
Jyuhn-Huarng Juang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7920462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetic Resonance Imaging of Transplanted Porcine Neonatal Pancreatic Cell Clusters Labeled with Exendin-4-Conjugated Manganese Magnetism-Engineered Iron Oxide Nanoparticles. Nanomaterials, 2022, 12, 1222.	4.1	1
2	Noninvasive Tracking of mPEC-poly(Ala) Hydrogel-Embedded MIN6 Cells after Subcutaneous Transplantation in Mice. Polymers, 2021, 13, 885.	4.5	4
3	Magnetic Resonance Imaging of Transplanted Porcine Neonatal Pancreatic Cell Clusters Labeled with Chitosan-Coated Superparamagnetic Iron Oxide Nanoparticles in Mice. Polymers, 2021, 13, 1238.	4.5	6
4	Effectiveness of a Problem-Solving Program in Improving Problem-Solving Ability and Glycemic Control for Diabetics with Hypoglycemia. International Journal of Environmental Research and Public Health, 2021, 18, 9559.	2.6	4
5	Exendin-4-Conjugated Manganese Magnetism-Engineered Iron Oxide Nanoparticles as a Potential Magnetic Resonance Imaging Contrast Agent for Tracking Transplanted β-Cells. Nanomaterials, 2021, 11, 3145.	4.1	3
6	Core-shell insulin-loaded nanofibrous scaffolds for repairing diabetic wounds. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102123.	3.3	55
7	Codelivery of Sustainable Antimicrobial Agents and Platelet-Derived Growth Factor via Biodegradable Nanofibers for Repair of Diabetic Infectious Wounds. ACS Infectious Diseases, 2020, 6, 2688-2697.	3.8	42
8	Implanted islet mass influences the effects of dipeptidyl peptidase-IV inhibitor LAF237 on transplantation outcomes in diabetic mice. Biomedical Journal, 2020, , .	3.1	1
9	Enhancement of Subcutaneously Transplanted \hat{l}^2 Cell Survival Using 3D Stem Cell Spheroids with Proangiogenic and Prosurvival Potential. Advanced Biology, 2020, 4, e1900254.	3.0	20
10	In situ gelling-polypeptide hydrogel systems for the subcutaneous transplantation of MIN6 cells. Journal of Polymer Research, 2020, 27, 1.	2.4	6
11	<p>Nanofibrous vildagliptin-eluting stents enhance re-endothelialization and reduce neointimal formation in diabetes: in vitro and in vivo</p> . International Journal of Nanomedicine, 2019, Volume 14, 7503-7513.	6.7	19
12	Factors Affecting the Ability of People With Diabetes to Avoid Hypoglycemia. The Journal of Nursing Research: JNR, 2018, 26, 44-51.	1.7	4
13	Promoting vascular healing using nanofibrous ticagrelor-eluting stents. International Journal of Nanomedicine, 2018, Volume 13, 6039-6048.	6.7	8
14	An Intestinal "Transformers―like Nanocarrier System for Enhancing the Oral Bioavailability of Poorly Water-Soluble Drugs. ACS Nano, 2018, 12, 6389-6397.	14.6	24
15	Porcine Neonatal Pancreatic Cell Clusters Maintain Their Multipotency in Culture and After Transplantation. Scientific Reports, 2018, 8, 8212.	3.3	10
16	Safety and efficacy of self-assembling bubble carriers stabilized with sodium dodecyl sulfate for oral delivery of therapeutic proteins. Journal of Controlled Release, 2017, 259, 168-175.	9.9	31
17	Development and validation of the hypoglycaemia problem-solving scale for people with diabetes mellitus. Journal of International Medical Research, 2016, 44, 592-604.	1.0	9
18	Nanofibrous rhPDGF-eluting PLGA–collagen hybrid scaffolds enhance healing of diabetic wounds. RSC Advances, 2016, 6, 6276-6284.	3.6	19

JYUHN-HUARNG JUANG

#	Article	IF	CITATIONS
19	Islets and Glucose Homeostasis. International Journal of Endocrinology, 2015, 2015, 1-2.	1.5	0
20	Augmentation of diabetic wound healing and enhancement of collagen content using nanofibrous glucophage-loaded collagen/PLGA scaffold membranes. Journal of Colloid and Interface Science, 2015, 439, 88-97.	9.4	96
21	3-D Imaging Reveals Participation of Donor Islet Schwann Cells and Pericytes in Islet Transplantation and Graft Neurovascular Regeneration. EBioMedicine, 2015, 2, 109-119.	6.1	20
22	Prevention and Reversal of Diabetes by All-Trans Retinoid Acid and Exendin-4 in NOD Mice. International Journal of Endocrinology, 2014, 2014, 1-5.	1.5	9
23	Effects of Dipeptidyl Peptidase-4 Inhibition with MK-0431 on Syngeneic Mouse Islet Transplantation. International Journal of Endocrinology, 2014, 2014, 1-5.	1.5	2
24	Three-dimensional islet graft histology: panoramic imaging of neural plasticity in sympathetic reinnervation of transplanted islets under the kidney capsule. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E559-E570.	3.5	28
25	Magnetic Resonance Imaging of Mouse Islet Grafts Labeled with Novel Chitosan-Coated Superparamagnetic Iron Oxide Nanoparticles. PLoS ONE, 2013, 8, e62626.	2.5	14
26	The dilemma of diabetic patients living with hypoglycaemia. Journal of Clinical Nursing, 2011, 20, 2277-2285.	3.0	18
27	Preparation, characterization and application of superparamagnetic iron oxide encapsulated with N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride. Carbohydrate Polymers, 2011, 84, 781-787.	10.2	19
28	Selfâ€Assembled pHâ€Sensitive Nanoparticles: A Platform for Oral Delivery of Protein Drugs. Advanced Functional Materials, 2010, 20, 3695-3700.	14.9	104
29	Exendin-4 Treatment Expands Graft β-Cell Mass in Diabetic Mice Transplanted with a Marginal Number of Fresh Islets. Cell Transplantation, 2008, 17, 641-647.	2.5	19
30	Islet transplantation: an update. Chang Gung Medical Journal, 2004, 27, 1-15.	0.7	25
31	Failure of Fas-ligand transgenic islets to resist allogeneic rejection. Transplantation Proceedings, 2002, 34, 1456-1457.	0.6	2
32	15-deoxyspergualin protects the islet graft from macrophage-mediated injury. Transplantation Proceedings, 2002, 34, 1458-1459.	0.6	3
33	Beneficial Effects of Hyperbaric Oxygen Therapy on Islet Transplantation. Cell Transplantation, 2002, 11, 95-101.	2.5	41
34	Beneficial effects of hyperbaric oxygen therapy on islet transplantation. Cell Transplantation, 2002, 11, 95-101.	2.5	10
35	Influence of Donor Age on Mouse Islet Characteristics and Transplantation. Cell Transplantation, 2001, 10, 277-284.	2.5	17
36	Beneficial Influence of Clycemic Control Upon the Growth and Function of Transplanted Islets. Diabetes, 1994, 43, 1334-1339.	0.6	102