
Mustafa Ã-zakça

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7920560/publications.pdf Version: 2024-02-01

Μιισταγά Δ-70κ Δ80

#	Article	IF	CITATIONS
1	Residual Impact Performance of ECC Subjected to Sub-High Temperatures. Materials, 2022, 15, 454.	1.3	17
2	Temperatures and gradients in concrete Bridges: Experimental, finite element analysis and design. Structures, 2022, 37, 960-976.	1.7	12
3	Mechanical and Impact Properties of Engineered Cementitious Composites Reinforced with PP Fibers at Elevated Temperatures. Fire, 2022, 5, 3.	1.2	12
4	Flexural performance of RC beams externally strengthened with a single-layer of basalt fiber reinforced polymer sheets. Composites and Advanced Materials, 2022, 31, 263498332211024.	0.5	0
5	Flexural behavior of ECC hollow beams incorporating different synthetic fibers. Frontiers of Structural and Civil Engineering, 2021, 15, 399-411.	1.2	11
6	Statistical evaluation of vertical and lateral temperature gradients in concrete box-girders. Journal of Physics: Conference Series, 2021, 1895, 012068.	0.3	2
7	Residual Repeated Impact Strength of Concrete Exposed to Elevated Temperatures. Crystals, 2021, 11, 941.	1.0	21
8	Finite element thermo-mechanical analysis of concrete box-girders. Structures, 2021, 33, 2424-2444.	1.7	24
9	Flexural response of hollow high strength concrete beams considering different size reductions. Structures, 2020, 23, 69-86.	1.7	53
10	Temperature Records in Concrete Box-Girder Segment Subjected to Solar Radiation and Air Temperature Changes. IOP Conference Series: Materials Science and Engineering, 2020, 870, 012074.	0.3	13
11	Suggestion models of temperature differentials for the composite box girder bridge. IOP Conference Series: Materials Science and Engineering, 2020, 870, 012068.	0.3	1
12	Flexural Strengthening and Rehabilitation of Reinforced Concrete Beam Using BFRP Composites: Finite Element Approach. Advances in Civil Engineering, 2019, 2019, 1-17.	0.4	20
13	Experimental Investigation on the Effect of Steel Fibers on the Flexural Behavior and Ductility of High-Strength Concrete Hollow Beams. Advances in Civil Engineering, 2019, 2019, 1-13.	0.4	46
14	EFFECT OF NUMBER AND DISTRIBUTION OF SHEAR CONNECTORS ON THE COMPOSITE BOX-GIRDER BRIDGE UNDER ENVIRONMENTAL THERMAL CONDITIONS. Journal of Engineering and Sustainable Development, 2019, 23, 35-54.	0.3	1
15	Experimental and finite element investigation of temperature distributions in concrete-encased steel girders. Structural Control and Health Monitoring, 2018, 25, e2042.	1.9	57
16	Developing geopolymer concrete by using cold-bonded fly ash aggregate, nano-silica, and steel fiber. Construction and Building Materials, 2018, 180, 12-22.	3.2	70
17	Analysis and optimal design of structures with adaptivity. , 2018, , .		Ο
18	Residual strength of high strength concentric column-SFRC flat plate exposed to high temperatures. Construction and Building Materials, 2017, 154, 204-218.	3.2	35

Mustafa Özakça

#	Article	IF	CITATIONS
19	Review of concrete flat plate-column assemblies under fire conditions. Fire Safety Journal, 2017, 93, 39-52.	1.4	25
20	Nonlinear FE modelling and parametric study on flexural performance of ECC beams. Structural Engineering and Mechanics, 2017, 62, 21-31.	1.0	0
21	3D finite-element analysis of shear connectors with partial interaction. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2016, 169, 96-107.	0.4	4
22	Experimental analysis of temperature gradients in concrete box-girders. Construction and Building Materials, 2016, 106, 523-532.	3.2	84
23	Impact of finite element idealisation on the prediction of welded fuselage stiffened panel buckling. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230, 259-279.	0.7	1
24	Flexural behavior of concrete beams reinforced with different types of fibers. Computers and Concrete, 2016, 18, 999-1018.	0.7	3
25	Experimental and finite element parametric investigations of the thermal behavior of CBGB. Steel and Composite Structures, 2016, 20, 813-832.	1.3	10
26	İNÅžAAT MÜHENDİSLİĞİNDE HAREKETLİ MEMBRAN YAPILAR İÇİN TASARIM METODOLOJİSİNÄ the Faculty of Engineering and Architecture of Gazi University, 2016, 31, .	ä°Ŋ,ĢELİ	ŞTİRİLM 1
27	3D FE analysis of shear connectors with partial interaction. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2015, , 1-12.	0.4	0
28	Buckling/post-buckling strength of friction stir welded aircraft stiffened panels. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228, 178-192.	0.7	3
29	The influence of assembly friction stir weld location on wing panel static strength. Thin-Walled Structures, 2014, 76, 56-64.	2.7	10
30	3D FE modeling considering shear connectors representation and number in CBGB. Steel and Composite Structures, 2014, 17, 237-252.	1.3	1
31	Structural Analysis of Arches in Plane with a Family of Simple and Accurate Curved Beam Elements Based on Mindlin-Reissner Model. Journal of Mechanics, 2011, 27, 129-138.	0.7	2
32	Optimization of arches using genetic algorithm. Computational Optimization and Applications, 2008, 41, 377-394.	0.9	5
33	Tailoring Static Strength Performance of Metallic Stiffened Panels by Selective Local Sub-Stiffening. , 2006, , .		14
34	A COMPUTATIONAL TOOL BASED ON GENETIC ALGORITHM FOR DETERMINING OPTIMUM SHAPES OF VIBRATING PLANAR AND SPACE TRUSSES. , 2006, , 219-224.		0
35	Structural Analysis and Optimization of Bells Using Finite Elements. Journal of New Music Research, 2004, 33, 61-69.	0.6	5
36	Buckling analysis and shape optimization of elastic variable thickness circular and annular plates—I. Finite element formulation. Engineering Structures, 2003, 25, 181-192.	2.6	24

Mustafa Özakça

#	Article	IF	CITATIONS
37	Buckling analysis and shape optimization of elastic variable thickness circular and annular plates—II. Shape optimization. Engineering Structures, 2003, 25, 193-199.	2.6	13
38	Buckling optimization of variable thickness prismatic folded plates. Thin-Walled Structures, 2003, 41, 711-730.	2.7	6
39	Analysis and Optimization of Prismatic and Axisymmetric Shell Structures. , 2003, , .		5
40	Comparison of error estimation methods and adaptivity for plane stress/strain problems. Structural Engineering and Mechanics, 2003, 15, 579-608.	1.0	3
41	Buckling Analysis and Optimization of Plates and Shells. , 2003, , 381-428.		0
42	Structural Shape Definition and Automatic Mesh Generation. , 2003, , 27-58.		0
43	Basic Finite Strip Formulation for Prismatic Shells. , 2003, , 141-200.		0
44	Basic Finite Element Formulation for Vibrating Axisymmetric Shells. , 2003, , 245-278.		0
45	Structural Optimization of Shells of Revolution and Prismatic Shells. , 2003, , 201-242.		0
46	Structural Shape Optimization of Vibrating Axisymmetric and Prismatic Shells. , 2003, , 325-377.		0
47	Finite Strip Formulation for Vibrating Prismatic Shells. , 2003, , 279-324.		0
48	Structural Optimization Methods and Algorithms. , 2003, , 59-123.		0
49	Basic Dynamic Analysis of Plates, Solids of Revolution and Finite Prism Type Structures. , 2003, , 429-474.		0
50	Free vibration analysis and shape optimization of box-girder bridges in straight and curved planform. Engineering Structures, 2002, 24, 625-637.	2.6	11
51	Free vibration analysis and shape optimization of variable thickness plates, prismatic folded plates and curved shells. Journal of Sound and Vibration, 1995, 181, 553-566.	2.1	19
52	Free vibration analysis and shape optimization of variable thickness plates, prismatic folded plates and curved shells. Journal of Sound and Vibration, 1995, 181, 567-581.	2.1	21
53	Free vibration analysis and optimisation of axisymmetric plates and shells—I. Finite element formulation. Computers and Structures, 1994, 52, 1181-1197.	2.4	42
54	Free vibration analysis and optimisation of axisymmetric plates and shells—II. Shape optimisation. Computers and Structures, 1994, 52, 1199-1211.	2.4	9

Mustafa Özakça

#	Article	IF	CITATIONS
55	Structural optimisation of axisymmetric and prismatic shells and folded plates. Computing Systems in Engineering: an International Journal, 1994, 5, 179-191.	0.5	3
56	Free vibration analysis and shape optimization of prismatic folded plates and shells with circular curved planform. International Journal for Numerical Methods in Engineering, 1994, 37, 1713-1739.	1.5	9
57	Optimum Shapes Of Vibrating Axisymmetric Plates And Shells. Journal of Sound and Vibration, 1993, 167, 511-528.	2.1	12
58	Shape optimization of axisymmetric structures with adaptive finite element procedures. Structural Optimization, 1993, 5, 256-264.	0.7	14
59	STRUCTURAL SHAPE OPTIMIZATION OF VIBRATING SHELLS AND FOLDED PLATES USING TWOâ€NODED FINITE STRIPS. Engineering Computations, 1993, 10, 139-157.	0.7	8
60	Comparison of three-dimensional solid elements in the analysis of plates. Computers and Structures, 1992, 42, 953-968.	2.4	13
61	A study of boundary layers in plates using Mindlin-Reissner and 3-D elements. International Journal for Numerical Methods in Engineering, 1992, 33, 1305-1320.	1.5	17
62	An integrated approach to structural shape optimization of linearly elastic structures. Part II: Shape definition and adaptivity. Computing Systems in Engineering: an International Journal, 1991, 2, 41-56.	0.5	15
63	Mesh generation with adaptive finite element analysis. Advances in Engineering Software and Workstations, 1991, 13, 238-262.	0.2	13
64	Adaptive analysis of thin shells using facet elements. International Journal for Numerical Methods in Engineering, 1991, 32, 1283-1301.	1.5	22
65	An integrated approach to structural shape optimization of linearly elastic structures. Part I: General methodology. Computing Systems in Engineering: an International Journal, 1991, 2, 27-39.	0.5	17