

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7921550/publications.pdf Version: 2024-02-01

XIN GUO

#	Article	IF	CITATIONS
1	Single-Crystalline SrTiO3 as Memristive Model System: From Materials Science to Neurological and Psychological Functions. Kluwer International Series in Electronic Materials: Science and Technology, 2022, , 333-354.	0.3	0
2	Light-activated gas sensors. Chinese Science Bulletin, 2022, 67, 1837-1850.	0.4	1
3	Ion transport in composite polymer electrolytes. Materials Advances, 2022, 3, 3809-3819.	2.6	22
4	Ten micrometer thick polyethylene separator modified by α-LiAlO2@γ-Al2O3 nanosheets for simultaneous suppression of Li dendrite growth and polysulfide shuttling in Li-S batteries. Materials Today Energy, 2022, 26, 100990.	2.5	9
5	Selfâ€Healing Polymer Electrolyte for Dendriteâ€Free Li Metal Batteries with Ultraâ€Highâ€Voltage Niâ€Rich Layered Cathodes. Small, 2022, 18, e2200891.	5.2	23
6	Nonflammable quasi-solid electrolyte for energy-dense and long-cycling lithium metal batteries with high-voltage Ni-rich layered cathodes. Energy Storage Materials, 2022, 47, 542-550.	9.5	34
7	Bio-inspired Sensory Systems with Integrated Capabilities of Sensing, Data Storage and Processing. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
8	Proof of Concept for Operando Infrared Spectroscopy Investigation of Light-Excited Metal Oxide-Based Gas Sensors. Journal of Physical Chemistry Letters, 2022, 13, 3631-3635.	2.1	2
9	A Pressure Responsive Artificial Interphase Layer of BaTiO ₃ against Dendrite Growth for Stable Lithium Metal Anodes. Batteries and Supercaps, 2022, 5, .	2.4	3
10	A Bioâ€Inspired Neuromorphic Sensory System. Advanced Intelligent Systems, 2022, 4, .	3.3	18
11	Adaptive SRM neuron based on NbO memristive device for neuromorphic computing. , 2022, , 100015.		3
12	Customizable solid-state batteries toward shape-conformal and structural power supplies. Materials Today, 2022, 58, 297-312.	8.3	11
13	Printable Zinc-Ion Hybrid Micro-Capacitors for Flexible Self-Powered Integrated Units. Nano-Micro Letters, 2021, 13, 19.	14.4	81
14	Inorganic Solid Electrolytes for Allâ€Solidâ€State Sodium Batteries: Fundamentals and Strategies for Battery Optimization. Advanced Functional Materials, 2021, 31, 2008165.	7.8	55
15	Hybrid electrolytes with an ultrahigh Li-ion transference number for lithium-metal batteries with fast and stable charge/discharge capability. Journal of Materials Chemistry A, 2021, 9, 18239-18246.	5.2	25
16	Integrated interface between composite electrolyte and cathode with low resistance enables ultra-long cycle-lifetime in solid-state lithium-metal batteries. Science China Chemistry, 2021, 64, 673-680.	4.2	16
17	Memristive Devices with Multiple Resistance States Based on the Migration of Protons in αâ€MoO ₃ /SrCoO _{2.5} Stacks. Advanced Electronic Materials, 2021, 7, 2001243. 	2.6	5
18	Ultravioletâ€Cured Semiâ€Interpenetrating Network Polymer Electrolytes for Highâ€Performance Quasiâ€Solidâ€State Lithium Metal Batteries. Chemistry - A European Journal, 2021, 27, 7773-7780.	1.7	8

#	Article	IF	CITATIONS
19	An artificial olfactory inference system based on memristive devices. InformaÄnÃ-Materiály, 2021, 3, 804-813.	8.5	50
20	Memristive devices based on Cu-doped NbO films with large self-rectifying ratio. Solid State Ionics, 2021, 369, 115732.	1.3	7
21	Optimizing linearity of weight updating in TaO -based memristors by depression pulse scheme for neuromorphic computing. Solid State Ionics, 2021, 370, 115746.	1.3	12
22	Light-excited chemiresistive sensors integrated on LED microchips. Journal of Materials Chemistry A, 2021, 9, 16545-16553.	5.2	7
23	Highly stretchable, compressible and arbitrarily deformable all-hydrogel soft supercapacitors. Chemical Engineering Journal, 2020, 383, 123098.	6.6	133
24	High performance all-solid-state sodium batteries actualized by polyethylene oxide/Na2Zn2TeO6 composite solid electrolytes. Energy Storage Materials, 2020, 24, 467-471.	9.5	50
25	Mesoporous NiMoO4 microspheres decorated by Ag quantum dots as cathode material for asymmetric supercapacitors: Enhanced interfacial conductivity and capacitive storage. Applied Surface Science, 2020, 505, 144513.	3.1	33
26	Multi-gate memristive synapses realized with the lateral heterostructure of 2D WSe ₂ and WO ₃ . Nanoscale, 2020, 12, 380-387.	2.8	47
27	Implementation of Dropout Neuronal Units Based on Stochastic Memristive Devices in Neural Networks with High Classification Accuracy. Advanced Science, 2020, 7, 2001842.	5.6	24
28	Flexible and transparent sensors for ultra-low NO ₂ detection at room temperature under visible light illumination. Journal of Materials Chemistry A, 2020, 8, 14482-14490.	5.2	39
29	Composite polymer electrolytes reinforced by two-dimensional layer-double-hydroxide nanosheets for dendrite-free lithium batteries. Solid State Ionics, 2020, 347, 115275.	1.3	26
30	Ordering of oxygen vacancies in LaBaCo2O6-l´ epitaxial films. Scripta Materialia, 2020, 181, 1-5.	2.6	2
31	Anomalous Resistance of LBCO Gas Sensors Induced by Electro-Catalyzed Surface O-H Reactions. Journal of the Electrochemical Society, 2020, 167, 047509.	1.3	0
32	Artificial Intelligence to Power the Future of Materials Science and Engineering. Advanced Intelligent Systems, 2020, 2, 1900143.	3.3	75
33	Enhanced performances of WO3-based hydrogen sensors with an amorphous SiO2 layer working at low temperatures. Solid State Ionics, 2020, 347, 115274.	1.3	5
34	Electroformingâ€Free Artificial Synapses Based on Proton Conduction in αâ€MoO 3 Films. Advanced Electronic Materials, 2020, 6, 1901290.	2.6	14
35	<i>In situ</i> thermally polymerized solid composite electrolytes with a broad electrochemical window for all-solid-state lithium metal batteries. Journal of Materials Chemistry A, 2020, 8, 3892-3900.	5.2	59
36	High-performance lithium metal batteries with ultraconformal interfacial contacts of quasi-solid electrolyte to electrodes. Energy Storage Materials, 2020, 29, 149-155.	9.5	57

#	Article	IF	CITATIONS
37	Artificial Neural Networks Based on Memristive Devices: From Device to System. Advanced Intelligent Systems, 2020, 2, 2000149.	3.3	39
38	Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials, 2019, 5, 1900287.	2.6	135
39	A New Lithiumâ€lon Conductor LiTaSiO ₅ : Theoretical Prediction, Materials Synthesis, and Ionic Conductivity. Advanced Functional Materials, 2019, 29, 1904232.	7.8	15
40	Three-Dimensional Garnet Framework-Reinforced Solid Composite Electrolytes with High Lithium-Ion Conductivity and Excellent Stability. ACS Applied Materials & Interfaces, 2019, 11, 26920-26927.	4.0	87
41	MOF-derived nanoporous multifunctional fillers enhancing the performances of polymer electrolytes for solid-state lithium batteries. Journal of Materials Chemistry A, 2019, 7, 2653-2659.	5.2	160
42	High-performance, flexible, solid-state micro-supercapacitors based on printed asymmetric interdigital electrodes and bio-hydrogel for on-chip electronics. Journal of Power Sources, 2019, 422, 73-83.	4.0	46
43	Hierarchically-structured MnFe2O4 nanospheres for highly sensitive detection of NO2. Solid State lonics, 2019, 336, 102-109.	1.3	11
44	Electric field control of resistive switching and magnetization in epitaxial LaBaCo ₂ O _{5+δ} thin films. Physical Chemistry Chemical Physics, 2019, 21, 8843-8848.	1.3	9
45	Silverâ€Quantumâ€Dotâ€Modified MoO ₃ and MnO ₂ Paperâ€Like Freestanding Films f Flexible Solidâ€State Asymmetric Supercapacitors. Small, 2019, 15, e1805235.	or _{5.2}	79
46	Structure and magnetic properties of highly oriented LaBaCo2O5+δ films deposited on Si wafers with Pt/Ti buffer layer. Physical Chemistry Chemical Physics, 2019, 21, 22390-22395.	1.3	1
47	MOF-derived porous hollow \hat{I}_{\pm} -Fe2O3 microboxes modified by silver nanoclusters for enhanced pseudocapacitive storage. Applied Surface Science, 2019, 463, 616-625.	3.1	33
48	In-plane flexible solid-state microsupercapacitors for on-chip electronics. Energy, 2019, 170, 338-348.	4.5	28
49	Forming-free artificial synapses with Ag point contacts at interface. Journal of Materiomics, 2019, 5, 296-302.	2.8	14
50	Quasiâ€Hodgkin–Huxley Neurons with Leaky Integrateâ€andâ€Fire Functions Physically Realized with Memristive Devices. Advanced Materials, 2019, 31, e1803849.	11.1	87
51	Bienenstock, Cooper, and Munro Learning Rules Realized in Secondâ€Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials, 2019, 29, 1807316.	7.8	60
52	Nanostructured Metal–Organic Framework (MOF)â€Derived Solid Electrolytes Realizing Fast Lithium Ion Transportation Kinetics in Solid‣tate Batteries. Small, 2019, 15, e1804413.	5.2	93
53	Ionic Conduction in Composite Polymer Electrolytes: Case of PEO:Ga-LLZO Composites. ACS Applied Materials & Interfaces, 2019, 11, 784-791.	4.0	250
54	In Situ Formed Shields Enabling Li ₂ CO ₃ -Free Solid Electrolytes: A New Route to Uncover the Intrinsic Lithiophilicity of Garnet Electrolytes for Dendrite-Free Li-Metal Batteries. ACS Applied Materials & amp; Interfaces, 2019, 11, 898-905.	4.0	147

#	Article	IF	CITATIONS
55	LaFeO3 porous hollow micro-spindles for NO2 sensing. Ceramics International, 2019, 45, 5240-5248.	2.3	25
56	Photonic Potentiation and Electric Habituation in Ultrathin Memristive Synapses Based on Monolayer MoS ₂ . Small, 2018, 14, e1800079.	5.2	224
57	Memristive Synapses with Photoelectric Plasticity Realized in ZnO _{1–<i>x</i>} /AlO _{<i>y</i>} Heterojunction. ACS Applied Materials & Interfaces, 2018, 10, 6463-6470.	4.0	120
58	NO2 sensing properties of SmFeO3 porous hollow microspheres. Sensors and Actuators B: Chemical, 2018, 265, 443-451.	4.0	41
59	Synaptic Suppression Tripletâ€STDP Learning Rule Realized in Secondâ€Order Memristors. Advanced Functional Materials, 2018, 28, 1704455.	7.8	183
60	Van Vleck paramagnetism in undoped and Lu-doped bulk ceria. Physical Chemistry Chemical Physics, 2018, 20, 27019-27024.	1.3	7
61	Sodium-ion conduction in Na2Zn2TeO6 solid electrolytes. Journal of Power Sources, 2018, 402, 513-518.	4.0	32
62	Ultrahigh discharged energy density in polymer nanocomposites by designing linear/ferroelectric bilayer heterostructure. Nano Energy, 2018, 54, 437-446.	8.2	137
63	Ultrathin mesoporous NiMoO4-modified MoO3 core/shell nanostructures: Enhanced capacitive storage and cycling performance for supercapacitors. Chemical Engineering Journal, 2018, 353, 615-625.	6.6	95
64	Optically modulated electric synapses realized with memristors based on ZnO nanorods. Applied Physics Letters, 2018, 113, .	1.5	35
65	Detecting low concentration of H2S gas by BaTiO3 nanoparticle-based sensors. Sensors and Actuators B: Chemical, 2017, 238, 16-23.	4.0	48
66	Molybdenum trioxide nanopaper as a dual gas sensor for detecting trimethylamine and hydrogen sulfide. RSC Advances, 2017, 7, 3680-3685.	1.7	52
67	Electrospun Ni-doped SnO2 nanofiber array for selective sensing of NO2. Sensors and Actuators B: Chemical, 2017, 244, 509-521.	4.0	72
68	Origin of the low grain boundary conductivity in lithium ion conducting perovskites: Li _{3x} La _{0.67â^x} TiO ₃ . Physical Chemistry Chemical Physics, 2017, 19, 5880-5887.	1.3	100
69	Hierarchical flowerlike WO3 nanostructures assembled by porous nanoflakes for enhanced NO gas sensing. Sensors and Actuators B: Chemical, 2017, 246, 225-234.	4.0	57
70	Characteristics and sensing properties of CO gas sensors based on LaCo 1â^'x Fe x O 3 nanoparticles. Solid State Ionics, 2017, 303, 97-102.	1.3	19
71	Single crystalline SrTiO3 as memristive model system: From materials science to neurological and psychological functions. Journal of Electroceramics, 2017, 39, 210-222.	0.8	14
72	Pavlovian conditioning demonstrated with neuromorphic memristive devices. Scientific Reports, 2017, 7, 713.	1.6	49

#	Article	IF	CITATIONS
73	Analog and digital Reset processes observed in Pt/CuO/Pt memristive devices. Solid State Ionics, 2017, 303, 161-166.	1.3	21
74	Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries. ACS Applied Materials & Interfaces, 2017, 9, 12461-12468.	4.0	179
75	Gallium-Doped Li ₇ La ₃ Zr ₂ O ₁₂ Garnet-Type Electrolytes with High Lithium-Ion Conductivity. ACS Applied Materials & amp; Interfaces, 2017, 9, 1542-1552.	4.0	266
76	SnO2 doped MoO3 nanofibers and their carbon monoxide gas sensing performances. Solid State Ionics, 2017, 300, 128-134.	1.3	34
77	Size effect in nanocrystalline lithium-ion conducting perovskite: Li0.30La0.57TiO3. Solid State Ionics, 2017, 310, 38-43.	1.3	31
78	Membranes of carbon nanofibers with embedded MoO 3 nanoparticles showing superior cycling performance for all-solid-state flexible supercapacitors. Materials Today Energy, 2017, 6, 27-35.	2.5	24
79	Behavioral Plasticity Emulated with Lithium Lanthanum Titanateâ€Based Memristive Devices: Habituation. Advanced Electronic Materials, 2017, 3, 1700046.	2.6	19
80	Hierarchical and Hollow Fe ₂ O ₃ Nanoboxes Derived from Metal–Organic Frameworks with Excellent Sensitivity to H ₂ S. ACS Applied Materials & Interfaces, 2017, 9, 29669-29676.	4.0	118
81	Bio-inspired high-performance solid-state supercapacitors with the electrolyte, separator, binder and electrodes entirely from <i>kelp</i> . Journal of Materials Chemistry A, 2017, 5, 25282-25292.	5.2	85
82	Defect chemistry of alkaline earth metal (Sr/Ba) titanates. Progress in Materials Science, 2016, 80, 77-132.	16.0	56
83	Pt/WO ₃ /FTO memristive devices with recoverable pseudo-electroforming for time-delay switches in neuromorphic computing. Physical Chemistry Chemical Physics, 2016, 18, 9338-9343.	1.3	31
84	Hierarchical porous microspheres of activated carbon with a high surface area from spores for electrochemical double-layer capacitors. Journal of Materials Chemistry A, 2016, 4, 15968-15979.	5.2	80
85	3D Porous Hierarchical Microspheres of Activated Carbon from Nature through Nanotechnology for Electrochemical Double-Layer Capacitors. ACS Sustainable Chemistry and Engineering, 2016, 4, 6463-6472.	3.2	51
86	Coexistence of analog and digital resistive switching in BiFeO3-based memristive devices. Solid State Ionics, 2016, 296, 114-119.	1.3	54
87	Mimicking the brain functions of learning, forgetting and explicit/implicit memories with SrTiO ₃ -based memristive devices. Physical Chemistry Chemical Physics, 2016, 18, 31796-31802.	1.3	36
88	Synaptic Metaplasticity Realized in Oxide Memristive Devices. Advanced Materials, 2016, 28, 377-384.	11.1	210
89	Single crystalline flowerlike α-MoO3 nanorods and their application as anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2016, 687, 79-86.	2.8	44
90	Revival of "dead―memristive devices: case of WO3â^'x. Physical Chemistry Chemical Physics, 2016, 18, 1392-1396.	1.3	5

#	Article	IF	CITATIONS
91	Three-dimensional porous hollow microspheres of activated carbon for high-performance electrical double-layer capacitors. Microporous and Mesoporous Materials, 2016, 227, 210-218.	2.2	32
92	Lotus pollen derived 3-dimensional hierarchically porous NiO microspheres for NO2 gas sensing. Sensors and Actuators B: Chemical, 2016, 227, 554-560.	4.0	77
93	Near room temperature CO sensing by mesoporous LaCoO3 nanowires functionalized with Pd nanodots. Sensors and Actuators B: Chemical, 2016, 222, 517-524.	4.0	44
94	Oxygen pump based on stabilized zirconia. Review of Scientific Instruments, 2015, 86, 115103.	0.6	9
95	SrTi0.65Fe0.35O3 nanofibers for oxygen sensing. Solid State Ionics, 2015, 278, 26-31.	1.3	11
96	NO sensing by single crystalline WO3 nanowires. Sensors and Actuators B: Chemical, 2015, 219, 346-353.	4.0	110
97	Synthesis and characterization of highly dispersed YSZ particles with diameter â‰ \$ nm. Ceramics International, 2015, 41, 4953-4958.	2.3	8
98	CO sensing mechanism of LaCoO3. Solid State Ionics, 2015, 272, 155-159.	1.3	17
99	Synthesis and characterization of α-MoO3 nanobelt composite positive electrode materials for lithium battery application. Materials Research Bulletin, 2015, 66, 140-146.	2.7	40
100	One-dimensional memristive device based on MoO3 nanobelt. Applied Physics Letters, 2015, 106, .	1.5	21
101	Physical justification for ionic conductivity enhancement at strained coherent interfaces. Journal of Power Sources, 2015, 285, 37-42.	4.0	23
102	Bio-templated fabrication of hierarchically porous WO ₃ microspheres from lotus pollens for NO gas sensing at low temperatures. RSC Advances, 2015, 5, 29428-29432.	1.7	31
103	LaCoO ₃ -based sensors with high sensitivity to carbon monoxide. RSC Advances, 2015, 5, 65668-65673.	1.7	31
104	Gigantically enhanced NO sensing properties of WO3/SnO2 double layer sensors with Pd decoration. Sensors and Actuators B: Chemical, 2015, 220, 398-405.	4.0	40
105	Effects of potassium iodide (KI) on crystallinity, thermal stability, and electrical properties of polymer blend electrolytes (PVC/PEO:KI). Solid State Ionics, 2015, 278, 260-267.	1.3	57
106	Oxygen sensors based on SrTi0.65Fe0.35O3â^'δ thick film with MgO diffusion barrier for automotive emission control. Sensors and Actuators B: Chemical, 2015, 213, 102-110.	4.0	19
107	Ultraviolet photocatalytic degradation of methyl orange by nanostructured TiO ₂ /ZnO heterojunctions. Journal of Materials Chemistry A, 2015, 3, 6565-6574.	5.2	141
108	Polarity Reversal in the Bipolar Switching of Anodic TiO ₂ Film. Journal of the Electrochemical Society, 2015, 162, E271-E275.	1.3	13

#	Article	IF	CITATIONS
109	Morphology engineering of nanostructured TiO ₂ particles. RSC Advances, 2015, 5, 6481-6488.	1.7	5
110	The role of Schottky barrier in the resistive switching of SrTiO ₃ : direct experimental evidence. Physical Chemistry Chemical Physics, 2015, 17, 134-137.	1.3	31
111	Synthesis and characterization of one-dimensional metal oxides: TiO2, CeO2, Y2O3-stabilized ZrO2 and SrTiO3. Ceramics International, 2015, 41, 533-545.	2.3	13
112	Insulator-to-semiconductor transition of nanocrystalline BaTiO ₃ at temperatures â‰ 2 00 °C. Physical Chemistry Chemical Physics, 2014, 16, 20420-20423.	1.3	6
113	Cadmium removal in waste water by nanostructured TiO ₂ particles. Journal of Materials Chemistry A, 2014, 2, 13932-13941.	5.2	37
114	Improving the chemical stability of oxygen permeable SrFeO3â^ìŕ perovskite in CO2 by niobium doping. Solid State Ionics, 2014, 267, 44-48.	1.3	27
115	TEM study of ã€^110〉-type 35.26° dislocations specially induced by polishing of SrTiO3 single crystals. Ultramicroscopy, 2013, 134, 77-85.	0.8	31
116	Peculiar size effect in nanocrystalline BaTiO3. Acta Materialia, 2013, 61, 1748-1756.	3.8	22
117	Roles of Schottky barrier and oxygen vacancies in the electroforming of SrTiO3. Applied Physics Letters, 2012, 101, .	1.5	19
118	Can we achieve significantly higher ionic conductivity in nanostructured zirconia?. Scripta Materialia, 2011, 65, 96-101.	2.6	69
119	Response to Comment on "Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO ₂ :Y ₂ O ₃ /SrTiO ₃ Heterostructuresâ€. Science, 2009, 324, 465-465.	6.0	47
120	Comment on "Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO ₂ :Y ₂ O ₃ /SrTiO ₃ Heterostructures― Science, 2009, 324, 465-465.	6.0	114
121	Resistive Switching in Ge _{0.3} Se _{0.7} Films by Means of Copper Ion Migration. Zeitschrift Fur Physikalische Chemie, 2007, 221, 1469-1478.	1.4	9
122	Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems. Applied Physics Letters, 2007, 91, .	1.5	210
123	Electrical Conductivity of Epitaxial SrTiO ₃ Thin Films as a Function of Oxygen Partial Pressure and Temperature. Journal of the American Ceramic Society, 2006, 89, 2845-2852.	1.9	62
124	Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and ceria. Progress in Materials Science, 2006, 51, 151-210.	16.0	608
125	Ionic conduction in zirconia films of nanometer thickness. Acta Materialia, 2005, 53, 5161-5166.	3.8	103
126	Nonlinear Electrical Properties of Grain Boundaries in Oxygen Ion Conductors: Acceptor-Doped Ceria. Electrochemical and Solid-State Letters, 2005, 8, J1.	2.2	41

#	Article	IF	CITATIONS
127	Schottky barrier formed by network of screw dislocations in SrTiO3. Applied Physics Letters, 2005, 87, 162105.	1.5	22
128	Enhancement of p-type conductivity in nanocrystalline BaTiO3 ceramics. Applied Physics Letters, 2005, 86, 082110.	1.5	57
129	Nonlinear Electrical Properties of Grain Boundaries in Oxygen Ion Conductors. Electrochemical and Solid-State Letters, 2005, 8, E67.	2.2	15
130	Water Incorporation in Tetragonal Zirconia. Journal of the American Ceramic Society, 2004, 87, 746-748.	1.9	62
131	Space charge concept for acceptor-doped zirconia and ceria and experimental evidences. Solid State Ionics, 2004, 173, 63-67.	1.3	56
132	Property Degradation of Tetragonal Zirconia Induced by Low-Temperature Defect Reaction with Water Molecules. Chemistry of Materials, 2004, 16, 3988-3994.	3.2	163
133	Grain Boundary Space Charge Effect in Zirconia. Journal of the Electrochemical Society, 2004, 151, J1.	1.3	74
134	Hydrothermal degradation of cubic zirconia. Acta Materialia, 2003, 51, 5123-5130.	3.8	43
135	Blocking Grain Boundaries in Yttriaâ€Đoped and Undoped Ceria Ceramics of High Purity. Journal of the American Ceramic Society, 2003, 86, 77-87.	1.9	288
136	Roles of Alumina in Zirconia for Functional Applications. Journal of the American Ceramic Society, 2003, 86, 1867-1873.	1.9	55
137	Grain size dependent grain boundary defect structure: case of doped zirconia. Acta Materialia, 2003, 51, 2539-2547.	3.8	170
138	Determination of electronic and ionic partial conductivities of a grain boundary: method and application to acceptor-doped SrTiO3. Solid State Ionics, 2002, 154-155, 563-569.	1.3	27
139	Role of space charge in the grain boundary blocking effect in doped zirconia. Solid State Ionics, 2002, 154-155, 555-561.	1.3	139
140	Separation of Electronic and Ionic Contributions to the Grain Boundary Conductivity in Acceptor-Doped SrTiO[sub 3]. Journal of the Electrochemical Society, 2001, 148, J50.	1.3	68
141	Grain Boundary Blocking Effect in Zirconia: A Schottky Barrier Analysis. Journal of the Electrochemical Society, 2001, 148, E121.	1.3	362
142	Size dependent grain-boundary conductivity in doped zirconia. Computational Materials Science, 2001, 20, 168-176.	1.4	57
143	Defect Structure Modification in Zirconia by Alumina. Physica Status Solidi A, 2001, 183, 261-271.	1.7	22
144	Hydrothermal degradation mechanism of tetragonal Zirconia. Journal of Materials Science, 2001, 36, 3737-3744.	1.7	59

#	Article	IF	CITATIONS
145	Low Temperature Stability of Cubic Zirconia. Physica Status Solidi A, 2000, 177, 191-201.	1.7	35
146	Evidence of defect associates in yttrium-stabilized zirconia. Radiation Physics and Chemistry, 2000, 58, 697-701.	1.4	37
147	On the Hebb–Wagner polarisation of SrTiO3 doped with redox-active ions. Solid State Ionics, 2000, 130, 267-280.	1.3	24
148	Effect of defect associate on the electrical properties of Nb-doped yttrium-stabilized zirconium. Journal of Materials Science Letters, 2000, 19, 1275-1278.	0.5	9
149	On the degradation of zirconia ceramics during low-temperature annealing in water or water vapor. Journal of Physics and Chemistry of Solids, 1999, 60, 539-546.	1.9	119
150	Effect of niobia on the defect structure of yttria-stabilized zirconia. Journal of the European Ceramic Society, 1998, 18, 237-240.	2.8	46
151	Low temperature degradation mechanism of tetragonal zirconia ceramics in water: role of oxygen vacancies. Solid State Ionics, 1998, 112, 113-116.	1.3	60
152	Space-charge conduction in yttria and alumina codoped-zirconia 1. Solid State Ionics, 1997, 96, 247-254.	1.3	42
153	Effect of Nb2O5 on the space-charge conduction of Y2O3-stabilized ZrO21. Solid State Ionics, 1997, 99, 137-142.	1.3	34
154	Effect of DC voltage on the microstructure and electrical properties of stabilized-zirconia1. Solid State Ionics, 1997, 99, 143-151.	1.3	6
155	Darkening of zirconia: a problem arising from oxygen sensors in practice. Sensors and Actuators B: Chemical, 1996, 31, 139-145.	4.0	34
156	A new destabilization phenomenon in fully-stabilized zirconia. Journal of Materials Science Letters, 1996, 15, 38-39.	0.5	8
157	Solute segregations at the space-charge layers of stabilized zirconia: an opportunity for ameliorating conductivity. Journal of the European Ceramic Society, 1996, 16, 575-578.	2.8	25
158	Plausible role of point defects in the solid-state sintering of yttria-stabilized zirconia: a positron annihilation study. Journal of Materials Science Letters, 1996, 15, 2017-2019.	0.5	9
159	Roles of alumina in zirconia-based solid electrolyte. Journal of Materials Science, 1995, 30, 923-931.	1.7	40
160	Grain boundary ionic conduction of zirconia-based solid electrolyte: idea and practice. Journal of Materials Science Letters, 1995, 14, 499-502.	0.5	9
161	Grain boundary ionic conduction in zirconia-based solid electrolyte with alumina addition. Journal of the European Ceramic Society, 1995, 15, 25-32.	2.8	63
162	On the grain boundaries of ZrO2-based solid electrolyte. Solid State Ionics, 1995, 80, 159-166.	1.3	30

#	Article	IF	CITATIONS
163	Physical origin of the intrinsic grain-boundary resistivity of stabilized-zirconia: Role of the space-charge layersâ~†. Solid State Ionics, 1995, 81, 235-242.	1.3	141
164	Singleâ€ion Magnetostriction in Gd 2 O 3 –CeO 2 Solid Solutions. Advanced Functional Materials, 0, , 2110509.	7.8	0