
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7921491/publications.pdf Version: 2024-02-01

HENDY H YIN

#	Article	IF	CITATIONS
1	The role of the basal ganglia in habit formation. Nature Reviews Neuroscience, 2006, 7, 464-476.	4.9	1,974
2	Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in	1.2	1,019
3	The role of the dorsomedial striatum in instrumental conditioning. European Journal of Neuroscience, 2005, 22, 513-523.	1.2	896
4	Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nature Neuroscience, 2009, 12, 333-341.	7.1	681
5	Inactivation of dorsolateral striatum enhances sensitivity to changes in the action–outcome contingency in instrumental conditioning. Behavioural Brain Research, 2006, 166, 189-196.	1.2	441
6	Blockade of NMDA receptors in the dorsomedial striatum prevents action-outcome learning in instrumental conditioning. European Journal of Neuroscience, 2005, 22, 505-512.	1.2	365
7	Rewardâ€guided learning beyond dopamine in the nucleus accumbens: the integrative functions of corticoâ€basal ganglia networks. European Journal of Neuroscience, 2008, 28, 1437-1448.	1.2	348
8	Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nature Communications, 2016, 7, 11459.	5.8	292
9	Disrupted motor learning and long-term synaptic plasticity in mice lacking NMDAR1 in the striatum. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15254-15259.	3.3	242
10	Contributions of Striatal Subregions to Place and Response Learning. Learning and Memory, 2004, 11, 459-463.	0.5	194
11	Frequency-specific and D2 receptor-mediated inhibition of glutamate release by retrograde endocannabinoid signaling. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8251-8256.	3.3	160
12	A craniofacial-specific monosynaptic circuit enables heightened affective pain. Nature Neuroscience, 2017, 20, 1734-1743.	7.1	146
13	Endocannabinoid signaling is critical for habit formation. Frontiers in Integrative Neuroscience, 2007, 1, 6.	1.0	142
14	A Wireless Multi-Channel Recording System for Freely Behaving Mice and Rats. PLoS ONE, 2011, 6, e22033.	1.1	132
15	Huntingtin Is Required for Normal Excitatory Synapse Development in Cortical and Striatal Circuits. Journal of Neuroscience, 2014, 34, 9455-9472.	1.7	125
16	Pathway-Specific Striatal Substrates for Habitual Behavior. Neuron, 2016, 89, 472-479.	3.8	121
17	Genetic Deletion of A _{2A} Adenosine Receptors in the Striatum Selectively Impairs Habit Formation: Figure 1 Journal of Neuroscience, 2009, 29, 15100-15103.	1.7	117
18	Beyond reward prediction errors: the role of dopamine in movement kinematics. Frontiers in Integrative Neuroscience, 2015, 9, 39.	1.0	117

#	Article	IF	CITATIONS
19	Thrombospondin receptor α2δ-1 promotes synaptogenesis and spinogenesis via postsynaptic Rac1. Journal of Cell Biology, 2018, 217, 3747-3765.	2.3	116
20	Spine pruning drives antipsychotic-sensitive locomotion via circuit control of striatal dopamine. Nature Neuroscience, 2015, 18, 883-891.	7.1	113
21	The Sensorimotor Striatum Is Necessary for Serial Order Learning. Journal of Neuroscience, 2010, 30, 14719-14723.	1.7	107
22	Brain region-specific disruption of Shank3 in mice reveals a dissociation for cortical and striatal circuits in autism-related behaviors. Translational Psychiatry, 2018, 8, 94.	2.4	103
23	Operant Self-Stimulation of Dopamine Neurons in the Substantia Nigra. PLoS ONE, 2013, 8, e65799.	1.1	103
24	The Role of Protein Synthesis in Striatal Long-Term Depression. Journal of Neuroscience, 2006, 26, 11811-11820.	1.7	96
25	Ethanol reverses the direction of long-term synaptic plasticity in the dorsomedial striatum. European Journal of Neuroscience, 2007, 25, 3226-3232.	1.2	95
26	Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E358-67.	3.3	94
27	Instrumental uncertainty as a determinant of behavior under interval schedules of reinforcement. Frontiers in Integrative Neuroscience, 2010, 4, .	1.0	85
28	Basal Ganglia Outputs Map Instantaneous Position Coordinates during Behavior. Journal of Neuroscience, 2015, 35, 2703-2716.	1.7	81
29	A wirelessly controlled implantable LED system for deep brain optogenetic stimulation. Frontiers in Integrative Neuroscience, 2015, 9, 8.	1.0	79
30	Striatal firing rate reflects head movement velocity. European Journal of Neuroscience, 2014, 40, 3481-3490.	1.2	78
31	<i>ANK2</i> autism mutation targeting giant ankyrin-B promotes axon branching and ectopic connectivity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15262-15271.	3.3	78
32	Mechanisms of Action Selection and Timing in Substantia Nigra Neurons. Journal of Neuroscience, 2012, 32, 5534-5548.	1.7	76
33	Action, time and the basal ganglia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20120473.	1.8	76
34	The Basal Ganglia in Action. Neuroscientist, 2017, 23, 299-313.	2.6	73
35	Prefrontal cortical mechanisms underlying delayed alternation in mice. Journal of Neurophysiology, 2012, 108, 1211-1222.	0.9	72
36	A GABAergic nigrotectal pathway for coordination of drinking behavior. Nature Neuroscience, 2016, 19, 742-748.	7.1	70

#	Article	IF	CITATIONS
37	Instrumental learning in hyperdopaminergic mice. Neurobiology of Learning and Memory, 2006, 85, 283-288.	1.0	60
38	Striatal fast-spiking interneurons selectively modulate circuit output and are required for habitual behavior. ELife, 2017, 6, .	2.8	57
39	Ventral Tegmental Dopamine Neurons Control the Impulse Vector during Motivated Behavior. Current Biology, 2020, 30, 2681-2694.e5.	1.8	55
40	The role of the substantia nigra in posture control. European Journal of Neuroscience, 2014, 39, 1465-1473.	1.2	51
41	Nigrotectal Stimulation Stops Interval Timing in Mice. Current Biology, 2017, 27, 3763-3770.e3.	1.8	48
42	The role of the murine motor cortex in action duration and order. Frontiers in Integrative Neuroscience, 2009, 3, 23.	1.0	46
43	Methods for Studying Habitual Behavior in Mice. Current Protocols in Neuroscience, 2012, 60, Unit 8.29.	2.6	44
44	Striatonigral control of movement velocity in mice. European Journal of Neuroscience, 2016, 43, 1097-1110.	1.2	43
45	Bidirectional Modulation of Substantia Nigra Activity by Motivational State. PLoS ONE, 2013, 8, e71598.	1.1	41
46	Thalamic projections to the subthalamic nucleus contribute to movement initiation and rescue of parkinsonian symptoms. Science Advances, 2021, 7, .	4.7	40
47	Striatal Projection Neurons Require Huntingtin for Synaptic Connectivity and Survival. Cell Reports, 2020, 30, 642-657.e6.	2.9	34
48	Precise Coordination of Three-Dimensional Rotational Kinematics by Ventral Tegmental Area GABAergic Neurons. Current Biology, 2019, 29, 3244-3255.e4.	1.8	33
49	The elephantine shape of addiction. Behavioral and Brain Sciences, 2008, 31, 461-461.	0.4	32
50	Human Umbilical Tissue-Derived Cells Promote Synapse Formation and Neurite Outgrowth via Thrombospondin Family Proteins. Journal of Neuroscience, 2015, 35, 15649-15665.	1.7	29
51	Elevated dopamine alters consummatory pattern generation and increases behavioral variability during learning. Frontiers in Integrative Neuroscience, 2015, 09, 37.	1.0	28
52	Dysregulation of the Synaptic Cytoskeleton in the PFC Drives Neural Circuit Pathology, Leading to Social Dysfunction. Cell Reports, 2020, 32, 107965.	2.9	25
53	A striatal interneuron circuit for continuous target pursuit. Nature Communications, 2019, 10, 2715.	5.8	24
54	Recent insights into corticostriatal circuit mechanisms underlying habits. Current Opinion in Behavioral Sciences, 2018, 20, 40-46.	2.0	23

#	Article	IF	CITATIONS
55	Spotlight on movement disorders: What optogenetics has to offer. Movement Disorders, 2015, 30, 624-631.	2.2	22
56	How Basal Ganglia Outputs Generate Behavior. Advances in Neuroscience (Hindawi), 2014, 2014, 1-28.	3.1	21
57	The role of mediodorsal thalamus in temporal differentiation of reward-guided actions. Frontiers in Integrative Neuroscience, 2010, 4, .	1.0	20
58	Regionâ€specific impairments in striatal synaptic transmission and impaired instrumental learning in a mouse model of Angelman syndrome. European Journal of Neuroscience, 2014, 39, 1018-1025.	1.2	19
59	Opponent regulation of action performance and timing by striatonigral and striatopallidal pathways. ELife, 2020, 9, .	2.8	18
60	The Basal Ganglia and Hierarchical Control in Voluntary Behavior. Innovations in Cognitive Neuroscience, 2016, , 513-566.	0.3	16
61	Dynamic Changes in Single Unit Activity and Gamma Oscillations in a Thalamocortical Circuit during Rapid Instrumental Learning. PLoS ONE, 2012, 7, e50578.	1.1	15
62	Motivational State and Reward Content Determine Choice Behavior under Risk in Mice. PLoS ONE, 2011, 6, e25342.	1.1	14
63	The role of pedunculopontine nucleus in choice behavior under risk. European Journal of Neuroscience, 2014, 39, 1664-1670.	1.2	12
64	Mediodorsal Thalamus Contributes to the Timing of Instrumental Actions. Journal of Neuroscience, 2020, 40, 6379-6388.	1.7	12
65	A Head-Fixation System for Continuous Monitoring of Force Generated During Behavior. Frontiers in Integrative Neuroscience, 2020, 14, 11.	1.0	8
66	From actions to habits: neuroadaptations leading to dependence. Alcohol Research, 2008, 31, 340-4.	1.0	7
67	Cortico-Basal Ganglia Networks and the Neural Substrates of Actions. , 2014, , 29-47.		6
68	Hypothalamic-Extended Amygdala Circuit Regulates Temporal Discounting. Journal of Neuroscience, 2021, 41, 1928-1940.	1.7	6
69	The role of opponent basal ganglia outputs in behavior. Future Neurology, 2016, 11, 149-169.	0.9	5
70	Protocol for Recording from Ventral Tegmental Area Dopamine Neurons in Mice while Measuring Force during Head-Fixation. STAR Protocols, 2020, 1, 100091.	0.5	5
71	The Role of the Dorsal Striatum in Instrumental Conditioning. Neuromethods, 2011, , 55-69.	0.2	5
72	Achieving natural behavior in a robot using neurally inspired hierarchical perceptual control. IScience, 2021, 24, 102948.	1.9	4

#	Article	IF	CITATIONS
73	Closing the loop on models of interval timing. Nature Neuroscience, 2022, 25, 270-271.	7.1	1