
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7921828/publications.pdf Version: 2024-02-01



LIE ZHENC

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010, 51, 5283-5293.                                                                                                        | 1.8  | 1,370     |
| 2  | Strong Resistance of Phosphorylcholine Self-Assembled Monolayers to Protein Adsorption:Â Insights<br>into Nonfouling Properties of Zwitterionic Materials. Journal of the American Chemical Society, 2005,<br>127, 14473-14478. | 6.6  | 918       |
| 3  | A Robust, Oneâ€Pot Synthesis of Highly Mechanical and Recoverable Double Network Hydrogels Using<br>Thermoreversible Solâ€Gel Polysaccharide. Advanced Materials, 2013, 25, 4171-4176.                                          | 11.1 | 594       |
| 4  | A Novel Design Strategy for Fully Physically Linked Double Network Hydrogels with Tough, Fatigue<br>Resistant, and Selfâ€Healing Properties. Advanced Functional Materials, 2015, 25, 1598-1607.                                | 7.8  | 511       |
| 5  | Fundamentals of double network hydrogels. Journal of Materials Chemistry B, 2015, 3, 3654-3676.                                                                                                                                 | 2.9  | 477       |
| 6  | Protein Adsorption on Oligo(ethylene glycol)-Terminated Alkanethiolate Self-Assembled Monolayers:Â<br>The Molecular Basis for Nonfouling Behavior. Journal of Physical Chemistry B, 2005, 109, 2934-2941.                       | 1.2  | 461       |
| 7  | Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease,<br>Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chemical Reviews, 2021, 121,<br>2545-2647.               | 23.0 | 406       |
| 8  | Strong Repulsive Forces between Protein and Oligo (Ethylene Glycol) Self-Assembled Monolayers: A<br>Molecular Simulation Study. Biophysical Journal, 2005, 89, 158-166.                                                         | 0.2  | 310       |
| 9  | Molecular Simulation Study of Water Interactions with Oligo (Ethylene Glycol)-Terminated<br>Alkanethiol Self-Assembled Monolayers. Langmuir, 2004, 20, 8931-8938.                                                               | 1.6  | 270       |
| 10 | Bulk heterojunction perovskite hybrid solar cells with large fill factor. Energy and Environmental<br>Science, 2015, 8, 1245-1255.                                                                                              | 15.6 | 252       |
| 11 | Improvement of Mechanical Strength and Fatigue Resistance of Double Network Hydrogels by Ionic<br>Coordination Interactions. Chemistry of Materials, 2016, 28, 5710-5720.                                                       | 3.2  | 237       |
| 12 | Adsorption removal of ciprofloxacin by multi-walled carbon nanotubes with different oxygen contents from aqueous solutions. Chemical Engineering Journal, 2016, 285, 588-595.                                                   | 6.6  | 229       |
| 13 | Alginate/graphene double-network nanocomposite hydrogel beads with low-swelling, enhanced<br>mechanical properties, and enhanced adsorption capacity. Journal of Materials Chemistry A, 2016, 4,<br>10885-10892.                | 5.2  | 225       |
| 14 | A Novel Design of Multiâ€Mechanoresponsive and Mechanically Strong Hydrogels. Advanced Materials,<br>2017, 29, 1606900.                                                                                                         | 11.1 | 215       |
| 15 | Effect of Film Thickness on the Antifouling Performance of Poly(hydroxy-functional methacrylates)<br>Grafted Surfaces. Langmuir, 2011, 27, 4906-4913.                                                                           | 1.6  | 201       |
| 16 | Tanshinones Inhibit Amyloid Aggregation by Amyloid-β Peptide, Disaggregate Amyloid Fibrils, and Protect<br>Cultured Cells. ACS Chemical Neuroscience, 2013, 4, 1004-1015.                                                       | 1.7  | 180       |
| 17 | Super Bulk and Interfacial Toughness of Physically Crosslinked Doubleâ€Network Hydrogels. Advanced<br>Functional Materials, 2017, 27, 1703086.                                                                                  | 7.8  | 180       |
| 18 | Models of β-Amyloid Ion Channels in the Membrane Suggest That Channel Formation in the Bilayer Is a<br>Dynamic Process. Biophysical Journal, 2007, 93, 1938-1949.                                                               | 0.2  | 175       |

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Modeling the Alzheimer Aβ17-42 Fibril Architecture: Tight Intermolecular Sheet-Sheet Association and<br>Intramolecular Hydrated Cavities. Biophysical Journal, 2007, 93, 3046-3057.                 | 0.2 | 167       |
| 20 | Salt-Responsive Zwitterionic Polymer Brushes with Tunable Friction and Antifouling Properties.<br>Langmuir, 2015, 31, 9125-9133.                                                                    | 1.6 | 150       |
| 21 | Binding characteristics between polyethylene glycol (PEG) and proteins in aqueous solution. Journal of Materials Chemistry B, 2014, 2, 2983.                                                        | 2.9 | 149       |
| 22 | Highly stretchable, self-adhesive, biocompatible, conductive hydrogels as fully polymeric strain<br>sensors. Journal of Materials Chemistry A, 2020, 8, 20474-20485.                                | 5.2 | 147       |
| 23 | Molecular Simulation Studies of the Orientation and Conformation of Cytochrome c Adsorbed on Self-Assembled Monolayers. Journal of Physical Chemistry B, 2004, 108, 17418-17424.                    | 1.2 | 145       |
| 24 | High strength and self-healable gelatin/polyacrylamide double network hydrogels. Journal of<br>Materials Chemistry B, 2017, 5, 7683-7691.                                                           | 2.9 | 144       |
| 25 | Dual Salt- and Thermoresponsive Programmable Bilayer Hydrogel Actuators with<br>Pseudo-Interpenetrating Double-Network Structures. ACS Applied Materials & Interfaces, 2018, 10,<br>21642-21653.    | 4.0 | 142       |
| 26 | Design of LVFFARK and LVFFARK-Functionalized Nanoparticles for Inhibiting Amyloid β-Protein<br>Fibrillation and Cytotoxicity. ACS Applied Materials & Interfaces, 2015, 7, 5650-5662.               | 4.0 | 140       |
| 27 | Water-enhanced Removal of Ciprofloxacin from Water by Porous Graphene Hydrogel. Scientific<br>Reports, 2015, 5, 13578.                                                                              | 1.6 | 134       |
| 28 | New structures help the modeling of toxic amyloidß ion channels. Trends in Biochemical Sciences,<br>2008, 33, 91-100.                                                                               | 3.7 | 133       |
| 29 | Comparative Study of Heparin-Poloxamer Hydrogel Modified bFGF and aFGF for <i>in Vivo</i> Wound<br>Healing Efficiency. ACS Applied Materials & Interfaces, 2016, 8, 18710-18721.                    | 4.0 | 133       |
| 30 | Structural Stability and Dynamics of an Amyloid-Forming Peptide GNNQQNY from the Yeast Prion Sup-35. Biophysical Journal, 2006, 91, 824-833.                                                        | 0.2 | 131       |
| 31 | From design to applications of stimuli-responsive hydrogel strain sensors. Journal of Materials<br>Chemistry B, 2020, 8, 3171-3191.                                                                 | 2.9 | 131       |
| 32 | Fracture of the Physically Cross-Linked First Network in Hybrid Double Network Hydrogels.<br>Macromolecules, 2014, 47, 2140-2148.                                                                   | 2.2 | 130       |
| 33 | Transport of a liquid water and methanol mixture through carbon nanotubes under a chemical potential gradient. Journal of Chemical Physics, 2005, 122, 214702.                                      | 1.2 | 125       |
| 34 | Engineering of Tough Double Network Hydrogels. Macromolecular Chemistry and Physics, 2016, 217, 1022-1036.                                                                                          | 1.1 | 123       |
| 35 | Salt-Responsive Bilayer Hydrogels with Pseudo-Double-Network Structure Actuated by<br>Polyelectrolyte and Antipolyelectrolyte Effects. ACS Applied Materials & Interfaces, 2017, 9,<br>20843-20851. | 4.0 | 119       |
| 36 | Structure-Thermodynamics-Antioxidant Activity Relationships of Selected Natural Phenolic Acids and<br>Derivatives: An Experimental and Theoretical Evaluation. PLoS ONE, 2015, 10, e0121276.        | 1.1 | 117       |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Simultaneous Enhancement of Stiffness and Toughness in Hybrid Double-Network Hydrogels via the<br>First, Physically Linked Network. Macromolecules, 2015, 48, 8003-8010.                                                         | 2.2 | 116       |
| 38 | Synthesis and Characterization of Poly( <i>N</i> -hydroxyethylacrylamide) for Long-Term Antifouling<br>Ability. Biomacromolecules, 2011, 12, 4071-4079.                                                                          | 2.6 | 114       |
| 39 | Cholesterol Promotes the Interaction of Alzheimer β-Amyloid Monomer with Lipid Bilayer. Journal of<br>Molecular Biology, 2012, 421, 561-571.                                                                                     | 2.0 | 114       |
| 40 | Comparative Study of Graphene Hydrogels and Aerogels Reveals the Important Role of Buried Water in Pollutant Adsorption. Environmental Science & Technology, 2017, 51, 12283-12292.                                              | 4.6 | 114       |
| 41 | Origin of repulsive force and structure/dynamics of interfacial water in OEG–protein interactions: a<br>molecular simulation study. Physical Chemistry Chemical Physics, 2008, 10, 5539.                                         | 1.3 | 112       |
| 42 | Sulfated zwitterionic poly(sulfobetaine methacrylate) hydrogels promote complete skin<br>regeneration. Acta Biomaterialia, 2018, 71, 293-305.                                                                                    | 4.1 | 112       |
| 43 | Fundamentals and applications of zwitterionic antifouling polymers. Journal Physics D: Applied Physics, 2019, 52, 403001.                                                                                                        | 1.3 | 110       |
| 44 | Release of Cytochrome C from Bax Pores at the Mitochondrial Membrane. Scientific Reports, 2017, 7,<br>2635.                                                                                                                      | 1.6 | 107       |
| 45 | Design of novel lanthanide-doped core–shell nanocrystals with dual up-conversion and<br>down-conversion luminescence for anti-counterfeiting printing. Dalton Transactions, 2019, 48,<br>6971-6983.                              | 1.6 | 103       |
| 46 | General Principle for Fabricating Natural Globular Protein-Based Double-Network Hydrogels with<br>Integrated Highly Mechanical Properties and Surface Adhesion on Solid Surfaces. Chemistry of<br>Materials, 2019, 31, 179-189.  | 3.2 | 102       |
| 47 | Highly Porous ZIF-8 Nanocrystals Prepared by a Surfactant Mediated Method in Aqueous Solution<br>with Enhanced Adsorption Kinetics. ACS Applied Materials & Interfaces, 2014, 6, 14994-14999.                                    | 4.0 | 101       |
| 48 | Biophysical processes underlying cross-seeding in amyloid aggregation and implications in amyloid pathology. Biophysical Chemistry, 2021, 269, 106507.                                                                           | 1.5 | 101       |
| 49 | Heparin-Based Coacervate of FGF2 Improves Dermal Regeneration by Asserting a Synergistic Role with<br>Cell Proliferation and Endogenous Facilitated VEGF for Cutaneous Wound Healing.<br>Biomacromolecules, 2016, 17, 2168-2177. | 2.6 | 99        |
| 50 | Structural, morphological, and kinetic studies of β-amyloid peptide aggregation on self-assembled monolayers. Physical Chemistry Chemical Physics, 2011, 13, 15200.                                                              | 1.3 | 96        |
| 51 | Molecular understanding of a potential functional link between antimicrobial and amyloid peptides.<br>Soft Matter, 2014, 10, 7425-7451.                                                                                          | 1.2 | 96        |
| 52 | Dual Functionality of Antimicrobial and Antifouling of<br>Poly( <i>N</i> -hydroxyethylacrylamide)/Salicylate Hydrogels. Langmuir, 2013, 29, 1517-1524.                                                                           | 1.6 | 95        |
| 53 | Dual physically crosslinked double network hydrogels with high toughness and self-healing properties. Soft Matter, 2017, 13, 911-920.                                                                                            | 1.2 | 94        |
| 54 | Enhanced Thermoelectric Properties of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by<br>Binary Secondary Dopants. ACS Applied Materials & Interfaces, 2015, 7, 8984-8989.                                            | 4.0 | 93        |

| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Upconversion Nanoparticles@Carbon Dots@Meso-SiO <sub>2</sub> Sandwiched Core–Shell<br>Nanohybrids with Tunable Dual-Mode Luminescence for 3D Anti-Counterfeiting Barcodes. Langmuir,<br>2019, 35, 11503-11511. | 1.6  | 93        |
| 56 | Achieving Highly Effective Nonfouling Performance for Surface-Grafted Poly(HPMA) via Atom-Transfer Radical Polymerization. Langmuir, 2010, 26, 17375-17382.                                                    | 1.6  | 92        |
| 57 | Molecular Understanding and Structural-Based Design of Polyacrylamides and Polyacrylates as<br>Antifouling Materials. Langmuir, 2016, 32, 3315-3330.                                                           | 1.6  | 90        |
| 58 | Salt-responsive zwitterionic polymer brushes with anti-polyelectrolyte property. Current Opinion in<br>Chemical Engineering, 2018, 19, 86-93.                                                                  | 3.8  | 89        |
| 59 | Magnetic iron oxide nanoparticles functionalized multi-walled carbon nanotubes for toluene,<br>ethylbenzene and xylene removal from aqueous solution. Chemosphere, 2016, 146, 162-172.                         | 4.2  | 88        |
| 60 | Fundamentals of cross-seeding of amyloid proteins: an introduction. Journal of Materials Chemistry B, 2019, 7, 7267-7282.                                                                                      | 2.9  | 87        |
| 61 | Inhibition of Amyloid-β Aggregation in Alzheimer's Disease. Current Pharmaceutical<br>Design, 2014, 20, 1223-1243.                                                                                             | 0.9  | 86        |
| 62 | Design of a Molecular Hybrid of Dual Peptide Inhibitors Coupled on AuNPs for Enhanced Inhibition of Amyloid βâ€Protein Aggregation and Cytotoxicity. Small, 2017, 13, 1601666.                                 | 5.2  | 82        |
| 63 | General Strategy To Fabricate Strong and Tough Low-Molecular-Weight Gelator-Based<br>Supramolecular Hydrogels with Double Network Structure. Chemistry of Materials, 2018, 30, 1743-1754.                      | 3.2  | 82        |
| 64 | A General Crosslinker Strategy to Realize Intrinsic Frozen Resistance of Hydrogels. Advanced<br>Materials, 2021, 33, e2104006.                                                                                 | 11.1 | 82        |
| 65 | Synthesis and characterization of pH-sensitive poly(N-2-hydroxyethyl acrylamide)–acrylic acid<br>(poly(HEAA/AA)) nanogels with antifouling protection for controlled release. Soft Matter, 2012, 8,<br>7848.   | 1.2  | 81        |
| 66 | Comparative Molecular Dynamics Study of Human Islet Amyloid Polypeptide (IAPP) and Rat IAPP<br>Oligomers. Biochemistry, 2013, 52, 1089-1100.                                                                   | 1.2  | 80        |
| 67 | Genistein: A Dual Inhibitor of Both Amyloid $\hat{I}^2$ and Human Islet Amylin Peptides. ACS Chemical Neuroscience, 2018, 9, 1215-1224.                                                                        | 1.7  | 80        |
| 68 | Structural Dependence of Salt-Responsive Polyzwitterionic Brushes with an Anti-Polyelectrolyte Effect. Langmuir, 2018, 34, 97-105.                                                                             | 1.6  | 80        |
| 69 | Engineering Antimicrobial Peptides with Improved Antimicrobial and Hemolytic Activities. Journal of Chemical Information and Modeling, 2013, 53, 3280-3296.                                                    | 2.5  | 79        |
| 70 | Solution-processed broadband polymer photodetectors with a spectral response of up to 2.5 μm by a<br>low bandgap donor–acceptor conjugated copolymer. Journal of Materials Chemistry C, 2018, 6,<br>3634-3641. | 2.7  | 79        |
| 71 | Cross-Seeding Interaction between $\hat{l}^2$ -Amyloid and Human Islet Amyloid Polypeptide. ACS Chemical Neuroscience, 2015, 6, 1759-1768.                                                                     | 1.7  | 78        |
| 72 | Integration of antifouling and antibacterial properties in salt-responsive hydrogels with surface regeneration capacity. Journal of Materials Chemistry B, 2018, 6, 950-960.                                   | 2.9  | 78        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Molecular simulations and understanding of antifouling zwitterionic polymer brushes. Journal of<br>Materials Chemistry B, 2020, 8, 3814-3828.                                                                          | 2.9 | 78        |
| 74 | Probing structure–antifouling activity relationships of polyacrylamides and polyacrylates.<br>Biomaterials, 2013, 34, 4714-4724.                                                                                       | 5.7 | 77        |
| 75 | Mechanically strong hybrid double network hydrogels with antifouling properties. Journal of<br>Materials Chemistry B, 2015, 3, 5426-5435.                                                                              | 2.9 | 77        |
| 76 | Surface Zwitterionization of Expanded Poly(tetrafluoroethylene) Membranes via Atmospheric<br>Plasma-Induced Polymerization for Enhanced Skin Wound Healing. ACS Applied Materials &<br>Interfaces, 2013, 5, 6732-6742. | 4.0 | 76        |
| 77 | Zwitterionic poly(sulfobetaine methacrylate) hydrogels with optimal mechanical properties for improving wound healing <i>in vivo</i> . Journal of Materials Chemistry B, 2019, 7, 1697-1707.                           | 2.9 | 76        |
| 78 | Dual-stimulus bilayer hydrogel actuators with rapid, reversible, bidirectional bending behaviors.<br>Journal of Materials Chemistry C, 2019, 7, 4970-4980.                                                             | 2.7 | 76        |
| 79 | Surface Zwitterionization of Titanium for a General Bio-Inert Control of Plasma Proteins, Blood<br>Cells, Tissue Cells, and Bacteria. Langmuir, 2014, 30, 7502-7512.                                                   | 1.6 | 75        |
| 80 | Salt-responsive polyzwitterionic materials for surface regeneration between switchable fouling and antifouling properties. Acta Biomaterialia, 2016, 40, 62-69.                                                        | 4.1 | 74        |
| 81 | Structure, Orientation, and Surface Interaction of Alzheimer Amyloid-Î <sup>2</sup> Peptides on the Graphite.<br>Langmuir, 2012, 28, 6595-6605.                                                                        | 1.6 | 72        |
| 82 | Annular Structures as Intermediates in Fibril Formation of Alzheimer Aβ <sub>17â^'42</sub> . Journal of<br>Physical Chemistry B, 2008, 112, 6856-6865.                                                                 | 1.2 | 70        |
| 83 | Probing the weak interaction of proteins with neutral and zwitterionic antifouling polymers. Acta<br>Biomaterialia, 2014, 10, 751-760.                                                                                 | 4.1 | 68        |
| 84 | Introducing Mixed-Charge Copolymers As Wound Dressing Biomaterials. ACS Applied Materials &<br>Interfaces, 2014, 6, 9858-9870.                                                                                         | 4.0 | 67        |
| 85 | Synthesis and Characterization of Antifouling Poly( <i>N</i> -acryloylaminoethoxyethanol) with<br>Ultralow Protein Adsorption and Cell Attachment. Langmuir, 2014, 30, 10398-10409.                                    | 1.6 | 66        |
| 86 | Core/Shell Piezoelectric Nanofibers with Spatial Self-Orientated β-Phase Nanocrystals for Real-Time<br>Micropressure Monitoring of Cardiovascular Walls. ACS Nano, 2019, 13, 10062-10073.                              | 7.3 | 66        |
| 87 | Conformational Basis for Asymmetric Seeding Barrier in Filaments of Three- and Four-Repeat Tau.<br>Journal of the American Chemical Society, 2012, 134, 10271-10278.                                                   | 6.6 | 63        |
| 88 | Cross-seeding and Conformational Selection between Three- and Four-repeat Human Tau Proteins.<br>Journal of Biological Chemistry, 2012, 287, 14950-14959.                                                              | 1.6 | 63        |
| 89 | A comparative study of the mechanical properties of hybrid double-network hydrogels in swollen and as-prepared states. Journal of Materials Chemistry B, 2016, 4, 5814-5824.                                           | 2.9 | 62        |
| 90 | Double-Network Physical Cross-Linking Strategy To Promote Bulk Mechanical and Surface Adhesive<br>Properties of Hydrogels. Macromolecules, 2019, 52, 9512-9525.                                                        | 2.2 | 59        |

JIE ZHENG

| #  | Article                                                                                                                                                                                              | IF          | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 91 | Tanshinones inhibit hIAPP aggregation, disaggregate preformed hIAPP fibrils, and protect cultured cells. Journal of Materials Chemistry B, 2018, 6, 56-67.                                           | 2.9         | 58        |
| 92 | Molecular Dynamics Simulations of Low-Ordered Alzheimer β-Amyloid Oligomers from Dimer to Hexamer on Self-Assembled Monolayers. Langmuir, 2011, 27, 14876-14887.                                     | 1.6         | 57        |
| 93 | Tabersonine Inhibits Amyloid Fibril Formation and Cytotoxicity of Aβ(1–42). ACS Chemical Neuroscience, 2015, 6, 879-888.                                                                             | 1.7         | 54        |
| 94 | Molecular interactions of Alzheimer amyloid- $\hat{l}^2$ oligomers with neutral and negatively charged lipid bilayers. Physical Chemistry Chemical Physics, 2013, 15, 8878.                          | 1.3         | 53        |
| 95 | Functional polymer thin films designed for antifouling materials and biosensors. Chemical Papers, 2012, 66, .                                                                                        | 1.0         | 52        |
| 96 | Probing the Structural Dependence of Carbon Space Lengths of Poly( <i>N</i> -hydroxyalkyl) Tj ETQq0 0 0 rgBT /C                                                                                      | )verlock 10 | 0         |
| 97 | The energy dissipation and Mullins effect of tough polymer/graphene oxide hybrid nanocomposite hydrogels. Polymer Chemistry, 2017, 8, 4659-4672.                                                     | 1.9         | 52        |
| 98 | Discovery of a novel native bacterium of Providencia sp. with high biosorption and oxidation ability of manganese for bioleaching of heavy metal contaminated soils. Chemosphere, 2020, 241, 125039. | 4.2         | 52        |
| 99 | Principles of nanostructure design with protein building blocks. Proteins: Structure, Function and Bioinformatics, 2007, 68, 1-12.                                                                   | 1.5         | 51        |

| 99  | Bioinformatics, 2007, 68, 1-12.                                                                                                                                                                                    | 1.0 | 91 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 100 | Structural Polymorphism of Human Islet Amyloid Polypeptide (hIAPP) Oligomers Highlights the<br>Importance of Interfacial Residue Interactions. Biomacromolecules, 2011, 12, 210-220.                               | 2.6 | 50 |
| 101 | Probing ion channel activity of human islet amyloid polypeptide (amylin). Biochimica Et Biophysica Acta<br>- Biomembranes, 2012, 1818, 3121-3130.                                                                  | 1.4 | 50 |
| 102 | Design of core/active-shell NaYF4:Ln3+@NaYF4:Yb3+ nanophosphors with enhanced red-green-blue<br>upconversion luminescence for anti-counterfeiting printing. Composites Part B: Engineering, 2019, 179,<br>107504.  | 5.9 | 49 |
| 103 | Design of salt-responsive and regenerative antibacterial polymer brushes with integrated bacterial resistance, killing, and release properties. Journal of Materials Chemistry B, 2019, 7, 5762-5774.              | 2.9 | 48 |
| 104 | Design of high conductive and piezoelectric poly (3,4-ethylenedioxythiophene)/chitosan nanofibers<br>for enhancing cellular electrical stimulation. Journal of Colloid and Interface Science, 2020, 559,<br>65-75. | 5.0 | 48 |
| 105 | Polymorphic Structures of Alzheimer's β-Amyloid Globulomers. PLoS ONE, 2011, 6, e20575.                                                                                                                            | 1.1 | 47 |
| 106 | Consensus features in amyloid fibrils: sheet–sheet recognition via a (polar or nonpolar) zipper<br>structure. Physical Biology, 2006, 3, P1-P4.                                                                    | 0.8 | 46 |
| 107 | Zwitterionic Modifications for Enhancing the Antifouling Properties of Poly(vinylidene fluoride)<br>Membranes. Langmuir, 2016, 32, 4113-4124.                                                                      | 1.6 | 46 |
| 108 | Allâ€Solidâ€State Asymmetric Supercapacitors with Metal Selenides Electrodes and Ionic Conductive                                                                                                                  | 7.8 | 45 |

Composites Electrolytes. Advanced Functional Materials, 2019, 29, 1904182.

| #   | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Current Research Trends and Perspectives on Solid-State Nanomaterials in Hydrogen Storage.<br>Research, 2021, 2021, 3750689.                                                                                                                  | 2.8 | 45        |
| 110 | Transport diffusion of liquid water and methanol through membranes. Journal of Chemical Physics, 2002, 117, 808-818.                                                                                                                          | 1.2 | 44        |
| 111 | Mussel-Inspired Surface Immobilization of Heparin on Magnetic Nanoparticles for Enhanced Wound<br>Repair via Sustained Release of a Growth Factor and M2 Macrophage Polarization. ACS Applied<br>Materials & Interfaces, 2021, 13, 2230-2244. | 4.0 | 44        |
| 112 | Membrane Interactions of hIAPP Monomer and Oligomer with Lipid Membranes by Molecular Dynamics Simulations. ACS Chemical Neuroscience, 2017, 8, 1789-1800.                                                                                    | 1.7 | 43        |
| 113 | Highly Aligned Electrospun Collagen/Polycaprolactone Surgical Sutures with Sustained Release of<br>Growth Factors for Wound Regeneration. ACS Applied Bio Materials, 2020, 3, 965-976.                                                        | 2.3 | 43        |
| 114 | Molecular simulation studies of the structure of phosphorylcholine self-assembled monolayers.<br>Journal of Chemical Physics, 2006, 125, 174714.                                                                                              | 1.2 | 41        |
| 115 | De Novo Design of Self-Assembled Hexapeptides as β-Amyloid (Aβ) Peptide Inhibitors. ACS Chemical Neuroscience, 2014, 5, 972-981.                                                                                                              | 1.7 | 41        |
| 116 | HP-β-cyclodextrin as an inhibitor of amyloid-β aggregation and toxicity. Physical Chemistry Chemical Physics, 2016, 18, 20476-20485.                                                                                                          | 1.3 | 41        |
| 117 | Neurogenic differentiation of adipose derived stem cells on graphene-based mat. Materials Science and Engineering C, 2018, 90, 685-692.                                                                                                       | 3.8 | 41        |
| 118 | Magnetic Janus particles as a multifunctional drug delivery system for paclitaxel in efficient cancer treatment. Materials Science and Engineering C, 2019, 104, 110001.                                                                      | 3.8 | 41        |
| 119 | Comparative Molecular Dynamics Study of Al <sup>2</sup> Adsorption on the Self-Assembled Monolayers. Langmuir, 2010, 26, 3308-3316.                                                                                                           | 1.6 | 40        |
| 120 | A Universal Coating Strategy for Controllable Functionalized Polymer Surfaces. Advanced Functional<br>Materials, 2020, 30, 2004633.                                                                                                           | 7.8 | 40        |
| 121 | A General Protein Unfoldingâ€Chemical Coupling Strategy for Pure Protein Hydrogels with<br>Mechanically Strong and Multifunctional Properties. Advanced Science, 2022, 9, e2102557.                                                           | 5.6 | 40        |
| 122 | Alzheimer Aβ <sub>1â^'42</sub> Monomer Adsorbed on the Self-Assembled Monolayers. Langmuir, 2010, 26, 12722-12732.                                                                                                                            | 1.6 | 39        |
| 123 | Molecular Understanding of Aβ-hIAPP Cross-Seeding Assemblies on Lipid Membranes. ACS Chemical Neuroscience, 2017, 8, 524-537.                                                                                                                 | 1.7 | 39        |
| 124 | Multiple Physical Cross-Linker Strategy To Achieve Mechanically Tough and Reversible Properties of<br>Double-Network Hydrogels in Bulk and on Surfaces. ACS Applied Polymer Materials, 2019, 1, 701-713.                                      | 2.0 | 39        |
| 125 | Multiple Physical Bonds to Realize Highly Tough and Self-Adhesive Double-Network Hydrogels. ACS<br>Applied Polymer Materials, 2020, 2, 1031-1042.                                                                                             | 2.0 | 39        |
| 126 | Micro- and macroscopically structured zwitterionic polymers with ultralow fouling property.<br>Journal of Colloid and Interface Science, 2020, 578, 242-253.                                                                                  | 5.0 | 39        |

| #   | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Ginnalin A Inhibits Aggregation, Reverses Fibrillogenesis, and Alleviates Cytotoxicity of Amyloid<br>β(1–42). ACS Chemical Neuroscience, 2020, 11, 638-647.                                                                                    | 1.7 | 39        |
| 128 | Design principles and fundamental understanding of biosensors for amyloid-β detection. Journal of<br>Materials Chemistry B, 2020, 8, 6179-6196.                                                                                                | 2.9 | 39        |
| 129 | Single Mutations in Tau Modulate the Populations of Fibril Conformers through Seed Selection.<br>Angewandte Chemie - International Edition, 2014, 53, 1590-1593.                                                                               | 7.2 | 38        |
| 130 | Polymorphic cross-seeding amyloid assemblies of amyloid-β and human islet amyloid polypeptide.<br>Physical Chemistry Chemical Physics, 2015, 17, 23245-23256.                                                                                  | 1.3 | 38        |
| 131 | Ac-LVFFARK-NH 2 conjugation to β-cyclodextrin exhibits significantly enhanced performance on inhibiting amyloid β-protein fibrillogenesis and cytotoxicity. Biophysical Chemistry, 2018, 235, 40-47.                                           | 1.5 | 38        |
| 132 | Structure by design: from single proteins and their building blocks to nanostructures. Trends in Biotechnology, 2006, 24, 449-454.                                                                                                             | 4.9 | 37        |
| 133 | Nanostructure Design Using Protein Building Blocks Enhanced by Conformationally Constrained<br>Synthetic Residuesâ€. Biochemistry, 2007, 46, 1205-1218.                                                                                        | 1.2 | 37        |
| 134 | Antifouling and biodegradable poly(N-hydroxyethyl acrylamide) (polyHEAA)-based nanogels. RSC<br>Advances, 2013, 3, 19991.                                                                                                                      | 1.7 | 37        |
| 135 | Corrosion inhibition of mild steel by an imidazolium ionic liquid compound: the effect of pH and surface pre-corrosion. RSC Advances, 2015, 5, 95160-95170.                                                                                    | 1.7 | 37        |
| 136 | β <sub>2</sub> -Microglobulin Amyloid Fragment Organization and Morphology and Its Comparison to<br>Aβ Suggests That Amyloid Aggregation Pathways Are Sequence Specific. Biochemistry, 2008, 47,<br>2497-2509.                                 | 1.2 | 36        |
| 137 | Non-selective ion channel activity of polymorphic human islet amyloid polypeptide (amylin) double channels. Physical Chemistry Chemical Physics, 2014, 16, 2368-2377.                                                                          | 1.3 | 36        |
| 138 | Micellar-incorporated hydrogels with highly tough, mechanoresponsive, and self-recovery properties for strain-induced color sensors. Journal of Materials Chemistry C, 2018, 6, 11536-11551.                                                   | 2.7 | 36        |
| 139 | Molecular insights into the reversible formation of tau protein fibrils. Chemical Communications, 2013, 49, 3582.                                                                                                                              | 2.2 | 34        |
| 140 | Structural and Energetic Insight into the Cross-Seeding Amyloid Assemblies of Human IAPP and Rat<br>IAPP. Journal of Physical Chemistry B, 2014, 118, 7026-7036.                                                                               | 1.2 | 34        |
| 141 | Importance of zwitterionic incorporation into polymethacrylate-based hydrogels for simultaneously<br>improving optical transparency, oxygen permeability, and antifouling properties. Journal of Materials<br>Chemistry B, 2017, 5, 4595-4606. | 2.9 | 34        |
| 142 | Molecular simulation aspects of amyloid peptides at membrane interface. Biochimica Et Biophysica<br>Acta - Biomembranes, 2018, 1860, 1906-1916.                                                                                                | 1.4 | 34        |
| 143 | Novel Quasi-2D Perovskites for Stable and Efficient Perovskite Solar Cells. ACS Applied Materials<br>& Interfaces, 2020, 12, 51744-51755.                                                                                                      | 4.0 | 34        |
| 144 | A mechanistic survey of Alzheimer's disease. Biophysical Chemistry, 2022, 281, 106735.                                                                                                                                                         | 1.5 | 34        |

| #   | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Designing a Nanotube Using Naturally Occurring Protein Building Blocks. PLoS Computational Biology, 2006, 2, e42.                                                                                                                                      | 1.5 | 33        |
| 146 | Heterogeneous Triangular Structures of Human Islet Amyloid Polypeptide (Amylin) with Internal<br>Hydrophobic Cavity and External Wrapping Morphology Reveal the Polymorphic Nature of Amyloid<br>Fibrils. Biomacromolecules, 2011, 12, 1781-1794.      | 2.6 | 33        |
| 147 | Iminodiacetic acid-conjugated nanoparticles as a bifunctional modulator against Zn2+-mediated amyloid β-protein aggregation and cytotoxicity. Journal of Colloid and Interface Science, 2017, 505, 973-982.                                            | 5.0 | 33        |
| 148 | General Aggregation-Induced Emission Probes for Amyloid Inhibitors with Dual Inhibition Capacity<br>against Amyloid β-Protein and α-Synuclein. ACS Applied Materials & Interfaces, 2020, 12, 31182-31194.                                              | 4.0 | 33        |
| 149 | Molecular Modeling of Two Distinct Triangular Oligomers in Amyloid β-protein. Journal of Physical<br>Chemistry B, 2010, 114, 463-470.                                                                                                                  | 1.2 | 32        |
| 150 | Synthesis and Characterization of Ultralow Fouling Poly( <i>N</i> -acryloyl-glycinamide) Brushes.<br>Langmuir, 2017, 33, 13964-13972.                                                                                                                  | 1.6 | 31        |
| 151 | Agar/carbon dot crosslinked polyacrylamide double-network hydrogels with robustness, self-healing,<br>and stimulus-response fluorescence for smart anti-counterfeiting. Materials Chemistry Frontiers,<br>2021, 5, 5418-5428.                          | 3.2 | 31        |
| 152 | Acoustic signal analysis for detecting defects inside an arc magnet using a combination of variational mode decomposition and beetle antennae search. ISA Transactions, 2020, 102, 347-364.                                                            | 3.1 | 30        |
| 153 | Tough, adhesive, self-healing, fully physical crosslinked κ-CC-K+/pHEAA double-network ionic conductive hydrogels for wearable sensors. Polymer, 2021, 236, 124321.                                                                                    | 1.8 | 30        |
| 154 | A systematic SPR study of human plasma protein adsorption behavior on the controlled surface<br>packing of selfâ€assembled poly(ethylene oxide) triblock copolymer surfaces. Journal of Biomedical<br>Materials Research - Part A, 2010, 93A, 400-408. | 2.1 | 29        |
| 155 | Strong resistance of poly (ethylene glycol) based <scp>L</scp> â€tyrosine polyurethanes to protein<br>adsorption and cell adhesion. Polymer International, 2012, 61, 616-621.                                                                          | 1.6 | 28        |
| 156 | Mimicking the binding and unbinding of Fe3+ with transferrin using a single biomimetic nanochannel.<br>Chemical Communications, 2013, 49, 9317.                                                                                                        | 2.2 | 28        |
| 157 | Polymorphic Associations and Structures of the Cross-Seeding of Aβ <sub>1–42</sub> and<br>hIAPP <sub>1–37</sub> Polypeptides. Journal of Chemical Information and Modeling, 2015, 55, 1628-1639.                                                       | 2.5 | 28        |
| 158 | Lipase-catalyzed synthesis mechanism of tri-acetylated phloridzin and its antiproliferative activity against HepG2 cancer cells. Food Chemistry, 2019, 277, 186-194.                                                                                   | 4.2 | 28        |
| 159 | Interfacial interaction and lateral association of cross-seeding assemblies between hIAPP and rIAPP oligomers. Physical Chemistry Chemical Physics, 2015, 17, 10373-10382.                                                                             | 1.3 | 27        |
| 160 | How Does Hyperphopsphorylation Promote Tau Aggregation and Modulate Filament Structure and Stability?. ACS Chemical Neuroscience, 2016, 7, 565-575.                                                                                                    | 1.7 | 27        |
| 161 | Grafting zwitterionic polymer onto cryogel surface enhances protein retention in steric exclusion chromatography on cryogel monolith. Journal of Chromatography A, 2015, 1389, 104-111.                                                                | 1.8 | 26        |
| 162 | Promotional effect of Ti doping on the ketonization of acetic acid over a CeO <sub>2</sub> catalyst.<br>RSC Advances, 2017, 7, 22017-22026.                                                                                                            | 1.7 | 25        |

| #   | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Seed-Induced Heterogeneous Cross-Seeding Self-Assembly of Human and Rat Islet Polypeptides. ACS<br>Omega, 2017, 2, 784-792.                                                                                                                      | 1.6 | 25        |
| 164 | Molecular Simulations of Amyloid Structures, Toxicity, and Inhibition. Israel Journal of Chemistry, 2017, 57, 586-601.                                                                                                                           | 1.0 | 25        |
| 165 | Computational Investigation of Antifouling Property of Polyacrylamide Brushes. Langmuir, 2020, 36, 2757-2766.                                                                                                                                    | 1.6 | 25        |
| 166 | Lanthanide-Doped Upconversion Nanoparticle-Cross-Linked Double-Network Hydrogels with Strong<br>Bulk/Interfacial Toughness and Tunable Full-Color Fluorescence for Bioimaging and Biosensing. ACS<br>Applied Nano Materials, 2020, 3, 2774-2786. | 2.4 | 25        |
| 167 | Antimicrobial α-defensins as multi-target inhibitors against amyloid formation and microbial infection.<br>Chemical Science, 2021, 12, 9124-9139.                                                                                                | 3.7 | 25        |
| 168 | Branched NaYF <sub>4</sub> :Yb, Er Up-Conversion Phosphors with Luminescent Properties for Anti-Counterfeiting Application. Science of Advanced Materials, 2017, 9, 2223-2233.                                                                   | 0.1 | 25        |
| 169 | Water-soluble CdTe quantum dots as an anode interlayer for solution-processed near infrared polymer photodetectors. Nanoscale, 2013, 5, 12474.                                                                                                   | 2.8 | 24        |
| 170 | A multiscale polymerization framework towards network structure and fracture of double-network hydrogels. Npj Computational Materials, 2021, 7, .                                                                                                | 3.5 | 24        |
| 171 | Structural Determination of Aβ25–35 Micelles by Molecular Dynamics Simulations. Biophysical Journal, 2010, 99, 666-674.                                                                                                                          | 0.2 | 23        |
| 172 | Halogen bonding regulated functional nanomaterials. Nanoscale Advances, 2021, 3, 6342-6357.                                                                                                                                                      | 2.2 | 23        |
| 173 | Simple Thermal Pretreatment Strategy to Tune Mechanical and Antifouling Properties of Zwitterionic<br>Hydrogels. Langmuir, 2019, 35, 1828-1836.                                                                                                  | 1.6 | 22        |
| 174 | Graphene Nanofibrous Foam Designed as an Efficient Oil Absorbent. Industrial & Engineering<br>Chemistry Research, 2019, 58, 3000-3008.                                                                                                           | 1.8 | 21        |
| 175 | Recent progress in the allâ€solidâ€state flexible supercapacitors. SmartMat, 2022, 3, 349-383.                                                                                                                                                   | 6.4 | 21        |
| 176 | DFBP: a comprehensive database of food-derived bioactive peptides for peptidomics research.<br>Bioinformatics, 2022, 38, 3275-3280.                                                                                                              | 1.8 | 21        |
| 177 | Concepts and schemes for the re-engineering of physical protein modules: generating nanodevices via targeted replacements with constrained amino acids. Physical Biology, 2006, 3, S54-S62.                                                      | 0.8 | 20        |
| 178 | Cross-Sequence Interactions between Human and Rat Islet Amyloid Polypeptides. Langmuir, 2014, 30, 5193-5201.                                                                                                                                     | 1.6 | 20        |
| 179 | Highly electrically conductive polyethylenedioxythiophene thin films for thermoelectric applications. Journal of Materials Chemistry A, 2016, 4, 12730-12738.                                                                                    | 5.2 | 20        |
| 180 | Design of nonapeptide LVFFARKHH: A bifunctional agent against Cu <sup>2+</sup> â€mediated amyloid<br>βâ€protein aggregation and cytotoxicity. Journal of Molecular Recognition, 2018, 31, e2697.                                                 | 1.1 | 20        |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Introduction and Fundamentals of Human Islet Amyloid Polypeptide Inhibitors. ACS Applied Bio<br>Materials, 2020, 3, 8286-8308.                                                                                           | 2.3 | 20        |
| 182 | Surface Zwitterionization of Expanded Poly(tetrafluoroethylene) via Dopamine-Assisted Consecutive<br>Immersion Coating. ACS Applied Materials & Interfaces, 2020, 12, 41000-41010.                                       | 4.0 | 20        |
| 183 | Fundamentals and exploration of aggregation-induced emission molecules for amyloid protein aggregation. Journal of Materials Chemistry B, 2022, 10, 2280-2295.                                                           | 2.9 | 20        |
| 184 | Insights into the adsorption of simple benzene derivatives on carbon nanotubes. RSC Advances, 2014, 4, 58036-58046.                                                                                                      | 1.7 | 19        |
| 185 | Hemocompatible biomaterials of zwitterionic sulfobetaine hydrogels regulated with pH-responsive<br>DMAEMA random sequences. International Journal of Polymeric Materials and Polymeric Biomaterials,<br>2016, 65, 65-74. | 1.8 | 19        |
| 186 | A new nanoscale transdermal drug delivery system: oil body-linked oleosin-hEGF improves skin<br>regeneration to accelerate wound healing. Journal of Nanobiotechnology, 2018, 16, 62.                                    | 4.2 | 19        |
| 187 | Changing the Charge Distribution of β-Helical-Based Nanostructures Can Provide the Conditions for Charge Transfer. Biophysical Journal, 2007, 93, 245-253.                                                               | 0.2 | 18        |
| 188 | A computational study of self-assembled hexapeptide inhibitors against amyloid-β (Aβ) aggregation.<br>Physical Chemistry Chemical Physics, 2016, 19, 155-166.                                                            | 1.3 | 18        |
| 189 | Ultrasensitive Perovskite Photodetectors by Co Partially Substituted Hybrid Perovskite. ACS<br>Sustainable Chemistry and Engineering, 2018, 6, 12055-12060.                                                              | 3.2 | 18        |
| 190 | Amyloid cross-seeding between Aβ and hIAPP in relation to the pathogenesis of Alzheimer and type 2 diabetes. Chinese Journal of Chemical Engineering, 2021, 30, 225-235.                                                 | 1.7 | 18        |
| 191 | Molecular dynamics simulations of Alzheimer Abeta40 elongation and lateral association. Frontiers in Bioscience - Landmark, 2008, Volume, 3919.                                                                          | 3.0 | 17        |
| 192 | Atomic-Scale Simulations Confirm that Soluble β-Sheet-Rich Peptide Self-Assemblies Provide Amyloid<br>Mimics Presenting Similar Conformational Properties. Biophysical Journal, 2010, 98, 27-36.                         | 0.2 | 17        |
| 193 | Ca <sup>2+</sup> Interacts with Glu-22 of Aβ(1–42) and Phospholipid Bilayers to Accelerate the Aβ(1–42) Aggregation Below the Critical Micelle Concentration. Biochemistry, 2015, 54, 6323-6332.                         | 1.2 | 17        |
| 194 | Efficient polymer solar cells fabricated from solvent processing additive solution. Journal of Materials Chemistry C, 2015, 3, 26-32.                                                                                    | 2.7 | 17        |
| 195 | Highly Water-Preserving Zwitterionic Betaine-Incorporated Collagen Sponges With Anti-oxidation and Anti-inflammation for Wound Regeneration. Frontiers in Cell and Developmental Biology, 2020, 8, 491.                  | 1.8 | 17        |
| 196 | Machine Learning-Enabled Repurposing and Design of Antifouling Polymer Brushes. Chemical<br>Engineering Journal, 2021, 420, 129872.                                                                                      | 6.6 | 17        |
| 197 | Solution-Processed Ternary Perovskite-Organic Broadband Photodetectors with Ultrahigh Detectivity. ACS Applied Materials & Interfaces, 2022, 14, 18744-18750.                                                            | 4.0 | 17        |
| 198 | Mutational Analysis and Allosteric Effects in the HIV-1 Capsid Protein Carboxyl-Terminal Dimerization<br>Domain. Biomacromolecules, 2009, 10, 390-399.                                                                   | 2.6 | 16        |

| #   | Article                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | An Index for Characterization of Natural and Non-Natural Amino Acids for Peptidomimetics. PLoS ONE, 2013, 8, e67844.                                                                           | 1.1 | 16        |
| 200 | Mechanically tough and recoverable hydrogels via dual physical crosslinkings. Journal of Polymer<br>Science, Part B: Polymer Physics, 2018, 56, 1294-1305.                                     | 2.4 | 16        |
| 201 | Solid-State Double-Network Hydrogel Redox Electrolytes for High-Performance Flexible<br>Supercapacitors. ACS Applied Materials & Interfaces, 2021, 13, 34168-34177.                            | 4.0 | 16        |
| 202 | The Translational Application of Hydrogel for Organoid Technology: Challenges and Future Perspectives. Macromolecular Bioscience, 2021, 21, e2100191.                                          | 2.1 | 16        |
| 203 | Atomistic characterization of binding modes and affinity of peptide inhibitors to amyloid-β protein.<br>Frontiers of Chemical Science and Engineering, 2014, 8, 433-444.                       | 2.3 | 15        |
| 204 | Synthesis and characterization of biocompatible polyurethanes for controlled release of<br>hydrophobic and hydrophilic drugs. Frontiers of Chemical Science and Engineering, 2014, 8, 498-510. | 2.3 | 15        |
| 205 | Pure OPM nanofibers with high piezoelectricity designed for energy harvesting <i>in vitro</i> and <i>in vivo</i> . Journal of Materials Chemistry B, 2018, 6, 5343-5352.                       | 2.9 | 15        |
| 206 | Repurposing a Cardiovascular Disease Drug of Cloridarol as hIAPP Inhibitor. ACS Chemical Neuroscience, 2021, 12, 1419-1427.                                                                    | 1.7 | 15        |
| 207 | Dual amyloid cross-seeding reveals steric zipper-facilitated fibrillization and pathological links between protein misfolding diseases. Journal of Materials Chemistry B, 2021, 9, 3300-3316.  | 2.9 | 15        |
| 208 | Molecular Dynamics Simulation of the Effect of Carbon Space Lengths on the Antifouling Properties of Hydroxyalkyl Acrylamides. Langmuir, 2019, 35, 3576-3584.                                  | 1.6 | 14        |
| 209 | Machine Learning-Enabled Design and Prediction of Protein Resistance on Self-Assembled Monolayers and Beyond. ACS Applied Materials & Interfaces, 2021, 13, 11306-11319.                       | 4.0 | 14        |
| 210 | Stable and efficient perovskite solar cells by discrete two-dimensional perovskites capped on the three-dimensional perovskites bilayer thin film. Nano Energy, 2022, 96, 107126.              | 8.2 | 14        |
| 211 | Improvement of performance of a Au–Cu/AC catalyst using thiol for acetylene hydrochlorination reaction. RSC Advances, 2016, 6, 3806-3814.                                                      | 1.7 | 13        |
| 212 | Solution-Processed Ultrahigh Detectivity Photodetectors by Hybrid Perovskite Incorporated with<br>Heterovalent Neodymium Cations. ACS Omega, 2019, 4, 15873-15878.                             | 1.6 | 13        |
| 213 | Seeding and Cross-Seeding Aggregations of Aβ <sub>40</sub> and Its N-Terminal-Truncated Peptide<br>Aβ <sub>11–40</sub> . Langmuir, 2019, 35, 2821-2831.                                        | 1.6 | 13        |
| 214 | A zwitterionic polymer as an interfacial layer for efficient and stable perovskite solar cells. RSC<br>Advances, 2019, 9, 30317-30324.                                                         | 1.7 | 13        |
| 215 | Design and Engineering of Amyloid Aggregationâ€Prone Fragments and Their Antimicrobial Conjugates<br>with Multiâ€Target Functionality. Advanced Functional Materials, 2021, 31, 2102978.       | 7.8 | 13        |
| 216 | Power Generation from Moisture Fluctuations Using Polyvinyl Alcoholâ€Wrapped<br>Dopamine/Polyvinylidene Difluoride Nanofibers. Small, 2021, 17, e2102550.                                      | 5.2 | 13        |

| #   | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Efficient and Stable Perovskite Solar Cells by B-Site Compositional Engineered All-Inorganic<br>Perovskites and Interface Passivation. ACS Applied Materials & Interfaces, 2022, 14, 19469-19479.                                                     | 4.0 | 13        |
| 218 | Cell multipole method for molecular simulations in bulk and confined systems. Journal of Chemical Physics, 2003, 118, 5347-5355.                                                                                                                      | 1.2 | 12        |
| 219 | High production in E. coli of biologically active recombinant human fibroblast growth factor 20 and its neuroprotective effects. Applied Microbiology and Biotechnology, 2016, 100, 3023-3034.                                                        | 1.7 | 12        |
| 220 | Identification of a New Function of Cardiovascular Disease Drug 3-Morpholinosydnonimine<br>Hydrochloride as an Amyloid-β Aggregation Inhibitor. ACS Omega, 2017, 2, 243-250.                                                                          | 1.6 | 12        |
| 221 | LVFFARK conjugation to poly (carboxybetaine methacrylate) remarkably enhances its inhibitory potency on amyloid β-protein fibrillogenesis. Reactive and Functional Polymers, 2019, 140, 72-81.                                                        | 2.0 | 12        |
| 222 | Healing kinetics of diabetic wounds controlled with charge-biased hydrogel dressings. Journal of<br>Materials Chemistry B, 2019, 7, 7184-7194.                                                                                                        | 2.9 | 12        |
| 223 | A Nondestructive Surface Zwitterionization of Polydimethylsiloxane for the Improved Human<br>Blood-inert Properties. ACS Applied Bio Materials, 2019, 2, 39-48.                                                                                       | 2.3 | 12        |
| 224 | All-Solid-State Asymmetric Supercapacitors with Novel Ionic Liquid Gel Electrolytes. ACS Applied<br>Electronic Materials, 2020, 2, 3906-3914.                                                                                                         | 2.0 | 12        |
| 225 | Two-/Three-Dimensional Perovskite Bilayer Thin Films Post-Treated with Solvent Vapor for<br>High-Performance Perovskite Photovoltaics. ACS Applied Materials & Interfaces, 2021, 13,<br>49104-49113.                                                  | 4.0 | 12        |
| 226 | Oncogenic Mutations Differentially Affect Bax Monomer, Dimer, and Oligomeric Pore Formation in the Membrane. Scientific Reports, 2016, 6, 33340.                                                                                                      | 1.6 | 11        |
| 227 | Head-to-tail cyclization of a heptapeptide eliminates its cytotoxicity and significantly increases its<br>inhibition effect on amyloid β-protein fibrillation and cytotoxicity. Frontiers of Chemical Science and<br>Engineering, 2018, 12, 283-295.  | 2.3 | 11        |
| 228 | Aromadendrin: a dual amyloid promoter to accelerate fibrillization and reduce cytotoxicity of both amyloid-Î <sup>2</sup> and hIAPP. Materials Advances, 2020, 1, 1241-1252.                                                                          | 2.6 | 11        |
| 229 | Mechanically Strong Metal–Organic Framework Nanoparticle-Based Double Network Hydrogels for<br>Fluorescence Imaging. ACS Applied Nano Materials, 2022, 5, 1348-1355.                                                                                  | 2.4 | 11        |
| 230 | Stability of Tubular Structures Based on β-Helical Proteins:  Self-Assembled versus Polymerized<br>Nanoconstructs and Wild-Type versus Mutated Sequences. Biomacromolecules, 2007, 8, 3135-3146.                                                      | 2.6 | 10        |
| 231 | Design of hemocompatible poly(DMAEMAâ€ <i>co</i> â€₽EGMA) hydrogels for controlled release of insulin.<br>Journal of Applied Polymer Science, 2015, 132, .                                                                                            | 1.3 | 10        |
| 232 | A quantitative sequence–aggregation relationship predictor applied as identification of<br>self-assembled hexapeptides. Chemometrics and Intelligent Laboratory Systems, 2015, 145, 7-16.                                                             | 1.8 | 10        |
| 233 | Molecular Recognition between AÎ <sup>2</sup> -Specific Single-Domain Antibody and AÎ <sup>2</sup> Misfolded Aggregates.<br>Antibodies, 2018, 7, 25.                                                                                                  | 1.2 | 10        |
| 234 | Surface Enriched Sulfonic Acid Ionic Clusters of Nafion Nanofibers as Longâ€Range Interconnected<br>Ionic Nanochannels for Anisotropic Proton Transportation: Phenomenon and Molecular Mechanism.<br>Advanced Materials Interfaces, 2020, 7, 2000342. | 1.9 | 10        |

JIE ZHENG

| #   | Article                                                                                                                                                                                                                             | IF         | CITATIONS      |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|
| 235 | Theoretical study of the interaction pattern and the binding affinity between procaine and DNA bases.<br>Computational and Theoretical Chemistry, 2010, 939, 44-52.                                                                 | 1.5        | 9              |
| 236 | An NMR investigation on the phase structure and molecular mobility of the novel exfoliated<br>polyethylene/palygorskite nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2010,<br>48, 1363-1371.                | 2.4        | 8              |
| 237 | Experimental and Computational Protocols for Studies of Cross-Seeding Amyloid Assemblies. Methods<br>in Molecular Biology, 2018, 1777, 429-447.                                                                                     | 0.4        | 8              |
| 238 | Molecular Dynamics Simulations of Cholesterol Effects on the Interaction of hIAPP with Lipid Bilayer.<br>Journal of Physical Chemistry B, 2020, 124, 7830-7841.                                                                     | 1.2        | 8              |
| 239 | Conjugated molecule based 2D perovskites for high-performance perovskite solar cells. Journal of<br>Materials Chemistry A, 2021, 9, 21910-21917.                                                                                    | 5.2        | 8              |
| 240 | Cross-seeding between Aβ and SEVI indicates a pathogenic link and gender difference between alzheimer diseases and AIDS. Communications Biology, 2022, 5, 417.                                                                      | 2.0        | 8              |
| 241 | Hemocompatible interface control via thermal-activated bio-inspired surface PEGylation.<br>International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 409-420.                                              | 1.8        | 7              |
| 242 | Role of Protein Charge Density on Hepatitis B Virus Capsid Formation. ACS Omega, 2018, 3, 4384-4391.                                                                                                                                | 1.6        | 7              |
| 243 | A new strategy to reconcile amyloid crossâ€seeding and amyloid prevention in a binary system of<br>αâ€synuclein fragmental peptide and <scp>hIAPP</scp> . Protein Science, 2022, 31, 485-497.                                       | 3.1        | 7              |
| 244 | Importance of Polyacrylamide Hydrogel Diverse Chains and Cross-Linking Density for Cell<br>Proliferation, Aging, and Death. Langmuir, 2019, 35, 13999-14006.                                                                        | 1.6        | 6              |
| 245 | Conformational-specific self-assembled peptides as dual-mode, multi-target inhibitors and detectors for different amyloid proteins. Journal of Materials Chemistry B, 2022, 10, 1754-1762.                                          | 2.9        | 6              |
| 246 | Repurposing of intestinal defensins as multi-target, dual-function amyloid inhibitors <i>via</i> cross-seeding. Chemical Science, 2022, 13, 7143-7156.                                                                              | 3.7        | 6              |
| 247 | Solution-processed broadband photodetectors without transparent conductive oxide electrodes.<br>Journal of Materials Chemistry C, 2022, 10, 2783-2791.                                                                              | 2.7        | 4              |
| 248 | Hydrogels: A Novel Design of Multiâ€Mechanoresponsive and Mechanically Strong Hydrogels (Adv.) Tj ETQqO 0 (                                                                                                                         | ) rgBT /Ov | erlgck 10 Tf 5 |
| 249 | A negative piezo-conductive effect from doped semiconducting polymer thin films. Scientific Reports, 2021, 11, 18222.                                                                                                               | 1.6        | 3              |
| 250 | Solution-processed bulk heterojunction broadband photodetectors based on perovskites incorporated with PbSe quantum dots. Organic Electronics, 2022, 101, 106410.                                                                   | 1.4        | 3              |
| 251 | PEGylated Poly(3-hydroxybutyrate) Scaffold for Hydration-Driven Cell Infiltration, Neo-Tissue<br>Ingrowth, and Osteogenic Potential. International Journal of Polymeric Materials and Polymeric<br>Biomaterials, 2015, 64, 865-878. | 1.8        | 2              |
| 252 | A Protocol for the Design of Protein and Peptide Nanostructure Self-Assemblies Exploiting Synthetic                                                                                                                                 | 0.4        | 2              |

| #   | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Highly efficient production of functional recombinant human fibroblast growth factor 22 in E. coli<br>and its protective effects on H2O2-lesioned LO2â€ <sup>-</sup> cells. Protein Expression and Purification, 2018, 152,<br>114-121. | 0.6 | 2         |
| 254 | Effect of External Magnetic Field on Bulk Heterojunction Polymer Solar Cells. Macromolecular Rapid<br>Communications, 2022, , 2100933.                                                                                                  | 2.0 | 2         |
| 255 | An Investigation on the Fundamental Interaction between Abeta Peptides and the AT-Rich DNA. Journal of Physical Chemistry B, 2015, 119, 8247-8259.                                                                                      | 1.2 | 1         |
| 256 | Large-Scale Expression, Purification of Bioactive Recombinant Human FGF6 in E. coli and the<br>Mechanisms of Its Myocardial Protection. International Journal of Peptide Research and Therapeutics,<br>2018, 24, 105-115.               | 0.9 | 1         |
| 257 | Design and Engineering of Amyloid Aggregationâ€Prone Fragments and Their Antimicrobial Conjugates<br>with Multiâ€Target Functionality (Adv. Funct. Mater. 32/2021). Advanced Functional Materials, 2021, 31,<br>2170236.                | 7.8 | 0         |
| 258 | Origins of the Photocurrent Multiplication Effect in the Polythiopheneâ€Based Photodetectors.<br>Macromolecular Rapid Communications, 2022, , 2100928.                                                                                  | 2.0 | 0         |