John D Atkinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7920776/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current and future trends in adsorption for environmental separations. Journal of Hazardous Materials, 2022, 433, 128776.	6.5	3
2	A novel synthesis of sulfurized magnetic biochar for aqueous Hg(II) capture as a potential method for environmental remediation in water. Science of the Total Environment, 2021, 784, 147240.	3.9	21
3	Gaseous mercury re-emission from wet flue gas desulfurization wastewater aeration basins: A review. Journal of Hazardous Materials, 2021, 420, 126546.	6.5	19
4	Impact of plastic bag bans on retail return polyethylene film recycling contamination rates and speciation. Waste Management, 2021, 135, 234-242.	3.7	12
5	Design and Validation of Passive Environmental DNA Samplers Using Granular Activated Carbon and Montmorillonite Clay. Environmental Science & Technology, 2020, 54, 11961-11970.	4.6	37
6	Influence of Purge Gas Flow and Heating Rates on Volatile Organic Compound Decomposition during Regeneration of an Activated Carbon Fiber Cloth. Industrial & Engineering Chemistry Research, 2020, 59, 3521-3530.	1.8	11
7	Phenol adsorption and desorption with physically and chemically tailored porous polymers: Mechanistic variability associated with hyper-cross-linking and amination. Journal of Hazardous Materials, 2019, 361, 162-168.	6.5	52
8	Household dependence on solid cooking fuels in Peru: An analysis of environmental and socioeconomic conditions. Global Environmental Change, 2019, 58, 101961.	3.6	15
9	Phenol and Cr(VI) removal using materials derived from harmful algal bloom biomass: Characterization and performance assessment for a biosorbent, a porous carbon, and Fe/C composites. Journal of Hazardous Materials, 2019, 368, 477-486.	6.5	40
10	Glycerol-derived magnetic mesoporous Fe/C composites for Cr(VI) removal, prepared via acid-assisted one-pot pyrolysis. Chemosphere, 2019, 228, 694-701.	4.2	16
11	Ultrasonic spray pyrolysis synthesis of nitrogen-doped porous Fe/C composites from glycerol for hexavalent chromium removal. Materials Chemistry and Physics, 2019, 221, 29-33.	2.0	11
12	Porous materials for steady-state NO conversion: Comparisons of activated carbon fiber cloths, zeolites and metal-organic frameworks. Chemical Engineering Journal, 2019, 360, 89-96.	6.6	19
13	NO oxidation in dry and humid conditions using hyper-cross-linked polymers: Impact of surface chemistry on catalytic conversion efficiency. Fuel, 2019, 241, 564-570.	3.4	6
14	Country-level analysis of household fuel transitions. World Development, 2019, 114, 267-280.	2.6	27
15	Iron/Carbon Composites for Cr(VI) Removal Prepared from Harmful Algal Bloom Biomass via Metal Bioaccumulation or Biosorption. ACS Sustainable Chemistry and Engineering, 2019, 7, 1279-1288.	3.2	30
16	Shape matters: Cr(VI) removal using iron nanoparticle impregnated 1-D vs 2-D carbon nanohybrids prepared by ultrasonic spray pyrolysis. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	13
17	Impact of styrenic polymer one-step hyper-cross-linking on volatile organic compound adsorption and desorption performance. Journal of Hazardous Materials, 2018, 351, 117-123.	6.5	34
18	Tailoring the pore size distribution of self-cross-linked 4,4′-bis(chloromethyl)-1,1′-biphenyl polymers using reactive and non-reactive co-solvents. Polymer, 2018, 143, 331-335.	1.8	3

JOHN D ATKINSON

#	Article	IF	CITATIONS
19	Tailoring the electrical resistivity of zeolite Y by carbon addition to allow resistive heating. Journal of Materials Chemistry A, 2018, 6, 12082-12090.	5.2	2
20	Effect of Beaded Activated Carbon Fluidization on Adsorption of Volatile Organic Compounds. Industrial & Engineering Chemistry Research, 2017, 56, 1297-1305.	1.8	35
21	One-step hyper-cross-linking of porous styrenic polymers using dichloroalkane cross-linkers to maintain hydrophobicity. Polymer, 2017, 116, 278-286.	1.8	26
22	Enhancing CO ₂ Adsorption via Amine-Impregnated Activated Carbon from Oil Sands Coke. Energy & Fuels, 2017, 31, 1756-1763.	2.5	71
23	Frozen "Tofu―Effect: Engineered Pores of Hydrophilic Nanoporous Materials. ACS Omega, 2017, 2, 4838-4844.	1.6	7
24	Tailored activated carbon from glycerol: role of acid dehydrator on physiochemical characteristics and adsorption performance. Journal of Materials Chemistry A, 2017, 5, 16812-16821.	5.2	29
25	The role of beaded activated carbon's surface oxygen groups on irreversible adsorption of organic vapors. Journal of Hazardous Materials, 2016, 317, 284-294.	6.5	40
26	The role of beaded activated carbon's pore size distribution on heel formation during cyclic adsorption/desorption of organic vapors. Journal of Hazardous Materials, 2016, 315, 42-51.	6.5	72
27	Catalytic NO Oxidation in the Presence of Moisture Using Porous Polymers and Activated Carbon. Environmental Science & Technology, 2016, 50, 5189-5196.	4.6	25
28	A copper removal process for water based upon biosynthesis of yersiniabactin, a metal-binding natural product. Chemical Engineering Journal, 2016, 306, 772-776.	6.6	11
29	Effect of desorption purge gas oxygen impurity on irreversible adsorption of organic vapors. Carbon, 2016, 99, 310-317.	5.4	19
30	Heel formation during volatile organic compound desorption from activated carbon fiber cloth. Carbon, 2016, 96, 131-138.	5.4	38
31	NO oxidation by microporous zeolites: Isolating the impact of pore structure to predict NO conversion. Applied Catalysis B: Environmental, 2015, 163, 573-583.	10.8	24
32	Using Microwave Heating To Improve the Desorption Efficiency of High Molecular Weight VOC from Beaded Activated Carbon. Environmental Science & Technology, 2015, 49, 4536-4542.	4.6	54
33	Automotive Wastes. Water Environment Research, 2014, 86, 1416-1446.	1.3	1
34	Nitric oxide oxidation catalyzed by microporous activated carbon fiber cloth: An updated reaction mechanism. Applied Catalysis B: Environmental, 2014, 148-149, 573-581.	10.8	44
35	Evolution and impact of acidic oxygen functional groups on activated carbon fiber cloth during NO oxidation. Carbon, 2013, 54, 444-453.	5.4	50
36	Sustainable and hierarchical porous Enteromorpha prolifera based carbon for CO2 capture. Journal of Hazardous Materials, 2012, 229-230, 183-191.	6.5	102

#	Article	IF	CITATIONS
37	Synthesis and characterization of iron-impregnated porous carbon spheres prepared by ultrasonic spray pyrolysis. Carbon, 2011, 49, 587-598.	5.4	86