Aleksandr Kakinen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7921784/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Size-Dependent Toxicity of Silver Nanoparticles to Bacteria, Yeast, Algae, Crustaceans and Mammalian Cells In Vitro. PLoS ONE, 2014, 9, e102108.	1.1	465
2	Implications of peptide assemblies in amyloid diseases. Chemical Society Reviews, 2017, 46, 6492-6531.	18.7	262
3	Particle-Cell Contact Enhances Antibacterial Activity of Silver Nanoparticles. PLoS ONE, 2013, 8, e64060.	1.1	208
4	Toxicity of 11 Metal Oxide Nanoparticles to Three Mammalian Cell Types <i>In V.itro</i> . Current Topics in Medicinal Chemistry, 2015, 15, 1914-1929.	1.0	190
5	Sub-toxic effects of CuO nanoparticles on bacteria: Kinetics, role of Cu ions and possible mechanisms of action. Environmental Pollution, 2012, 169, 81-89.	3.7	180
6	Inhibition of amyloid beta toxicity in zebrafish with a chaperone-gold nanoparticle dual strategy. Nature Communications, 2019, 10, 3780.	5.8	132
7	Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus. Environmental Science and Pollution Research, 2013, 20, 3456-3463.	2.7	116
8	Stabilizing Off-pathway Oligomers by Polyphenol Nanoassemblies for IAPP Aggregation Inhibition. Scientific Reports, 2016, 6, 19463.	1.6	104
9	Graphene quantum dots against human IAPP aggregation and toxicity <i>in vivo</i> . Nanoscale, 2018, 10, 19995-20006.	2.8	100
10	Inhibition of hIAPP Amyloid Aggregation and Pancreatic β-Cell Toxicity by OH-Terminated PAMAM Dendrimer. Small, 2016, 12, 1615-1626.	5.2	99
11	Mitigation of Amyloidosis with Nanomaterials. Advanced Materials, 2020, 32, e1901690.	11.1	87
12	Nanotoxicology and nanomedicine: The Yin and Yang of nano-bio interactions for the new decade. Nano Today, 2021, 39, 101184.	6.2	67
13	Star Polymers Reduce Islet Amyloid Polypeptide Toxicity via Accelerated Amyloid Aggregation. Biomacromolecules, 2017, 18, 4249-4260.	2.6	65
14	Competitive Binding of Natural Amphiphiles with Graphene Derivatives. Scientific Reports, 2013, 3, 2273.	1.6	61
15	Mitigating Human IAPP Amyloidogenesis In Vivo with Chiral Silica Nanoribbons. Small, 2018, 14, e1802825.	5.2	57
16	Differential effects of silver and iron oxide nanoparticles on IAPP amyloid aggregation. Biomaterials Science, 2017, 5, 485-493.	2.6	53
17	Cofibrillization of Pathogenic and Functional Amyloid Proteins with Gold Nanoparticles against Amyloidogenesis. Biomacromolecules, 2017, 18, 4316-4322.	2.6	50
18	Amyloid Selfâ€Assembly of hIAPP8â€20 via the Accumulation of Helical Oligomers, αâ€Helix to βâ€Sheet Transition, and Formation of βâ€Barrel Intermediates. Small, 2019, 15, e1805166.	5.2	49

ALEKSANDR KAKINEN

#	Article	IF	CITATIONS
19	Interaction of firefly luciferase and silver nanoparticles and its impact on enzyme activity. Nanotechnology, 2013, 24, 345101.	1.3	47
20	Amphiphilic surface chemistry of fullerenols is necessary for inhibiting the amyloid aggregation of alpha-synuclein NACore. Nanoscale, 2019, 11, 11933-11945.	2.8	47
21	The Effect of Composition of Different Ecotoxicological Test Media on Free and Bioavailable Copper from CuSO4 and CuO Nanoparticles: Comparative Evidence from a Cu-Selective Electrode and a Cu-Biosensor. Sensors, 2011, 11, 10502-10521.	2.1	45
22	An interlaboratory comparison of nanosilver characterisation and hazard identification: Harmonising techniques for high quality data. Environment International, 2016, 87, 20-32.	4.8	45
23	Pancreatic β-Cell Membrane Fluidity and Toxicity Induced by Human Islet Amyloid Polypeptide Species. Scientific Reports, 2016, 6, 21274.	1.6	44
24	Nucleation of β-rich oligomers and β-barrels in the early aggregation of human islet amyloid polypeptide. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 434-444.	1.8	44
25	Spontaneous formation of β-sheet nano-barrels during the early aggregation of Alzheimer's amyloid beta. Nano Today, 2021, 38, 101125.	6.2	44
26	NanoEHS beyond toxicity – focusing on biocorona. Environmental Science: Nano, 2017, 4, 1433-1454.	2.2	43
27	Profiling the Serum Protein Corona of Fibrillar Human Islet Amyloid Polypeptide. ACS Nano, 2018, 12, 6066-6078.	7.3	39
28	In Vivo Mitigation of Amyloidogenesis through Functional–Pathogenic Double-Protein Coronae. Nano Letters, 2018, 18, 5797-5804.	4.5	39
29	Environmental hazard of oil shale combustion fly ash. Journal of Hazardous Materials, 2012, 229-230, 192-200.	6.5	38
30	Probing the Aggregation and Immune Response of Human Islet Amyloid Polypeptides with Ligand-Stabilized Gold Nanoparticles. ACS Applied Materials & Interfaces, 2019, 11, 10462-10471.	4.0	37
31	Serum albumin impedes the amyloid aggregation and hemolysis of human islet amyloid polypeptide and alpha synuclein. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1803-1809.	1.4	36
32	Uptake and transcytosis of functionalized superparamagnetic iron oxide nanoparticles in an <i>in vitro</i> blood brain barrier model. Biomaterials Science, 2018, 6, 314-323.	2.6	36
33	Nanoscale inhibition of polymorphic and ambidextrous IAPP amyloid aggregation with small molecules. Nano Research, 2018, 11, 3636-3647.	5.8	35
34	Effects of Protein Corona on IAPP Amyloid Aggregation, Fibril Remodelling, and Cytotoxicity. Scientific Reports, 2017, 7, 2455.	1.6	34
35	Graphene quantum dots rescue protein dysregulation of pancreatic β-cells exposed to human islet amyloid polypeptide. Nano Research, 2019, 12, 2827-2834.	5.8	34
36	Amyloid Aggregation under the Lens of Liquid–Liquid Phase Separation. Journal of Physical Chemistry Letters, 2021, 12, 368-378.	2.1	34

Aleksandr Kakinen

#	Article	IF	CITATIONS
37	Synthesis and in vitro properties of iron oxide nanoparticles grafted with brushed phosphorylcholine and polyethylene glycol. Polymer Chemistry, 2016, 7, 1931-1944.	1.9	32
38	Plasma Proteome Association and Catalytic Activity of Stealth Polymerâ€Grafted Iron Oxide Nanoparticles. Small, 2017, 13, 1701528.	5.2	27
39	Single-Molecular Heteroamyloidosis of Human Islet Amyloid Polypeptide. Nano Letters, 2019, 19, 6535-6546.	4.5	27
40	Inhibition of Amyloid Aggregation and Toxicity with Janus Iron Oxide Nanoparticles. Chemistry of Materials, 2021, 33, 6484-6500.	3.2	25
41	Physical and toxicological profiles of human IAPP amyloids and plaques. Science Bulletin, 2019, 64, 26-35.	4.3	24
42	Dynamic Protein Corona of Gold Nanoparticles with an Evolving Morphology. ACS Applied Materials & Interfaces, 2021, 13, 58238-58251.	4.0	23
43	Ultrasmall Molybdenum Disulfide Quantum Dots Cage Alzheimer's Amyloid Beta to Restore Membrane Fluidity. ACS Applied Materials & Interfaces, 2021, 13, 29936-29948.	4.0	22
44	A Framework of Paracellular Transport via Nanoparticlesâ€Induced Endothelial Leakiness. Advanced Science, 2021, 8, e2102519.	5.6	22
45	Zinc-coordination and C-peptide complexation: a potential mechanism for the endogenous inhibition of IAPP aggregation. Chemical Communications, 2017, 53, 9394-9397.	2.2	21
46	Brushed polyethylene glycol and phosphorylcholine for grafting nanoparticles against protein binding. Polymer Chemistry, 2016, 7, 6875-6879.	1.9	20
47	Solubility-driven toxicity of CuO nanoparticles to Caco2 cells and Escherichia coli : Effect of sonication energy and test environment. Toxicology in Vitro, 2016, 36, 172-179.	1.1	20
48	Nanoparticle–proteome <i>in vitro</i> and <i>in vivo</i> . Journal of Materials Chemistry B, 2018, 6, 6026-6041.	2.9	18
49	Human Plasma Protein Corona of Aβ Amyloid and Its Impact on Islet Amyloid Polypeptide Cross-Seeding. Biomacromolecules, 2020, 21, 988-998.	2.6	15
50	Graphene quantum dots obstruct the membrane axis of Alzheimer's amyloid beta. Physical Chemistry Chemical Physics, 2021, 24, 86-97.	1.3	14
51	<i>In vitro</i> and <i>in vivo</i> models for anti-amyloidosis nanomedicines. Nanoscale Horizons, 2021, 6, 95-119.	4.1	13
52	Lysophosphatidylcholine modulates the aggregation of human islet amyloid polypeptide. Physical Chemistry Chemical Physics, 2017, 19, 30627-30635.	1.3	12
53	The Membrane Axis of Alzheimer's Nanomedicine. Advanced NanoBiomed Research, 2021, 1, 2000040.	1.7	12
54	Selective performance of sol-gel synthesised titanium dioxide photocatalysts in aqueous oxidation of various-type organic pollutants. Kinetics and Catalysis, 2014, 55, 47-55.	0.3	8

ALEKSANDR KAKINEN

#	Article	IF	CITATIONS
55	Aqueous photocatalytic oxidation of prednisolone. Open Chemistry, 2013, 11, 1620-1633.	1.0	6
56	Amyloidosis: Mitigation of Amyloidosis with Nanomaterials (Adv. Mater. 18/2020). Advanced Materials, 2020, 32, 2070146.	11.1	2
57	Structure Dependent Differential Modulation of $A\hat{l}^2$ Fibrillization by Selenadiazole-Based Inhibitors. ACS Chemical Neuroscience, 2021, 12, 3806-3817.	1.7	2
58	Bioavailability and toxicity of copper oxide and silver nanoparticles to bacteria, yeasts, crustaceans and protozoa. Toxicology Letters, 2011, 205, S284-S285.	0.4	1
59	Peptide Selfâ€Assembly: Amyloid Selfâ€Assembly of hIAPP8â€20 via the Accumulation of Helical Oligomers, αâ€Helix to βâ€Sheet Transition, and Formation of βâ€Barrel Intermediates (Small 18/2019). Small, 2019, 15, 1970093.	5.2	1