
Huaihe Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7921659/publications.pdf Version: 2024-02-01

HUMINE SONC

#	Article	IF	CITATIONS
1	Graphitic Carbon Nanocage as a Stable and High Power Anode for Potassiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1801149.	19.5	442
2	Two dimensional graphene–SnS ₂ hybrids with superior rate capability for lithium ion storage. Energy and Environmental Science, 2012, 5, 5226-5230.	30.8	386
3	Graphene nanosheets as electrode material for electric double-layer capacitors. Electrochimica Acta, 2010, 55, 4812-4819.	5.2	335
4	Magnetite/graphene nanosheet composites: interfacial interaction and its impact on the durable high-rate performance in lithium-ion batteries. RSC Advances, 2011, 1, 782.	3.6	332
5	Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon, 2011, 49, 4013-4023.	10.3	322
6	Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. Journal of Materials Chemistry A, 2016, 4, 6472-6478.	10.3	319
7	Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium-ion batteries. Electrochemistry Communications, 2006, 8, 137-142.	4.7	279
8	Boosting the Electrical Doubleâ€Layer Capacitance of Graphene by Selfâ€Doped Defects through Ballâ€Milling. Advanced Functional Materials, 2019, 29, 1901127.	14.9	258
9	Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor. Electrochimica Acta, 2010, 55, 7021-7027.	5.2	238
10	Effect of compounding process on the structure and electrochemical properties of ordered mesoporous carbon/polyaniline composites as electrodes for supercapacitors. Journal of Power Sources, 2009, 187, 268-274.	7.8	192
11	Effects of nitrogen- and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors. Journal of Power Sources, 2015, 285, 303-309.	7.8	182
12	Hollow graphene oxide spheres self-assembled by W/O emulsion. Journal of Materials Chemistry, 2010, 20, 4867.	6.7	172
13	Enhanced electrochemical performance of MnO nanowire/graphene composite during cycling as the anode material for lithium-ion batteries. Nano Energy, 2014, 10, 172-180.	16.0	171
14	Amorphous Fe ₂ O ₃ /Graphene Composite Nanosheets with Enhanced Electrochemical Performance for Sodium-Ion Battery. ACS Applied Materials & Interfaces, 2016, 8, 30899-30907.	8.0	171
15	Hierarchical porous carbon nanosheets and their favorable high-rate performance in lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 12369.	6.7	163
16	Iron sulfide-embedded carbon microsphere anode material with high-rate performance for lithium-ion batteries. Chemical Communications, 2011, 47, 8653.	4.1	156
17	2D Znâ€Hexamine Coordination Frameworks and Their Derived Nâ€Rich Porous Carbon Nanosheets for Ultrafast Sodium Storage. Advanced Energy Materials, 2018, 8, 1800569.	19.5	150
18	Carbon-Encapsulated Metal Oxide Hollow Nanoparticles and Metal Oxide Hollow Nanoparticles: A General Synthesis Strategy and Its Application to Lithium-Ion Batteries. Chemistry of Materials, 2009, 21, 2935-2940.	6.7	143

#	Article	IF	CITATIONS
19	A comparative study of electrochemical properties of two kinds of carbon nanotubes as anode materials for lithium ion batteries. Electrochimica Acta, 2008, 53, 2238-2244.	5.2	141
20	One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries. Energy Storage Materials, 2020, 24, 312-318.	18.0	141
21	A novel strategy for the synthesis of hard carbon spheres encapsulated with graphene networks as a low-cost and large-scalable anode material for fast sodium storage with an ultralong cycle life. Inorganic Chemistry Frontiers, 2020, 7, 402-410.	6.0	128
22	Durable high-rate performance of CuO hollow nanoparticles/graphene-nanosheet composite anode material for lithium-ion batteries. Electrochemistry Communications, 2011, 13, 1357-1360.	4.7	114
23	"Butterfly Effect―in CuO/Graphene Composite Nanosheets: A Small Interfacial Adjustment Triggers Big Changes in Electronic Structure and Li-Ion Storage Performance. ACS Applied Materials & Interfaces, 2014, 6, 17236-17244.	8.0	110
24	Two-Dimensional NiSe ₂ /N-Rich Carbon Nanocomposites Derived from Ni-Hexamine Frameworks for Superb Na-Ion Storage. ACS Applied Materials & Interfaces, 2018, 10, 34193-34201.	8.0	110
25	Sn–Co nanoalloys embedded in porous N-doped carbon microboxes as a stable anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 5873-5879.	10.3	107
26	Three-dimensional porous carbon doped with N, O and P heteroatoms as high-performance anode materials for sodium ion batteries. Chemical Engineering Journal, 2020, 380, 122457.	12.7	102
27	Tailoring Highly Nâ€Doped Carbon Materials from Hexamineâ€Based MOFs: Superior Performance and New Insight into the Roles of N Configurations in Naâ€Ion Storage. Small, 2018, 14, e1703548.	10.0	98
28	Carbon materials for high mass-loading supercapacitors: filling the gap between new materials and practical applications. Journal of Materials Chemistry A, 2020, 8, 21930-21946.	10.3	94
29	A general strategy towards carbon nanosheets from triblock polymers as high-rate anode materials for lithium and sodium ion batteries. Journal of Materials Chemistry A, 2017, 5, 19866-19874.	10.3	93
30	Metal–Organophosphine Frameworkâ€Derived N,Pâ€Codoped Carbonâ€Confined Cu ₃ P Nanopaticles for Superb Naâ€Ion Storage. Advanced Energy Materials, 2018, 8, 1801489.	19.5	92
31	Two dimensional layered Co _{0.85} Se nanosheets as a high-capacity anode for lithium-ion batteries. Nanoscale, 2016, 8, 14992-15000.	5.6	90
32	The transformation of acetylene black into onion-like hollow carbon nanoparticles at 1000°C using an iron catalyst. Carbon, 2008, 46, 525-530.	10.3	88
33	Graphene-Loaded Bi ₂ Se ₃ : A Conversion–Alloying-type Anode Material for Ultrafast Gravimetric and Volumetric Na Storage. ACS Applied Materials & Interfaces, 2018, 10, 30379-30387.	8.0	83
34	Onion-like carbon matrix supported Co3O4 nanocomposites: a highly reversible anode material for lithium ion batteries with excellent cycling stability. Journal of Materials Chemistry A, 2013, 1, 5212.	10.3	77
35	One step synthesis and capacitive performance of graphene nanosheets/Mn3O4 composite. Electrochimica Acta, 2013, 89, 18-23.	5.2	77
36	Direct amination of Si nanoparticles for the preparation of Si@ultrathin SiO _x @graphene nanosheets as high performance lithium-ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 19892-19900.	10.3	76

#	Article	IF	CITATIONS
37	Hybrid 2D–0D Graphene–VN Quantum Dots for Superior Lithium and Sodium Storage. Advanced Energy Materials, 2016, 6, 1502067.	19.5	76
38	Construction of hierarchical porous carbon nanosheets from template-assisted assembly of coal-based graphene quantum dots for high performance supercapacitor electrodes. Materials Today Energy, 2017, 6, 36-45.	4.7	74
39	Branched carbon-encapsulated MnS core/shell nanochains prepared via oriented attachment for lithium-ion storage. Journal of Materials Chemistry A, 2016, 4, 12098-12105.	10.3	72
40	Cu-based MOF-derived porous carbon with highly efficient photothermal conversion performance for solar steam evaporation. Journal of Materials Chemistry A, 2021, 9, 16805-16813.	10.3	72
41	New insight into the heteroatom-doped carbon as the electrode material for supercapacitors. Electrochimica Acta, 2015, 180, 879-886.	5.2	71
42	Nitrogen-doped biomass-based ultra-thin carbon nanosheets with interconnected framework for High-Performance Lithium-Ion Batteries. Applied Surface Science, 2018, 437, 136-143.	6.1	69
43	Achieving Ultrafast and Stable Na-Ion Storage in FeSe ₂ Nanorods/Graphene Anodes by Controlling the Surface Oxide. ACS Applied Materials & Interfaces, 2018, 10, 22841-22850.	8.0	69
44	Copper oxide nanowire arrays synthesized by in-situ thermal oxidation as an anode material for lithium-ion batteries. Electrochimica Acta, 2014, 132, 42-48.	5.2	68
45	Graphene Quantum Dot Reinforced Electrospun Carbon Nanofiber Fabrics with High Surface Area for Ultrahigh Rate Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 11669-11678.	8.0	67
46	Synthesis and high-rate capability of quadrangular carbon nanotubes with one open end as anode materials for lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 2794.	6.7	66
47	Modulating the defects of graphene blocks by ball-milling for ultrahigh gravimetric and volumetric performance and fast sodium storage. Energy Storage Materials, 2020, 30, 287-295.	18.0	66
48	Nitrogen-rich carbon-onion-constructed nanosheets: an ultrafast and ultrastable dual anode material for sodium and potassium storage. Journal of Materials Chemistry A, 2019, 7, 18499-18509.	10.3	64
49	Carbon-Nanotube-Encapsulated FeF ₂ Nanorods for High-Performance Lithium-Ion Cathode Materials. ACS Applied Materials & Interfaces, 2014, 6, 21223-21229.	8.0	63
50	A universal strategy to prepare porous graphene films: binder-free anodes for high-rate lithium-ion and sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 8837-8843.	10.3	61
51	Carbon nanotube capsules encapsulating SnO2 nanoparticles as an anode material for lithium ion batteries. Electrochimica Acta, 2009, 55, 521-527.	5.2	58
52	Free-standing cobalt hydroxide nanoplatelet array formed by growth of preferential-orientation on graphene nanosheets as anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 20706-20713.	10.3	58
53	Mesopore-dominated hollow carbon nanoparticles prepared by simple air oxidation of carbon black for high mass loading supercapacitors. Carbon, 2020, 160, 328-334.	10.3	58
54	Control of graphitization degree and defects of carbon blacks through ball-milling. RSC Advances, 2014, 4, 505-509.	3.6	55

#	Article	IF	CITATIONS
55	Polysulfides anchoring and enhanced electrochemical kinetics of 3D flower-like FeS/carbon assembly materials for lithium-sulfur battery. Applied Surface Science, 2020, 508, 145286.	6.1	52
56	Low-density graphene/carbon composite aerogels prepared at ambient pressure with high mechanical strength and low thermal conductivity. RSC Advances, 2015, 5, 5197-5204.	3.6	49
57	Electrospun cross-linked carbon nanofiber films as free-standing and binder-free anodes with superior rate performance and long-term cycling stability for sodium ion storage. Journal of Materials Chemistry A, 2017, 5, 21343-21352.	10.3	49
58	Preparation of pitch-based carbon microbeads by a simultaneous spheroidization and stabilization process for lithium-ion batteries. Chemical Engineering Journal, 2020, 400, 125948.	12.7	49
59	Highly flexible silica aerogels derived from methyltriethoxysilane and polydimethylsiloxane. New Journal of Chemistry, 2015, 39, 7832-7838.	2.8	47
60	How graphene is exfoliated from graphitic materials: synergistic effect of oxidation and intercalation processes in open, semi-closed, and closed carbon systems. Journal of Materials Chemistry, 2012, 22, 22150.	6.7	46
61	Graphene quantum dots as the electrolyte for solid state supercapacitors. Scientific Reports, 2016, 6, 19292.	3.3	46
62	Three-Dimensional Hierarchical Porous Structures Constructed by Two-Stage MXene-Wrapped Si Nanoparticles for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 48718-48728.	8.0	45
63	Nanosized tin and tin oxides loaded expanded mesocarbon microbeads as negative electrode material for lithium-ion batteries. Journal of Power Sources, 2007, 173, 487-494.	7.8	44
64	Enhanced Lithium Ion Storage Property of Sn Nanoparticles: The Confinement Effect of Few-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2012, 116, 22774-22779.	3.1	44
65	The Non-Ignorable Impact of Surface Oxygen Groups on the Electrochemical Performance of N/O Dual-Doped Carbon Anodes for Sodium Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A1447-A1454.	2.9	44
66	Fabrication of hierarchical porous carbon microspheres using porous layered double oxide templates for high-performance lithium ion batteries. Carbon, 2017, 123, 186-192.	10.3	43
67	Phase transition and huge ferroelectric polarization observed in BiFe1â^'xGaxO3 thin films. Applied Physics Letters, 2013, 102, .	3.3	42
68	Capacity Enhancement of Porous Carbon Electrodes during Long-Term Cycling in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A2000-A2006.	2.9	42
69	Oxidation Conversion of Carbon-Encapsulated Metal Nanoparticles to Hollow Nanoparticles. Chemistry of Materials, 2009, 21, 3730-3737.	6.7	41
70	Preparation of Nitrogen-Doped Carbon Spheres by Injecting Pyrolysis of Pyridine. ACS Sustainable Chemistry and Engineering, 2015, 3, 1786-1793.	6.7	41
71	Graphene-wrapped CoNi-layered double hydroxide microspheres as a new anode material for lithium-ion batteries. Physical Chemistry Chemical Physics, 2018, 20, 16437-16443.	2.8	41
72	Increased power generation from cylindrical microbial fuel cell inoculated with P. aeruginosa. Biosensors and Bioelectronics, 2019, 141, 111394.	10.1	41

#	Article	IF	CITATIONS
73	B, N co-doped carbon nanosheets derived from graphene quantum dots: Improving the pseudocapacitive performance by efficient trapping nitrogen. Applied Surface Science, 2020, 529, 147239.	6.1	41
74	Metal-organic framework-templated porous SnO/C polyhedrons for high-performance lithium-ion batteries. Electrochimica Acta, 2018, 289, 389-396.	5.2	40
75	Volumetric buffering of manganese dioxide nanotubes by employing â€`as is' graphene oxide: An approach towards stable metal oxide anode material in lithium-ion batteries. Journal of Alloys and Compounds, 2020, 842, 155803.	5.5	40
76	Sodium Storage Mechanism of Nongraphitic Carbons: A General Model and the Function of Accessible Closed Pores. Chemistry of Materials, 2022, 34, 3489-3500.	6.7	40
77	Synthesis of spherical ordered mesoporous carbons from direct carbonization of silica/triblock-copolymer composites. Journal of Materials Chemistry, 2009, 19, 4491.	6.7	37
78	Effect of graphene nanosheet addition on the electrochemical performance of anode materials for lithium-ion batteries. Analytica Chimica Acta, 2011, 688, 146-155.	5.4	37
79	MOF-derived multifractal porous carbon with ultrahigh lithium-ion storage performance. Scientific Reports, 2017, 7, 40574.	3.3	36
80	Improving the performance of microbial fuel cells by reducing the inherent resistivity of carbon fiber brush anodes. Journal of Power Sources, 2017, 348, 193-200.	7.8	35
81	Insights on Tuning the Nanostructure of rGO Laminate Membranes for Low Pressure Osmosis Process. ACS Applied Materials & Interfaces, 2017, 9, 22509-22517.	8.0	35
82	Diffusion of Metal in a Confined Nanospace of Carbon Nanotubes Induced by Air Oxidation. Journal of the American Chemical Society, 2010, 132, 11402-11405.	13.7	34
83	Self-sinterability of mesocarbon microbeads (MCMB) for preparation of high-density isotropic carbon. Journal of Materials Science, 2003, 38, 2209-2213.	3.7	33
84	Crystallization-Induced Morphological Tuning Toward Denim-like Graphene Nanosheets in a KCl-Copolymer Solution. ACS Nano, 2018, 12, 4019-4024.	14.6	32
85	Synthesis of β-SiC nanostructures via the carbothermal reduction of resorcinol–formaldehyde/SiO2 hybrid aerogels. Journal of Materials Science, 2009, 44, 4661-4667.	3.7	31
86	ZnO nanosheet/squeezebox-like porous carbon composites synthesized by in situ pyrolysis of a mixed-ligand metal–organic framework. Journal of Materials Chemistry A, 2017, 5, 5934-5942.	10.3	31
87	Heteroatom-doped multilocular carbon nanospheres with high surface utilization and excellent rate capability as electrode material for supercapacitors. Electrochimica Acta, 2017, 236, 53-60.	5.2	31
88	Effects of copper nitrate addition on the pore property and lithium storage performance of hierarchical porous carbon nanosheets from phenolic resin. Electrochimica Acta, 2014, 127, 186-192.	5.2	30
89	CuO nanowire growth on Cu2O by in situ thermal oxidation in air. CrystEngComm, 2013, 15, 8559.	2.6	29
90	Tremella-like graphene/polyaniline spherical electrode material for supercapacitors. Electrochimica Acta, 2014, 146, 511-517.	5.2	28

#	Article	IF	CITATIONS
91	Wrinkled reduced graphene oxide nanosheets for highly sensitive and easy recoverable NH ₃ gas detector. RSC Advances, 2014, 4, 46930-46933.	3.6	28
92	MoS2 Surface Structure Tailoring via Carbonaceous Promoter. Scientific Reports, 2015, 5, 10378.	3.3	28
93	Compositional and Structural Evolutions of Zn-Based Metal–Organic Frameworks During Pyrolysis. Journal of Physical Chemistry C, 2018, 122, 17278-17286.	3.1	28
94	Perovskite framework NH ₄ FeF ₃ /carbon composite nanosheets as a potential anode material for Li and Na ion storage. Journal of Materials Chemistry A, 2017, 5, 19280-19288.	10.3	27
95	In-situ pre-lithiated onion-like SiOC/C anode materials based on metallasilsesquioxanes for Li-ion batteries. Chemical Engineering Journal, 2022, 428, 132125.	12.7	25
96	Morphology control of ordered mesoporous carbons by changing HCl concentration. Journal of Materials Chemistry, 2011, 21, 5345.	6.7	24
97	Electronic state of polyaniline deposited on carbon nanotube or ordered mesoporous carbon templates. Physica Status Solidi (B): Basic Research, 2011, 248, 2484-2487.	1.5	24
98	Preparation and Lithium-Storage Performance of a Novel Hierarchical Porous Carbon from Sucrose Using Mg-Al Layered Double Hydroxides as Template. Electrochimica Acta, 2017, 231, 153-161.	5.2	24
99	Thermal-exfoliated synthesis of N-rich carbon-based nanosheets from layered bulk crystals of a metal–hexamine framework. Chemical Communications, 2018, 54, 9825-9828.	4.1	24
100	The structural properties of chemically derived graphene nanosheets/mesophase pitch-based composite carbon fibers with high conductivities. Carbon, 2020, 156, 499-505.	10.3	24
101	Can closed shell graphitic materials be exfoliated? Defect induced porphyra-like graphene from the cooperation of activation and oxidation. Journal of Materials Chemistry A, 2013, 1, 14103.	10.3	23
102	Fe/N-doped graphene with rod-like CNTs as an air-cathode catalyst in microbial fuel cells. RSC Advances, 2018, 8, 1203-1209.	3.6	23
103	Metallasilsesquioxane-derived ultrathin porous carbon nanosheet 3D architectures <i>via</i> an " <i>in situ</i> dual templating―strategy for ultrafast sodium storage. Journal of Materials Chemistry A, 2021, 9, 6423-6431.	10.3	23
104	Graphene quantum dot inlaid carbon nanofibers: Revealing the edge activity for ultrahigh rate pseudocapacitive energy storage. Energy Storage Materials, 2022, 47, 158-166.	18.0	23
105	Efficient Utilization of the Active Sites in Defective Graphene Blocks through Functionalization Synergy for Compact Capacitive Energy Storage. ACS Applied Materials & Interfaces, 2021, 13, 57092-57099.	8.0	23
106	Rod-like Ordered Mesoporous Carbons with Various Lengths as Anode Materials for Sodium Ion Battery. Electrochimica Acta, 2016, 218, 285-293.	5.2	22
107	Carbon nanonion-assembled microspheres for excellent gravimetric and volumetric Na-Ion storage. Carbon, 2019, 153, 298-307.	10.3	22
108	Flake-like carbon coated Mn2SnO4 nanoparticles as anode material for lithium-ion batteries. Chemical Engineering Journal, 2019, 372, 269-276.	12.7	22

#	Article	IF	CITATIONS
109	Facile Fabrication of High-Performance Si/C Anode Materials via AlCl ₃ -Assisted Magnesiothermic Reduction of Phenyl-Rich Polyhedral Silsesquioxanes. ACS Applied Materials & Interfaces, 2020, 12, 15202-15210.	8.0	22
110	Improving the surface area of metal organic framework-derived porous carbon through constructing inner support by compatible graphene quantum dots. Journal of Colloid and Interface Science, 2022, 623, 77-85.	9.4	22
111	Synthesis of monolithic zirconia aerogel via a nitric acid assisted epoxide addition method. RSC Advances, 2014, 4, 31666.	3.6	21
112	Leaky graphene oxide with high quantum yield and dual-wavelength photoluminescence. Carbon, 2016, 108, 461-470.	10.3	21
113	N-doped hierarchical porous hollow carbon spheres with multi-cavities for high performance Na-ion storage. Journal of Power Sources, 2021, 506, 230170.	7.8	21
114	A General Multiâ€Interface Strategy toward Densified Carbon Materials with Enhanced Comprehensive Electrochemical Performance for Li/Naâ€Ion Batteries. Small, 2022, 18, e2105738.	10.0	21
115	Sodium alginate-derived porous carbon: Self-template carbonization mechanism and application in capacitive energy storage. Journal of Colloid and Interface Science, 2022, 620, 284-292.	9.4	21
116	Direct synthesis of flat cake-type ordered mesoporous carbon in a double surfactant system of P123/CTAB. Journal of Materials Chemistry, 2011, 21, 5576.	6.7	19
117	Undercooling-directed NaCl crystallization: an approach towards nanocavity-linked graphene networks for fast lithium and sodium storage. Nanoscale, 2020, 12, 7622-7630.	5.6	19
118	Reconstructed Nano-Si Assembled Microsphere via Molten Salt-Assisted Low-Temperature Aluminothermic Reduction of Diatomite as High-Performance Anodes for Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 6146-6153.	5.1	19
119	The effect of doping graphene oxide on the structure and property of polyimide-based graphite fibre. RSC Advances, 2017, 7, 56602-56610.	3.6	18
120	Structural and Compositional Modulation of Porous Carbon for High-Performance Photothermal Water Evaporation. ACS Sustainable Chemistry and Engineering, 2022, 10, 4013-4021.	6.7	18
121	Laser-modified graphitic onion-like carbon as anode for lithium/potassium-ion batteries. Carbon, 2022, 192, 347-355.	10.3	18
122	TixSn1â´'xO3 solid solution as an anode material in lithium-ion batteries. Electrochimica Acta, 2012, 72, 186-191.	5.2	17
123	Effects of graphene oxide addition on the synthesis and supercapacitor performance of carbon aerogel particles. RSC Advances, 2016, 6, 40683-40690.	3.6	15
124	Enhanced lithium storage performance of hierarchical CuO nanomaterials with surface fractal characteristics. Applied Surface Science, 2018, 443, 382-388.	6.1	15
125	Pliable Embedded-Type Paper Electrode of Hollow Metal Oxide@Porous Graphene with Abnormal but Superior Rate Capability for Lithium-Ion Storage. ACS Applied Energy Materials, 2018, 1, 48-55.	5.1	15
126	MOF-templated self-polymerization of <i>p</i> -phenylenediamine to a polymer with a hollow box-assembled spherical structure. Chemical Communications, 2019, 55, 4071-4074.	4.1	15

#	Article	IF	CITATIONS
127	Lithiation Confined in One Dimensional Nanospace of TiO ₂ (Anatase) Nanotube to Enhance the Lithium Storage Property of CuO Nanowires. ACS Applied Materials & Interfaces, 2015, 7, 22372-22379.	8.0	14
128	Na-Ion Storage Behaviors of Quadrangular Herringbone-Carbon Nanotubes in Ether- and Ester-Based Electrolyte Systems. ACS Sustainable Chemistry and Engineering, 2018, 6, 17184-17193.	6.7	14
129	Pitchâ€Based Laminated Carbon Formed by Pressure Driving at Low Temperature as Highâ€Capacity Anodes for Lithium Energy Storage Systems. Chemistry - A European Journal, 2020, 26, 16514-16520.	3.3	14
130	Carbon supports on preparing iron-nitrogen dual-doped carbon (Fe-N/C) electrocatalysts for microbial fuel cells: mini-review. Chemosphere, 2021, 273, 128570.	8.2	13
131	Woven microsphere architected by carbon nanotubes as high-performance potassium ion batteries anodes. Chemical Engineering Journal, 2022, 429, 132272.	12.7	13
132	Binary self-assembly of ordered Bi4Se3/Bi2O2Se lamellar architecture embedded into CNTs@Graphene as a binder-free electrode for superb Na-Ion storage. Journal of Colloid and Interface Science, 2022, 620, 168-178.	9.4	13
133	B, N stabilization effect on multicavity carbon microspheres for boosting durable and fast potassium-ion storage. Journal of Colloid and Interface Science, 2022, 620, 24-34.	9.4	13
134	Preparation of C/C composite using mesocarbon microbeads as matrix. Journal of Materials Science Letters, 2002, 21, 1043-1045.	0.5	12
135	Spray-freezing induced multidimensional morphology tuning of assembled spherical carbon for solar-driven steam generation. Carbon, 2020, 162, 481-489.	10.3	12
136	Lithiophilic onion-like carbon spheres as lithium metal uniform deposition host. Journal of Colloid and Interface Science, 2022, 627, 783-792.	9.4	12
137	N-Doped Hierarchically Porous Carbon Aerogels by Controlling the Zn–Chitosan Complex Ratio for High-Performance Supercapacitors. Energy & Fuels, 2022, 36, 5920-5927.	5.1	11
138	The influence of chemical constitution on the structure and properties of polyimide fibre and their graphite fibre. Polymer, 2019, 165, 142-151.	3.8	10
139	Construction of a secondary conductive and buffer structure towards high-performance Si anodes for Li-ion batteries. Electrochimica Acta, 2020, 354, 136767.	5.2	10
140	Good microbial affinity of phenolic carbon felt as an efficient anode for microbial fuel cells. Bioelectrochemistry, 2021, 138, 107700.	4.6	10
141	Constructing 3D Interconnected Si/SiO _x /C Nanorings from Polyhedral Oligomeric Silsesquioxane. Small, 2021, 17, e2103926.	10.0	10
142	Review—Influencing Factors and Suppressing Strategies of the Self-Discharge for Carbon Electrode Materials in Supercapacitors. Journal of the Electrochemical Society, 2022, 169, 030504.	2.9	10
143	Relationship between intrinsic capacitance and thickness of graphene nanosheets. Journal of Materials Chemistry, 2012, 22, 13091.	6.7	9
144	Understanding the structural transformation of carbon black from solid spheres to hollow polyhedra during high temperature treatment. RSC Advances, 2019, 9, 29779-29783.	3.6	9

#	Article	IF	CITATIONS
145	N, O co-doped urchin-like carbon microspheres as high-performance anode materials for lithium ion batteries. Solid State Ionics, 2021, 361, 115562.	2.7	9
146	Achieving Cycling Durability of Lithium–Sulfur Batteries via Capturing Polysulfides through a Three-Dimensional Interconnected Carbon Network Anchored with Ultrafine FeS Nanoparticles. ACS Applied Materials & Interfaces, 2021, 13, 38229-38238.	8.0	9
147	Towards Si@SiO ₂ core–shell, yolk–shell, and SiO ₂ hollow structures from Si nanoparticles through a self-templated etching–deposition process. RSC Advances, 2014, 4, 29435-29438.	3.6	8
148	Morphology control and supercapacitor performance of resorcinol–formaldehyde-based carbon particles upon Ni loading in an inverse emulsion system. RSC Advances, 2015, 5, 78526-78533.	3.6	8
149	Heteroatom-doped hollow carbon spheres made from polyaniline as an electrode material for supercapacitors. RSC Advances, 2019, 9, 15868-15873.	3.6	8
150	The effect of liquid stabilization on the structures and the conductive properties of polyimide-based graphite fibers. RSC Advances, 2015, 5, 79565-79571.	3.6	7
151	Improving electron transport efficiency and power density by continuous carbon fibers as anode in the microbial fuel cell. Journal of Electroanalytical Chemistry, 2020, 857, 113743.	3.8	7
152	Transformation of Lewis acid during the carbonization and graphitization of mesophase pitches. Journal of Analytical and Applied Pyrolysis, 2013, 104, 433-440.	5.5	6
153	Polyurethane Modified with Zeolite 4A for the Controlled Release of Urea. Polymer-Plastics Technology and Engineering, 2017, 56, 866-872.	1.9	5
154	MnO/C-graphene composite aerogels with uniform nanoparticles anchored on GNS as high-capacity and long-life anode materials promoted by pseudocapacitance. Applied Surface Science, 2021, 545, 148913.	6.1	5
155	From solid carbon sources to carbon nanotubes: a general water-assisted approach. RSC Advances, 2014, 4, 54244-54248.	3.6	4
156	Intercalation of copper microparticles in an expanded graphite film with improved through-plane thermal conductivity. Journal of Materials Science, 2020, 55, 7351-7358.	3.7	4
157	Nitrogenâ€Doped Porous Carbon Nanosheets with Ultrahigh Capacity and Quasicapacitive Energy Storage Performance for Lithium and Sodium Storage Applications. Energy Technology, 2021, 9, 2100309.	3.8	4
158	Structural features and magnetic property of nano-sized transition metal dispersed carbons from naphthalene by pressure. Journal of Materials Science, 2007, 42, 8738-8744.	3.7	3
159	The coalescence and reconstruction of closed-shell graphitic carbon: from a nanosized polyhedron to a micron-sized dish stacked structure by KOH activation. RSC Advances, 2013, 3, 6117.	3.6	3
160	The Interaction between Electricigens and Carbon Nanotube Forest and Electricity Generation Performance in MFC. Energy Technology, 2019, 7, 188-192.	3.8	3
161	Fabrication of high thermal conductivity C/C composites reinforced by graphite films with hexagonal pits. Journal of Materials Science, 0, , .	3.7	3
162	New protocol for synthesis of new nanomaterials with continuous 3D networks. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	1

		HUAIHE SONG		
#	ARTICLE	IF	-	CITATIONS
163	Preparation and Structural Analysis of Magnesium Oxide Aerogels. MRS Advances, 2017, 2, 3505-3	510. o	.9	1