 50, 993-1000.	4.9	38
89	Experimental investigation of circular free-surface jet impingement quenching: Transient hydrodynamics and heat transfer. Experimental Thermal and Fluid Science, 2011, 35, 1435-1443.	2.7	84
90	Experimental investigation of the drying process of water-based paints used in automotive industry. Chemical Engineering and Processing: Process Intensification, 2011, 50, 489-494.	3.6	6

#	Article	IF	CITATIONS
91	Heat Transfer and Evaporation of Falling Liquid Films on Surfaces With Advanced Three-Dimensional Periodic Structures: Experiments and Numerical Simulations. , 2010, , .		0
92	Static and dynamic contact angles of evaporating liquids on heated surfaces. Journal of Colloid and Interface Science, 2010, 342, 550-558.	9.4	71
93	Dynamics of the cavity and the surface film for impingements of single drops on liquid films of various thicknesses. Journal of Colloid and Interface Science, 2010, 350, 336-343.	9.4	51
94	Numerical simulation of the transient heat transfer during nucleate boiling of refrigerant HFE-7100. International Journal of Refrigeration, 2010, 33, 1221-1228.	3.4	92
95	Experimental investigation of evaporative heat transfer characteristics at the 3-phase contact line. Experimental Thermal and Fluid Science, 2010, 34, 1036-1041.	2.7	48
96	Flow Visualization and Local Measurement of Forced Convection Heat Transfer in a Microtube. Journal of Heat Transfer, 2010, 132, .	2.1	22
97	High Resolution Measurement of Wall Temperature Distribution During Forced Convective Boiling in a Single Minichannel. , 2010, , .		5
98	Heat Transfer During Drop Impact Onto Wetted Heated Smooth and Structured Substrates: Experimental and Theoretical Study. , 2010, , .		0
99	Heat Transfer to Suspensions of Microencapsulated Phase Change Material (MEPCM) Flowing Through Minichannels. , 2010, , .		Ο
100	Estimation of local nucleate boiling heat flux using a three-dimensional transient heat conduction model. Inverse Problems in Science and Engineering, 2010, 18, 279-294.	1.2	12
101	Experimental and numerical investigation of evaporative heat transfer in the vicinity of the 3-phase contact line. , 2010, , .		1
102	Evaporative Microchannel Cooling: An Atomistic Approach. , 2010, , .		2
103	HEAT TRANSFER IN THIN LIQUID FILMS FLOWING DOWN HEATED INCLINED GROOVED PLATES. Computational Thermal Sciences, 2010, 2, 455-468.	0.9	5
104	EXPERIMENTAL STUDY OF BUBBLE BEHAVIOR AND LOCAL HEAT FLUX IN POOL BOILING UNDER VARIABLE GRAVITATIONAL CONDITIONS. Multiphase Science and Technology, 2009, 21, 329-350.	0.5	29
105	Effect of Longitudinal Minigrooves on Flow Stability and Wave Characteristics of Falling Liquid Films. Journal of Heat Transfer, 2009, 131, .	2.1	39
106	High-Resolution Measurements at Nucleate Boiling of Pure FC-84 and FC-3284 and Its Binary Mixtures. Journal of Heat Transfer, 2009, 131, .	2.1	48
107	Flow and Stability of Rivulets on Heated Surfaces With Topography. Journal of Heat Transfer, 2009, 131, .	2.1	18
108	Measurement of water falling film thickness to flat plate using confocal chromatic sensoring technique. Experimental Thermal and Fluid Science, 2009, 33, 273-283.	2.7	77

#	Article	IF	CITATIONS
109	Nanofiber coating of surfaces for intensification of drop or spray impact cooling. International Journal of Heat and Mass Transfer, 2009, 52, 5814-5826.	4.8	78
110	Local heat flow and temperature fluctuations in wall and fluid in nucleate boiling systems. Heat and Mass Transfer, 2009, 45, 919-928.	2.1	23
111	CFD Simulation of Boiling Flows Using the Volume-of-Fluid Method within OpenFOAM. Numerical Heat Transfer; Part A: Applications, 2009, 56, 631-646.	2.1	201
112	Dynamics of volatile liquid droplets on heated surfaces: theory versus experiment. Journal of Fluid Mechanics, 2008, 610, 343-362.	3.4	70
113	Nucleate Pool Boiling on Tubes With Subsurface Mini and Micro Channels. , 2008, , .		0
114	Flow Patterns and Heat Transfer in Thin Liquid Films on Walls With Straight, Meandering and Zigzag Mini-Grooves. , 2008, , .		3
115	Local Measurement of Forced Convection Heat Transfer in a Micro Glass Tube. , 2008, , .		0
116	Breakup and atomization of a stretching crown. Physical Review E, 2007, 76, 026302.	2.1	31
117	Effect of Longitudinal Mini-Grooves on Flow Stability and Wave Characteristics of Falling Liquid Films. , 2007, , 923.		2
118	Experiments on Microencapsulated Phase Change Material Suspensions Flow in Rectangular Minichannels. , 2007, , .		2
119	PHASE SHIFT INTERFEROMETRY FOR ACCURATE TEMPERATURE MEASUREMENT AROUND A VAPOR BUBBLE. Experimental Heat Transfer, 2007, 20, 261-275.	3.2	9
120	Frequency response of a surface thermometer based on unencapsulated thermochromic liquid crystals. Experimental Thermal and Fluid Science, 2007, 31, 687-699.	2.7	10
121	Analysis of flow patterns emerging during evaporation in parallel microchannels. International Journal of Heat and Mass Transfer, 2007, 50, 226-239.	4.8	30
122	Spray cooling on micro structured surfaces. International Journal of Heat and Mass Transfer, 2007, 50, 4089-4097.	4.8	159
123	Mathematical modeling of moving contact lines in heat transfer applications. Microgravity Science and Technology, 2007, 19, 23-26.	1.4	4
124	Gravity effect on spray impact and spray cooling. Microgravity Science and Technology, 2007, 19, 151-154.	1.4	20
125	Evaporation of thin liquid droplets on heated surfaces. Heat and Mass Transfer, 2007, 43, 649-657.	2.1	41
126	Convective heat transfer characteristics of microencapsulated phase change material suspensions in minichannels. Heat and Mass Transfer, 2007, 44, 175-186.	2.1	98

#	Article	IF	CITATIONS
127	Thermocapillary convection and interface deformation in a liquid film within a micro-slot with structured walls. Microfluidics and Nanofluidics, 2007, 3, 207-215.	2.2	7
128	A numerical model for the thermocapillary flow and heat transfer in a thin liquid film on a microstructured wall. International Journal of Numerical Methods for Heat and Fluid Flow, 2007, 17, 247-262.	2.8	10
129	Experiments on the Cooling Performance of Microencapsulated Phase Change Material Suspension Flow in Rectangular Minichannels. , 2007, , .		1
130	Marangoni-induced deformation and rupture of a liquid film on a heated microstructured wall. Physics of Fluids, 2006, 18, 012104.	4.0	62
131	Experimental study of nucleate boiling heat transfer under low gravity conditions using TLCs for high resolution temperature measurements. Heat and Mass Transfer, 2006, 42, 875-883.	2.1	30
132	High resolution measurements of wall temperature distribution underneath a single vapour bubble under low gravity conditions. International Journal of Heat and Mass Transfer, 2006, 49, 1100-1106.	4.8	66
133	Flow frictional characteristics of microencapsulated phase change material suspensions flowing through rectangular minichannels. Science in China Series D: Earth Sciences, 2006, 49, 445-456.	0.9	16
134	A Transient Nucleate Boiling Model Including Microscale Effects and Wall Heat Transfer. Journal of Heat Transfer, 2006, 128, 1257-1265.	2.1	68
135	Effect of the microscale wall topography on the thermocapillary convection within a heated liquid film. Experimental Thermal and Fluid Science, 2005, 29, 765-772.	2.7	24
136	Experimental investigation of the drying process of automotive base paints. Applied Thermal Engineering, 2005, 25, 2578-2590.	6.0	20
137	Evaporation of Falling and Shear-Driven Thin Films on Smooth and Grooved Surfaces. Flow, Turbulence and Combustion, 2005, 75, 85-104.	2.6	26
138	Thermocapillary Convection in Thin Liquid Films on Walls With Microgrooves. , 2005, , 293.		1
139	Marangoni convection and heat transfer in thin liquid films on heated walls with topography: Experiments and numerical study. Physics of Fluids, 2005, 17, 062106.	4.0	60
140	Thermocapillarity-induced vortexes and liquid film dynamics on structured heated walls. Journal of Non-Equilibrium Thermodynamics, 2005, 30, .	4.2	8
141	Thermocapillary Convection and Interface Deformation in a Liquid Film Flowing Inside a Micro-Slot With Structured Walls. , 2005, , .		0
142	Erhïį¼2hung des Wïį¼2rmeïį¼2berganges durch Wirbelinduktion in Oberflïį¼2chendellen. Forschung Im Ingenieurwesen/Engineering Research, 2004, 69, 90-100.	1.6	9
143	Identification of Physical Phenomena Governing Nucleate Boiling Heat Transfer of Binary Mixtures. Chemical Engineering and Technology, 2004, 27, 43-49.	1.5	2
144	Evaluation of heat and mass transfer phenomena in nucleate boiling. International Journal of Heat and Fluid Flow, 2004, 25, 140-148.	2.4	36

IF # ARTICLE CITATIONS Advanced Capillary Structures for High Performance Heat Pipes. Heat Transfer Engineering, 2004, 25, 145 78-85. RadSensor: x-ray detection by direct modulation of an optical probe beam., 2004, , . 146 8 Theoretical Model for Nucleate Boiling Heat and Mass Transfer of Binary Mixtures. Journal of Heat 2.1 Transfer, 2003, 125, 1106-1115. Investigation of Decisive Mixture Effects in Nucleate Boiling of Binary Mixtures Using a Theoretical 148 2.1 11 Model. Journal of Heat Transfer, 2003, 125, 1116-1122. Falling Films in Micro- and Minigrooves: Heat Transfer and Flow Stability., 2003, , 449. 149 150 Advanced Capillary Structures for High Performance Heat Pipes., 2003, , 69. 8 Analysis of Falling Film Evaporation on Grooved Surfaces. Journal of Enhanced Heat Transfer, 2003, 1.1 34 10, 445-458. Microscale measurement of wall-temperature distribution at a single vapor bubble for evaluation of a 152 0.4 4 nucleate boiling model. AIP Conference Proceedings, 2002, , . Microscale temperature measurement at an evaporating liquid meniscus. Experimental Thermal and 2.7 108 Fluid Science, 2002, 26, 157-162. Influence of heat conduction in the wall on nucleate boiling heat transfer. International Journal of 154 4.8 32 Heat and Mass Transfer, 2000, 43, 2193-2203. Theoretical Investigation of Advanced Capillary Structures in Grooved Heat Pipe Evaporators for Space Applications., 2000, , . INFLUENCE OF MICROSCALE CONCENTRATION GRADIENTS IN NUCLEATE BOILING HEAT TRANSFER OF BINARY 156 0.5 4 MIXTURES. Multiphase Science and Technology, 2000, 12, 15. Influence of capillary pressure on the evaporation of thin liquid films. Heat and Mass Transfer, 1995, 30, 467-472. A new model for nucleate boiling heat transfer. Heat and Mass Transfer, 1994, 30, 119-125. 158 0.2 138 Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls. International Journal 4.8 of Heat and Mass Transfer, 1992, 35, 383-391.

PETER STEPHAN