Carlos A Machado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7921519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolution of genes and genomes on the Drosophila phylogeny. Nature, 2007, 450, 203-218.	27.8	1,886
2	Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nature Genetics, 2018, 50, 285-296.	21.4	413
3	The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nature Genetics, 2014, 46, 982-988.	21.4	342
4	Inferring the History of Speciation from Multilocus DNA Sequence Data: The Case of Drosophila pseudoobscura and Close Relatives. Molecular Biology and Evolution, 2002, 19, 472-488.	8.9	299
5	Nucleotide sequences provide evidence of genetic exchange among distantly related lineages of Trypanosoma cruzi. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7396-7401.	7.1	298
6	Cryptic species of fig-pollinating wasps: Implications for the evolution of the fig-wasp mutualism, sex allocation, and precision of adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5867-5872.	7.1	262
7	Testing Hamilton's rule with competition between relatives. Nature, 2001, 409, 510-513.	27.8	253
8	The study of structured populations — new hope for a difficult and divided science. Nature Reviews Genetics, 2003, 4, 535-543.	16.3	228
9	Phylogenetic relationships, historical biogeography and character evolution of fig-pollinating wasps. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 685-694.	2.6	225
10	Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6558-6565.	7.1	224
11	60 million years of co-divergence in the fig–wasp symbiosis. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 2593-2599.	2.6	201
12	Polytene Chromosomal Maps of 11 Drosophila Species: The Order of Genomic Scaffolds Inferred From Genetic and Physical Maps. Genetics, 2008, 179, 1601-1655.	2.9	191
13	The causes of phylogenetic conflict in a classic Drosophila species group. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1193-1202.	2.6	158
14	Molecular phylogenies of figs and their pollinator wasps. Journal of Biogeography, 1996, 23, 521-530.	3.0	134
15	Uncovering evolutionary patterns of gene expression using microarrays. Trends in Ecology and Evolution, 2006, 21, 29-37.	8.7	116
16	Functional genomics of cactus host shifts in Drosophila mojavensis. Molecular Ecology, 2006, 15, 4635-4643.	3.9	105
17	Divergence Between the <i>Drosophila pseudoobscura</i> and <i>D. persimilis</i> Genome Sequences in Relation to Chromosomal Inversions. Genetics, 2007, 177, 1417-1428.	2.9	97
18	Evaluation of the Genomic Extent of Effects of Fixed Inversion Differences on Intraspecific Variation and Interspecific Gene Flow in Drosophila pseudoobscura and D. persimilis. Genetics, 2007, 175, 1289-1306.	2.9	93

CARLOS A MACHADO

#	Article	IF	CITATIONS
19	The distribution ofWolbachiain fig wasps: correlations with host phylogeny, ecology and population structure. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 2257-2267.	2.6	92
20	Host-specificity and coevolution among pollinating and nonpollinating New World fig wasps. Molecular Ecology, 2007, 16, 1925-1946.	3.9	89
21	Molecular phylogenies of fig pollinating and non-pollinating wasps and the implications for the origin and evolution of the fig-fig wasp mutualism. Journal of Biogeography, 1996, 23, 531-542.	3.0	74
22	Inbreeding and population structure in two pairs of cryptic fig wasp species. Molecular Ecology, 2004, 13, 1613-1623.	3.9	58
23	Analyses of 32 Loci Clarify Phylogenetic Relationships among Trypanosoma cruzi Lineages and Support a Single Hybridization prior to Human Contact. PLoS Neglected Tropical Diseases, 2011, 5, e1272.	3.0	56
24	Multilocus nuclear sequences reveal intra- and interspecific relationships among chromosomally polymorphic species of cactophilic Drosophila. Molecular Ecology, 2007, 16, 3009-3024.	3.9	53
25	Evolution of Sex-Dependent Gene Expression in Three Recently Diverged Species of Drosophila. Genetics, 2009, 183, 1175-1185.	2.9	48
26	Molecular dating and biogeography of fig-pollinating wasps. Molecular Phylogenetics and Evolution, 2009, 52, 715-726.	2.7	47
27	The survival of PCR-amplifiable DNA in cow leather. Journal of Archaeological Science, 2007, 34, 823-829.	2.4	44
28	The incidence and pattern of copollinator diversification in dioecious and monoecious figs. Evolution; International Journal of Organic Evolution, 2015, 69, 294-304.	2.3	43
29	Transcriptome of the adult female malaria mosquito vector Anopheles albimanus. BMC Genomics, 2012, 13, 207.	2.8	38
30	Selective Regime and Fig Wasp Sex Ratios: Toward Sorting Rigor from Pseudo-Rigor in Tests of Adaptation. , 2001, , 191-218.		38
31	Lack of genetic isolation by distance, similar genetic structuring but different demographic histories in a figâ€pollinating wasp mutualism. Molecular Ecology, 2015, 24, 5976-5991.	3.9	36
32	Sequence variation in the dihydrofolate reductase-thymidylate synthase (DHFR-TS) and trypanothione reductase (TR) genes of Trypanosoma cruzi. Molecular and Biochemical Parasitology, 2002, 121, 33-47.	1.1	32
33	Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism. Nature Communications, 2021, 12, 718.	12.8	31
34	Genome Evolution in Three Species of Cactophilic <i>Drosophila</i> . G3: Genes, Genomes, Genetics, 2016, 6, 3097-3105.	1.8	30
35	Inferring processes of coevolutionary diversification in a community of Panamanian strangler figs and associated pollinating wasps*. Evolution; International Journal of Organic Evolution, 2019, 73, 2295-2311.	2.3	30
36	Molecular mechanisms of mutualistic and antagonistic interactions in a plant–pollinator association. Nature Ecology and Evolution, 2021, 5, 974-986.	7.8	30

CARLOS A MACHADO

#	Article	IF	CITATIONS
37	Culture-Free Survey Reveals Diverse and Distinctive Fungal Communities Associated with Developing Figs (Ficus spp.) in Panama. Microbial Ecology, 2012, 64, 1073-1084.	2.8	28
38	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 August 2012 – 30 September 2012. Molecular Ecology Resources, 2013, 13, 158-159.	4.8	26
39	Comparative Expression Dynamics of Intergenic Long Noncoding RNAs in the Genus <i>Drosophila</i> . Genome Biology and Evolution, 2016, 8, 1839-1858.	2.5	26
40	Metatranscriptome Analysis of Fig Flowers Provides Insights into Potential Mechanisms for Mutualism Stability and Gall Induction. PLoS ONE, 2015, 10, e0130745.	2.5	24
41	Relative investment in egg load and poison sac in fig wasps: Implications for physiological mechanisms underlying seed and wasp production in figs. Acta Oecologica, 2014, 57, 58-66.	1.1	22
42	Evolutionary History of Microsatellites in the Obscura Group of Drosophila. Molecular Biology and Evolution, 2001, 18, 551-556.	8.9	19
43	Enrichment of mRNA-like Noncoding RNAs in the Divergence of Drosophila Males. Molecular Biology and Evolution, 2011, 28, 1339-1348.	8.9	11
44	Anonymous and ESTâ€based microsatellite DNA markers that transfer broadly across the fig tree genus () Tj ETQ	q0_0_0 rgB 1.7	T Overlock

45	Evolution of GSTD1 in Cactophilic Drosophila. Journal of Molecular Evolution, 2017, 84, 285-294.	1.8	6
46	Genomeâ€wide sequence data show no evidence of hybridization and introgression among pollinator wasps associated with a community of Panamanian strangler figs. Molecular Ecology, 2022, 31, 2106-2123.	3.9	6
47	Phylogenetic diversity of two common Trypanosoma cruzi lineages in the Southwestern United States. Infection, Genetics and Evolution, 2022, 99, 105251.	2.3	6
48	Community Structure and Undescribed Species Diversity in Non-Pollinating Fig Wasps Associated with the Strangler Fig Ficus petiolaris. Insect Systematics and Diversity, 2020, 4, .	1.7	5
49	Differences in inferred genome-wide signals of positive selection during the evolution of Trypanosoma cruzi and Leishmania spp. lineages: A result of disparities in host and tissue infection ranges?. Infection, Genetics and Evolution, 2015, 33, 37-46.	2.3	4
50	Inversions shape the divergence of <i>Drosophila pseudoobscura</i> and <i>Drosophila persimilis</i> on multiple timescales. Evolution; International Journal of Organic Evolution, 2021, 75, 1820-1834.	2.3	3
51	Host specificity, phenotype matching and the evolution of reproductive isolation in a coevolved plant–pollinator mutualism. Molecular Ecology, 2009, 18, 4988-4990.	3.9	1