
Schuyler S Korban

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7920416/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The genome of woodland strawberry (Fragaria vesca). Nature Genetics, 2011, 43, 109-116.	9.4	1,091
2	The genome of the pear (<i>Pyrus bretschneideri</i> Rehd.). Genome Research, 2013, 23, 396-408.	2.4	832
3	Multiple Models for Rosaceae Genomics. Plant Physiology, 2008, 147, 985-1003.	2.3	291
4	An apple MYB transcription factor, MdMYB3, is involved in regulation of anthocyanin biosynthesis and flower development. BMC Plant Biology, 2013, 13, 176.	1.6	177
5	Development of a set of SNP markers present in expressed genes of the apple. Genomics, 2008, 92, 353-358.	1.3	140
6	Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein induces a systemic immune response. Transgenic Research, 2000, 9, 127-135.	1.3	137
7	Association mapping in forest trees and fruit crops. Journal of Experimental Botany, 2012, 63, 4045-4060.	2.4	134
8	Introduction of apple ANR genes into tobacco inhibits expression of both CHI and DFR genes in flowers, leading to loss of anthocyanin. Journal of Experimental Botany, 2012, 63, 2437-2447.	2.4	126
9	Ectopic Expression of Apple <i>F3′H</i> Genes Contributes to Anthocyanin Accumulation in the Arabidopsis <i>tt7</i> Mutant Grown Under Nitrogen Stress Â. Plant Physiology, 2010, 153, 806-820.	2.3	115
10	Construction of a high density linkage map and its application in the identification of QTLs for soluble sugar and organic acid components in apple. Tree Genetics and Genomes, 2016, 12, 1.	0.6	95
11	Molecular Mechanisms of Pathogenesis and Resistance to the Bacterial Pathogen Erwinia amylovora, Causal Agent of Fire Blight Disease in Rosaceae. Plant Molecular Biology Reporter, 2012, 30, 247-260.	1.0	86
12	Systems level analysis of two-component signal transduction systems in Erwinia amylovora: Role in virulence, regulation of amylovoran biosynthesis and swarming motility. BMC Genomics, 2009, 10, 245.	1.2	85
13	Integration of physical and genetic maps in apple confirms whole-genome and segmental duplications in the apple genome. Journal of Experimental Botany, 2011, 62, 5117-5130.	2.4	78
14	Evaluation of Genetic Diversity in Chinese Wild Apple Species Along with Apple Cultivars Using SSR Markers. Plant Molecular Biology Reporter, 2012, 30, 539-546.	1.0	75
15	Characteristics and transferability of new apple EST-derived SSRs to other Rosaceae species. Molecular Breeding, 2009, 23, 397-411.	1.0	73
16	A Cluster of Four Receptor-Like Genes Resides in the <i>Vf</i> Locus That Confers Resistance to Apple Scab Disease. Genetics, 2002, 162, 1995-2006.	1.2	73
17	The Rcs phosphorelay system is essential for pathogenicity in <i>Erwinia amylovora</i> . Molecular Plant Pathology, 2009, 10, 277-290.	2.0	72
18	Fruit Quality Traits Have Played Critical Roles in Domestication of the Apple. Plant Genome, 2014, 7, plantgenome2014.04.0018.	1.6	67

#	Article	IF	CITATIONS
19	Expression of an <i>Escherichia coli</i> antigenic fusion protein comprising the heat labile toxin B subunit and the heat stable toxin, and its assembly as a functional oligomer in transplastomic tobacco plants. Plant Journal, 2009, 57, 45-54.	2.8	62
20	Identification, characterization, and utilization of genome-wide simple sequence repeats to identify a QTL for acidity in apple. BMC Genomics, 2012, 13, 537.	1.2	61
21	A Multi-Population Consensus Genetic Map Reveals Inconsistent Marker Order among Maps Likely Attributed to Structural Variations in the Apple Genome. PLoS ONE, 2012, 7, e47864.	1.1	59
22	Two critical factors are required for efficient transformation of multiple soybean cultivars: Agrobacterium strain and orientation of immature cotyledonary explant. Theoretical and Applied Genetics, 2003, 107, 439-447.	1.8	58
23	Molecular characterization of genes encoding leucoanthocyanidin reductase involved in proanthocyanidin biosynthesis in apple. Frontiers in Plant Science, 2015, 6, 243.	1.7	58
24	Genes Encoding Aluminumâ€Activated Malate Transporter II and their Association with Fruit Acidity in Apple. Plant Genome, 2015, 8, eplantgenome2015.03.0016.	1.6	55
25	Genome-Wide Identification of Genes Regulated by the Rcs Phosphorelay System in <i>Erwinia amylovora</i> . Molecular Plant-Microbe Interactions, 2012, 25, 6-17.	1.4	52
26	A BAC-based physical map of the apple genome. Genomics, 2007, 89, 630-637.	1.3	51
27	Genetic Diversity and Characterization of a Core Collection of Malus Germplasm Using Simple Sequence Repeats (SSRs). Plant Molecular Biology Reporter, 2012, 30, 827-837.	1.0	51
28	Smallâ€molecule inhibitors suppress the expression of both type <scp>III</scp> secretion and amylovoran biosynthesis genes in <i><scp>E</scp>rwinia amylovora</i> . Molecular Plant Pathology, 2014, 15, 44-57.	2.0	51
29	Transcriptome analysis of the exocarp of apple fruit identifies light-induced genes involved in red color pigmentation. Gene, 2014, 534, 78-87.	1.0	48
30	Variation of ascorbic acid concentration in fruits of cultivated and wild apples. Food Chemistry, 2017, 225, 132-137.	4.2	48
31	Construction of a High-Density Simple Sequence Repeat Consensus Genetic Map for Pear (Pyrus spp.). Plant Molecular Biology Reporter, 2015, 33, 316-325.	1.0	47
32	Unraveling a genetic roadmap for improved taste in the domesticated apple. Molecular Plant, 2021, 14, 1454-1471.	3.9	47
33	An overview of the apple genome through BAC end sequence analysis. Plant Molecular Biology, 2008, 67, 581-588.	2.0	45
34	Expression profiles of differentially regulated genes during the early stages of apple flower infection with Erwinia amylovora. Journal of Experimental Botany, 2011, 62, 4851-4861.	2.4	45
35	Genetic diversity and population structure of Moringa oleifera. Conservation Genetics, 2013, 14, 1161-1172.	0.8	45
36	A bacterial artificial chromosome (BAC) library of <i>Malus floribunda</i> 821 and contig construction for positional cloning of the apple scab resistance gene <i>Vf</i> . Genome, 2001, 44, 1104-1113.	0.9	43

#	Article	IF	CITATIONS
37	Molecular Signature of Differential Virulence in Natural Isolates of <i>Erwinia amylovora</i> . Phytopathology, 2010, 100, 192-198.	1.1	43
38	Transcriptome analysis of resistant and susceptible genotypes of Glycine tomentella during Phakopsora pachyrhizi infection reveals novel rust resistance genes. Theoretical and Applied Genetics, 2010, 120, 1315-1333.	1.8	42
39	Identification of genetic loci associated with fire blight resistance in <i>Malus</i> through combined use of QTL and association mapping. Physiologia Plantarum, 2013, 148, 344-353.	2.6	42
40	Spontaneous and Induced Animal Models for Cancer Research. Diagnostics, 2020, 10, 660.	1.3	42
41	Variation in nuclear DNA content in <i>Malus</i> species and cultivated apples. Genome, 2005, 48, 924-930.	0.9	41
42	Gene Expression is Highly Regulated in Early Developing Fruit of Apple. Plant Molecular Biology Reporter, 2011, 29, 885-897.	1.0	40
43	Development and linkage mapping of E-STS and RGA markers for functional gene homologues in apple. Genome, 2006, 49, 959-968.	0.9	36
44	A chloroplast-derived C4V3 polypeptide from the human immunodeficiency virus (HIV) is orally immunogenic in mice. Plant Molecular Biology, 2012, 78, 337-349.	2.0	35
45	Links between Infections, Lung Cancer, and the Immune System. International Journal of Molecular Sciences, 2021, 22, 9394.	1.8	35
46	Effect of an enhanced CaMV 35S promoter and a fruit-specific promoter on uida gene expression in transgenic tomato plants. In Vitro Cellular and Developmental Biology - Plant, 2001, 37, 427-433.	0.9	33
47	Expression of a multi-epitope DPT fusion protein in transplastomic tobacco plants retains both antigenicity and immunogenicity of all three components of the functional oligomer. Planta, 2009, 229, 1293-1302.	1.6	31
48	BAC-end sequence-based SNPs and Bin mapping for rapid integration of physical and genetic maps in apple. Genomics, 2009, 93, 282-288.	1.3	31
49	Reduced representation genome sequencing reveals patterns of genetic diversity and selection in apple. Journal of Integrative Plant Biology, 2017, 59, 190-204.	4.1	30
50	Expression of an immunogenic F1-V fusion protein in lettuce as a plant-based vaccine against plague. Planta, 2010, 232, 409-416.	1.6	29
51	A high-throughput apple SNP genotyping platform using the GoldenGateâ,,¢ assay. Gene, 2012, 494, 196-201.	1.0	29
52	Comparative Analysis and Functional Annotation of a Large Expressed Sequence Tag Collection of Apple. Plant Genome, 2009, 2, .	1.6	28
53	Breeding and genetics of disease resistance in temperate fruit trees: challenges and new opportunities. Theoretical and Applied Genetics, 2022, 135, 3961-3985.	1.8	28
54	Divergent Evolutionary Pattern of Sugar Transporter Genes is Associated with the Difference in Sugar Accumulation between Grasses and Eudicots. Scientific Reports, 2016, 6, 29153.	1.6	27

#	Article	IF	CITATIONS
55	Identification of Quantitative Trait Loci (QTLs) for Fruit Quality Traits in Apple. Plant Molecular Biology Reporter, 2014, 32, 109-116.	1.0	26
56	Foods as Production and Delivery Vehicles for Human Vaccines. Journal of the American College of Nutrition, 2002, 21, 212S-217S.	1.1	25
57	Genome size and nucleotypic variation in <i>Malus</i> germplasm. Genome, 2009, 52, 148-155.	0.9	24
58	Immunogenicity of nuclear-encoded LTB:ST fusion protein from Escherichia coli expressed in tobacco plants. Plant Cell Reports, 2011, 30, 1145-1152.	2.8	24
59	A Plant-Derived Multi-HIV Antigen Induces Broad Immune Responses in Orally Immunized Mice. Molecular Biotechnology, 2015, 57, 662-674.	1.3	24
60	Immunogenic properties of a lettuce-derived C4(V3)6 multiepitopic HIV protein. Planta, 2013, 238, 785-792.	1.6	23
61	Genome-wide analysis and characterization of molecular evolution of the HCT gene family in pear (Pyrus bretschneideri). Plant Systematics and Evolution, 2017, 303, 71-90.	0.3	23
62	Transgenic carrot tap roots expressing an immunogenic F1–V fusion protein from Yersinia pestis are immunogenic in mice. Journal of Plant Physiology, 2011, 168, 174-180.	1.6	21
63	AmyR Is a Novel Negative Regulator of Amylovoran Production in Erwinia amylovora. PLoS ONE, 2012, 7, e45038.	1.1	21
64	Screening Multiple Soybean Cultivars (MG 00 to MG VIII) for Somatic Embryogenesis Following Agrobacterium â€Mediated Transformation of Immature Cotyledons. Crop Science, 2004, 44, 1825-1831.	0.8	19
65	Expression of the nucleocapsid protein of Porcine Reproductive and Respiratory Syndrome Virus in soybean seed yields an immunogenic antigenic protein. Planta, 2012, 235, 513-522.	1.6	19
66	`Gold Rush' Apple. Hortscience: A Publication of the American Society for Hortcultural Science, 1994, 29, 827-828.	0.5	19
67	The Connection between MicroRNAs and Oral Cancer Pathogenesis: Emerging Biomarkers in Oral Cancer Management. Genes, 2021, 12, 1989.	1.0	19
68	Oral immunization with a lettuce-derived Escherichia coli heat-labile toxin B subunit induces neutralizing antibodies in mice. Plant Cell, Tissue and Organ Culture, 2011, 107, 441-449.	1.2	18
69	Transgenic apple expressing an antigenic protein of the human respiratory syncytial virus. Journal of Plant Physiology, 2010, 167, 920-927.	1.6	17
70	New perspectives in triple-negative breast cancer therapy based on treatments with TGFβ1 siRNA and doxorubicin. Molecular and Cellular Biochemistry, 2020, 475, 285-299.	1.4	15
71	The Role of miR-155 in Nutrition: Modulating Cancer-Associated Inflammation. Nutrients, 2021, 13, 2245.	1.7	15
72	CONSTRUCTING A BACTERIAL ARTIFICIAL CHROMOSOME LIBRARY OF THE APPLE CULTIVAR GOLDRUSH. Acta Horticulturae, 2002, , 103-112.	0.1	15

#	Article	IF	CITATIONS
73	Cancer-Associated Stemness and Epithelial-to-Mesenchymal Transition Signatures Related to Breast Invasive Carcinoma Prognostic. Cancers, 2020, 12, 3053.	1.7	14
74	Sequence and In Silico Characterization of the Tomato Polygalacturonase (PG) Promoter and Terminator Regions. Plant Molecular Biology Reporter, 2009, 27, 250-256.	1.0	13
75	Apple Structural Genomics. , 2009, , 85-119.		13
76	Identifying differentially expressed genes in leaves of Glycine tomentella in the presence of the fungal pathogen Phakopsora pachyrhizi. Planta, 2010, 232, 1181-1189.	1.6	13
77	Strategies for Map-Based Cloning in Apple. Critical Reviews in Plant Sciences, 2010, 29, 265-284.	2.7	13
78	Tiny Actors in the Big Cellular World: Extracellular Vesicles Playing Critical Roles in Cancer. International Journal of Molecular Sciences, 2020, 21, 7688.	1.8	12
79	Challenges and Opportunities for the Biotechnology Research Community during the Coronavirus Pandemic. Trends in Biotechnology, 2020, 38, 823-824.	4.9	12
80	Pear genetics: Recent advances, new prospects, and a roadmap for the future. Horticulture Research, 2022, 9, .	2.9	12
81	The Corn Smut (â€~Huitlacoche') as a New Platform for Oral Vaccines. PLoS ONE, 2015, 10, e0133535.	1.1	10
82	Development of high-density interspecific genetic maps for the identification of QTLs conferring resistance to Valsa ceratosperma in apple. Euphytica, 2017, 213, 1.	0.6	10
83	Genome-wide expression of low temperature response genes in Rosa hybrida L Plant Physiology and Biochemistry, 2020, 146, 238-248.	2.8	7
84	Analysis and stability of the Respiratory Syncytial Virus antigen in a T3 generation of transgenic tomato plants. Plant Cell, Tissue and Organ Culture, 2009, 96, 335-342.	1.2	6
85	Focus on organoids: cooperation and interconnection with extracellular vesicles – Is this the future of in vitro modeling?. Seminars in Cancer Biology, 2022, 86, 367-381.	4.3	5
86	Mutagenic responses to ethyl methanesulfonate and phenotypic characterization of an M1 generation of snapdragon, Antirrhinum majus. Euphytica, 2022, 218, .	0.6	5
87	Genetic and Physical Mapping of the Apple Genome. Compendium of Plant Genomes, 2021, , 131-168.	0.3	4
88	Evaluation of ethylene mutant snapdragon lines for rooting, gravitropism, 1-MCP, ethylene, and vase-life responses. Scientia Horticulturae, 2022, 304, 111274.	1.7	4
89	Apple SSRs present in coding and noncoding regions of expressed sequence tags show differences in transferability to other fruit species in Rosaceae. Canadian Journal of Plant Science, 2013, 93, 183-190.	0.3	3
90	An AMA1/MSP119 Adjuvanted Malaria Transplastomic Plant-Based Vaccine Induces Immune Responses in Test Animals. Molecular Biotechnology, 2020, 62, 534-545.	1.3	2

#	Article	IF	CITATIONS
91	Seed-Based Expression Strategies. , 2014, , 79-93.		2
92	A message from the new editor-in-chief. Plant Cell, Tissue and Organ Culture, 2008, 95, 255-256.	1.2	0
93	Microarrays and NGS for Drug Discovery. , 0, , .		0
94	Transcriptional responses of Rosa rugosa to salt stress and salt shock. Ciencia E Agrotecnologia, 0, 44, .	1.5	0