Andreas B Dahlin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7920951/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface plasmon resonance sensing with thin films of palladium and platinum – quantitative and real-time analysis. Physical Chemistry Chemical Physics, 2022, 24, 4588-4594.	1.3	13
2	Electrically Switchable Polymer Brushes for Protein Capture and Release in Biological Environments**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
3	Accurate Correction of the "Bulk Response―in Surface Plasmon Resonance Sensing Provides New Insights on Interactions Involving Lysozyme and Poly(ethylene glycol). ACS Sensors, 2022, 7, 1175-1182.	4.0	2
4	Scalable Reflective Plasmonic Structural Colors from Nanoparticles and Cavity Resonances – the Cyanâ€Magenta‥ellow Approach. Advanced Optical Materials, 2022, 10, .	3.6	8
5	Tuning the Thermoresponsive Behavior of Surface-Attached PNIPAM Networks: Varying the Crosslinker Content in SI-ATRP. Langmuir, 2021, 37, 3391-3398.	1.6	19
6	A designer FG-Nup that reconstitutes the selective transport barrier of the nuclear pore complex. Nature Communications, 2021, 12, 2010.	5.8	35
7	Control of Polymer Brush Morphology, Rheology, and Protein Repulsion by Hydrogen Bond Complexation. Langmuir, 2021, 37, 4943-4952.	1.6	11
8	Evaluation of the Forsvall biopsy needle in an <i>ex vivo</i> model of transrectal prostate biopsy – a novel needle design with the objective to reduce the risk of post-biopsy infection. Scandinavian Journal of Urology, 2021, 55, 227-234.	0.6	2
9	Electrochromic Inorganic Nanostructures with High Chromaticity and Superior Brightness. Nano Letters, 2021, 21, 4343-4350.	4.5	42
10	Biochemical Sensing with Nanoplasmonic Architectures: We Know How but Do We Know Why?. Annual Review of Analytical Chemistry, 2021, 14, 281-297.	2.8	7
11	Video Speed Switching of Plasmonic Structural Colors with High Contrast and Superior Lifetime. Advanced Materials, 2021, 33, e2103217.	11.1	36
12	Dynamically Tuneable Reflective Structural Coloration with Electroactive Conducting Polymer Nanocavities. Advanced Materials, 2021, 33, e2105004.	11.1	22
13	Simultaneous, Single-Particle Measurements of Size and Loading Give Insights into the Structure of Drug-Delivery Nanoparticles. ACS Nano, 2021, 15, 19244-19255.	7.3	23
14	Generic high-capacity protein capture and release by pH control. Chemical Communications, 2020, 56, 5889-5892.	2.2	14
15	High-Contrast Switching of Plasmonic Structural Colors: Inorganic versus Organic Electrochromism. ACS Photonics, 2020, 7, 1762-1772.	3.2	38
16	Large Changes in Protonation of Weak Polyelectrolyte Brushes with Salt Concentration—Implications for Protein Immobilization. Journal of Physical Chemistry Letters, 2020, 11, 5212-5218.	2.1	24
17	Nanoplasmonic Sensor Detects Preferential Binding of IRSp53 to Negative Membrane Curvature. Frontiers in Chemistry, 2019, 7, 1.	1.8	439
18	Enzyme Immobilization in Polyelectrolyte Brushes: High Loading and Enhanced Activity Compared to Monolayers. Langmuir, 2019, 35, 3479-3489.	1.6	46

ANDREAS B DAHLIN

#	Article	IF	CITATIONS
19	Optical properties of plasmonic nanopore arrays prepared by electron beam and colloidal lithography. Nanoscale Advances, 2019, 1, 4282-4289.	2.2	10
20	Active control of plasmonic colors: emerging display technologies. Reports on Progress in Physics, 2019, 82, 024501.	8.1	46
21	Polymer brushes in solid-state nanopores form an impenetrable entropic barrier for proteins. Nanoscale, 2018, 10, 4663-4669.	2.8	34
22	Nanopore Membranes for Separation and Sensing. Integrated Analytical Systems, 2018, , 1-23.	0.4	2
23	Quantitative Analysis of Thickness and pH Actuation of Weak Polyelectrolyte Brushes. Journal of Physical Chemistry C, 2018, 122, 27516-27527.	1.5	21
24	Detecting Selective Protein Binding Inside Plasmonic Nanopores: Toward a Mimic of the Nuclear Pore Complex. Frontiers in Chemistry, 2018, 6, 637.	1.8	13
25	Antibody–Antigen Interaction Dynamics Revealed by Analysis of Single-Molecule Equilibrium Fluctuations on Individual Plasmonic Nanoparticle Biosensors. ACS Nano, 2018, 12, 9958-9965.	7.3	34
26	Nanoplasmonic Sensing Architectures for Decoding Membrane Curvature-Dependent Biomacromolecular Interactions. Analytical Chemistry, 2018, 90, 7458-7466.	3.2	16
27	Gating Protein Transport in Solid State Nanopores by Single Molecule Recognition. ACS Central Science, 2018, 4, 1007-1014.	5.3	31
28	Switchable Plasmonic Metasurfaces with High Chromaticity Containing Only Abundant Metals. Nano Letters, 2017, 17, 7033-7039.	4.5	95
29	Superior LSPR substrates based on electromagnetic decoupling for on-a-chip high-throughput label-free biosensing. Light: Science and Applications, 2017, 6, e17042-e17042.	7.7	57
30	Protein exclusion is preserved by temperature sensitive PEG brushes. Polymer, 2017, 132, 362-367.	1.8	6
31	Surface plasmon resonance methodology for monitoring polymerization kinetics and morphology changes of brushes—evaluated with poly(N-isopropylacrylamide). Applied Surface Science, 2017, 396, 384-392.	3.1	18
32	Fabrication and Characterization of Plasmonic Nanopores with Cavities in the Solid Support. Sensors, 2017, 17, 1444.	2.1	15
33	Electronic Paper: Plasmonic Metasurfaces with Conjugated Polymers for Flexible Electronic Paper in Color (Adv. Mater. 45/2016). Advanced Materials, 2016, 28, 10103-10103.	11.1	5
34	Plasmonic Metasurfaces with Conjugated Polymers for Flexible Electronic Paper in Color. Advanced Materials, 2016, 28, 9956-9960.	11.1	128
35	Dual-Wavelength Surface Plasmon Resonance for Determining the Size and Concentration of Sub-Populations of Extracellular Vesicles. Analytical Chemistry, 2016, 88, 9980-9988.	3.2	70
36	Biosensing using plasmonic nanohole arrays with small, homogenous and tunable aperture diameters. Analyst, The, 2016, 141, 3803-3810.	1.7	46

ANDREAS B DAHLIN

#	Article	IF	CITATIONS
37	Sensing applications based on plasmonic nanopores: The hole story. Analyst, The, 2015, 140, 4748-4759.	1.7	88
38	Strongly Stretched Protein Resistant Poly(ethylene glycol) Brushes Prepared by Grafting-To. ACS Applied Materials & Interfaces, 2015, 7, 7505-7515.	4.0	142
39	Plasmon Enhanced Internal Photoemission in Antenna-Spacer-Mirror Based Au/TiO ₂ Nanostructures. Nano Letters, 2015, 15, 4059-4065.	4.5	121
40	Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature. Nanoscale, 2015, 7, 15080-15085.	2.8	25
41	Influence of the Evanescent Field Decay Length on the Sensitivity of Plasmonic Nanodisks and Nanoholes. ACS Photonics, 2015, 2, 256-262.	3.2	94
42	2014, 2, 555-555.	3.6	0
43	Single-Particle Plasmon Sensing of Discrete Molecular Events: Binding Position versus Signal Variations for Different Sensor Geometries. Journal of Physical Chemistry C, 2014, 118, 6980-6988.	1.5	22
44	A Thermal Plasmonic Sensor Platform: Resistive Heating of Nanohole Arrays. Nano Letters, 2014, 14, 3544-3549.	4.5	41
45	Plasmonic Nanopores in Metalâ€Insulatorâ€Metal Films. Advanced Optical Materials, 2014, 2, 556-564.	3.6	38
46	Nanoantennas for refractive-index sensing. , 2013, , 340-355.		1
47	Promises and challenges of nanoplasmonic devices for refractometric biosensing. Nanophotonics, 2013, 2, 83-101.	2.9	83
48	Simultaneous electrical and plasmonic monitoring of potential induced ion adsorption on metal nanowire arrays. Nanoscale, 2013, 5, 4966.	2.8	15
49	Embedded Plasmonic Nanomenhirs as Location-Specific Biosensors. Nano Letters, 2013, 13, 6122-6129.	4.5	25
50	Optical Resonances in Short-Range Ordered Nanoholes in Ultrathin Aluminum/Aluminum Nitride Multilayers. Journal of Physical Chemistry C, 2013, 117, 6373-6382.	1.5	25
51	Optical Properties of Nanohole Arrays in Metal–Dielectric Double Films Prepared by Mask-on-Metal Colloidal Lithography. ACS Nano, 2012, 6, 10405-10415.	7.3	87
52	Nanoplasmonic sensing of metal–halide complex formation and the electric double layer capacitor. Nanoscale, 2012, 4, 2339.	2.8	53
53	Nanoplasmonic Sensing Combined with Artificial Cell Membranes. , 2012, , 59-82.		6

4

ANDREAS B DAHLIN

#	Article	IF	CITATIONS
55	Size Matters: Problems and Advantages Associated with Highly Miniaturized Sensors. Sensors, 2012, 12, 3018-3036.	2.1	81
56	Electrochemical plasmonic sensors. Analytical and Bioanalytical Chemistry, 2012, 402, 1773-1784.	1.9	71
57	Electrochemical Crystallization of Plasmonic Nanostructures. Nano Letters, 2011, 11, 1337-1343.	4.5	52
58	Investigation of Plasmon Resonances in Metal Films with Nanohole Arrays for Biosensing Applications. Small, 2011, 7, 1653-1663.	5.2	141
59	Locally Functionalized Short-Range Ordered Nanoplasmonic Pores for Bioanalytical Sensing. Analytical Chemistry, 2010, 82, 2087-2094.	3.2	105
60	Electrochemistry on a Localized Surface Plasmon Resonance Sensor. Langmuir, 2010, 26, 7619-7626.	1.6	76
61	QCM-D studies of human norovirus VLPs binding to glycosphingolipids in supported lipid bilayers reveal strain-specific characteristics. Glycobiology, 2009, 19, 1176-1184.	1.3	53
62	High-Resolution Microspectroscopy of Plasmonic Nanostructures for Miniaturized Biosensing. Analytical Chemistry, 2009, 81, 6572-6580.	3.2	80
63	Specific Selfâ€Assembly of Single Lipid Vesicles in Nanoplasmonic Apertures in Gold. Advanced Materials, 2008, 20, 1436-1442.	11.1	61
64	Supported lipid bilayers, tethered lipid vesicles, and vesicle fusion investigated using gravimetric, plasmonic, and microscopy techniques. Biointerphases, 2008, 3, FA108-FA116.	0.6	23
65	Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films (Review). Biointerphases, 2008, 3, FD30-FD40.	0.6	66
66	Synchronized Quartz Crystal Microbalance and Nanoplasmonic Sensing of Biomolecular Recognition Reactions. ACS Nano, 2008, 2, 2174-2182.	7.3	61
67	Label-Free Plasmonic Detection of Biomolecular Binding by a Single Gold Nanorod. Analytical Chemistry, 2008, 80, 984-989.	3.2	271
68	Supported Lipid Bilayer Formation and Lipid-Membrane-Mediated Biorecognition Reactions Studied with a New Nanoplasmonic Sensor Template. Nano Letters, 2007, 7, 3462-3468.	4.5	139
69	Quantitative interpretation of gold nanoparticle-based bioassays designed for detection of immunocomplex formation. Biointerphases, 2007, 2, 6-15.	0.6	19
70	Generic surface modification strategy for sensing applications based on Au/SiO2 nanostructures. Biointerphases, 2007, 2, 49-55.	0.6	40
71	Improving the Instrumental Resolution of Sensors Based on Localized Surface Plasmon Resonance. Analytical Chemistry, 2006, 78, 4416-4423.	3.2	305
72	Localized Surface Plasmon Resonance Sensing of Lipid-Membrane-Mediated Biorecognition Events. Journal of the American Chemical Society, 2005, 127, 5043-5048.	6.6	272

#	Article	IF	CITATIONS
73	Plasmonic Sensing Characteristics of Single Nanometric Holes. Nano Letters, 2005, 5, 2335-2339.	4.5	248
74	Electrically Switchable Polymer Brushes for Protein Capture and Release in Biological Environments**. Angewandte Chemie, 0, , .	1.6	0