Yadong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7920228/publications.pdf

Version: 2024-02-01

191 394 86,097 451 150 279 citations h-index g-index papers 464 464 464 43023 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Revealing the surface atomic arrangement of noble metal alkane dehydrogenation catalysts by a stepwise reduction-oxidation approach. Nano Research, 2023, 16, 4499-4505.	10.4	11
2	RuO2 clusters derived from bulk SrRuO3: Robust catalyst for oxygen evolution reaction in acid. Nano Research, 2022, 15, 1959-1965.	10.4	23
3	Atom-level interfacial synergy of single-atom site catalysts for electrocatalysis. Journal of Energy Chemistry, 2022, 65, 103-115.	12.9	35
4	Cobalt Single Atom Incorporated in Ruthenium Oxide Sphere: A Robust Bifunctional Electrocatalyst for HER and OER. Angewandte Chemie, 2022, 134 , .	2.0	105
5	MOF Encapsulating Nâ€Heterocyclic Carbeneâ€Ligated Copper Singleâ€Atom Site Catalyst towards Efficient Methane Electrosynthesis. Angewandte Chemie, 2022, 134, e202114450.	2.0	15
6	MOF Encapsulating Nâ€Heterocyclic Carbeneâ€Ligated Copper Singleâ€Atom Site Catalyst towards Efficient Methane Electrosynthesis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	170
7	Striding the threshold of an atom era of organic synthesis by single-atom catalysis. CheM, 2022, 8, 119-140.	11.7	71
8	Cobalt Single Atom Incorporated in Ruthenium Oxide Sphere: A Robust Bifunctional Electrocatalyst for HER and OER. Angewandte Chemie - International Edition, 2022, 61, .	13.8	162
9	Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis., 2022, 1, 100013.		273
10	Surfactant-assisted implantation strategy for facile construction of Pt-based hybrid electrocatalyst to accelerate oxygen reduction reaction. Materials Today Energy, 2022, 24, 100919.	4.7	6
11	Atomically dispersed Ni anchored on polymer-derived mesh-like N-doped carbon nanofibers as an efficient CO2 electrocatalytic reduction catalyst. Nano Research, 2022, 15, 3959-3963.	10.4	18
12	Engineering Dual Singleâ€Atom Sites on 2D Ultrathin Nâ€doped Carbon Nanosheets Attaining Ultra‣owâ€Temperature Zincâ€Air Battery. Angewandte Chemie - International Edition, 2022, 61, .	13.8	355
13	Theoretical insights into TM@PHEs as single-atom catalysts for water splitting based on density functional theory. Physical Chemistry Chemical Physics, 2022, 24, 975-981.	2.8	2
14	Engineering the Local Atomic Environments of Indium Singleâ€Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide. Angewandte Chemie, 2022, 134, .	2.0	27
15	Engineering the Local Atomic Environments of Indium Singleâ€Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide. Angewandte Chemie - International Edition, 2022, 61, .	13.8	127
16	Dual Active Centers Bridged by Oxygen Vacancies of Ruthenium Singleâ€Atom Hybrids Supported on Molybdenum Oxide for Photocatalytic Ammonia Synthesis. Angewandte Chemie, 2022, 134, .	2.0	8
17	Distinct Crystalâ€Facetâ€Dependent Behaviors for Singleâ€Atom Palladiumâ€Onâ€Ceria Catalysts: Enhanced Stabilization and Catalytic Properties. Advanced Materials, 2022, 34, e2107721.	21.0	78
18	Dual Active Centers Bridged by Oxygen Vacancies of Ruthenium Singleâ€Atom Hybrids Supported on Molybdenum Oxide for Photocatalytic Ammonia Synthesis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	45

#	Article	IF	CITATIONS
19	Regulating the Tip Effect on Singleâ€Atom and Cluster Catalysts: Forming Reversible Oxygen Species with High Efficiency in Chlorine Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	76
20	Regulating the Tip Effect on Singleâ€Atom and Cluster Catalysts: Forming Reversible Oxygen Species with High Efficiency in Chlorine Evolution Reaction. Angewandte Chemie, 2022, 134, .	2.0	25
21	Engineering Lattice Disorder on a Photocatalyst: Photochromic BiOBr Nanosheets Enhance Activation of Aromatic C–H Bonds via Water Oxidation. Journal of the American Chemical Society, 2022, 144, 3386-3397.	13.7	96
22	Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nature Catalysis, 2022, 5, 300-310.	34.4	175
23	Revealing the Origin of Lowâ€√emperature Activity of Ni–Rh Nanostructures during CO Oxidation Reaction with Operando TEM. Advanced Science, 2022, 9, e2105599.	11.2	6
24	Construction of N, P Coâ€Doped Carbon Frames Anchored with Fe Single Atoms and Fe ₂ P Nanoparticles as a Robust Coupling Catalyst for Electrocatalytic Oxygen Reduction. Advanced Materials, 2022, 34, .	21.0	93
25	Ru–Co Pair Sites Catalyst Boosts the Energetics for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	154
26	Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Research, 2022, 15, 7806-7839.	10.4	201
27	Recent Progress in Thermal Conversion of CO ₂ via Singleâ€Atom Site Catalysis. Small Structures, 2022, 3, .	12.0	44
28	Single-atom site catalysts based on high specific surface area supports. Physical Chemistry Chemical Physics, 2022, 24, 17417-17438.	2.8	11
29	A Site Distance Effect Induced by Reactant Molecule Matchup in Singleâ€Atom Catalysts for Fentonâ€Like Reactions. Angewandte Chemie, 2022, 134, .	2.0	24
30	A Site Distance Effect Induced by Reactant Molecule Matchup in Singleâ€Atom Catalysts for Fentonâ€Like Reactions. Angewandte Chemie - International Edition, 2022, 61, .	13.8	105
31	Carbon Nitride Photocatalysts with Integrated Oxidation and Reduction Atomic Active Centers for Improved CO ₂ Conversion. Angewandte Chemie, 2022, 134, .	2.0	19
32	Carbon Nitride Photocatalysts with Integrated Oxidation and Reduction Atomic Active Centers for Improved CO ₂ Conversion. Angewandte Chemie - International Edition, 2022, 61, .	13.8	81
33	Singleâ€atom catalysis for carbon neutrality. , 2022, 4, 1021-1079.		96
34	Engineering Water Molecules Activation Center on Multisite Electrocatalysts for Enhanced CO ₂ Methanation. Journal of the American Chemical Society, 2022, 144, 12807-12815.	13.7	74
35	Singleâ€Atom Materials: Small Structures Determine Macroproperties. Small Structures, 2021, 2, 2000051.	12.0	195
36	Atomically dispersed Ni–Ru–P interface sites for high-efficiency pH-universal electrocatalysis of hydrogen evolution. Nano Energy, 2021, 80, 105467.	16.0	114

#	Article	IF	CITATIONS
37	Silver Singleâ€Atom Catalyst for Efficient Electrochemical CO ₂ Reduction Synthesized from Thermal Transformation and Surface Reconstruction. Angewandte Chemie - International Edition, 2021, 60, 6170-6176.	13.8	236
38	Porous \hat{I}^3 -Fe2O3 nanoparticle decorated with atomically dispersed platinum: Study on atomic site structural change and gas sensor activity evolution. Nano Research, 2021, 14, 1435-1442.	10.4	46
39	How to select effective electrocatalysts: Nano or single atom?. Nano Select, 2021, 2, 492-511.	3.7	82
40	Silver Singleâ€Atom Catalyst for Efficient Electrochemical CO ₂ Reduction Synthesized from Thermal Transformation and Surface Reconstruction. Angewandte Chemie, 2021, 133, 6235-6241.	2.0	22
41	Atomicâ€Level Modulation of Electronic Density at Cobalt Singleâ€Atom Sites Derived from Metal–Organic Frameworks: Enhanced Oxygen Reduction Performance. Angewandte Chemie - International Edition, 2021, 60, 3212-3221.	13.8	445
42	Atomicâ€Level Modulation of Electronic Density at Cobalt Singleâ€Atom Sites Derived from Metalâ€"Organic Frameworks: Enhanced Oxygen Reduction Performance. Angewandte Chemie, 2021, 133, 3249-3258.	2.0	44
43	Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc-air battery. Nano Research, 2021, 14, 998-1003.	10.4	50
44	Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Science China Materials, 2021, 64, 642-650.	6.3	98
45	Manganese vacancy-confined single-atom Ag in cryptomelane nanorods for efficient Wacker oxidation of styrene derivatives. Chemical Science, 2021, 12, 6099-6106.	7.4	22
46	Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Research, 2021, 14, 2418-2423.	10.4	248
47	One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nature Communications, 2021, 12, 709.	12.8	137
48	Construction of nitrogen-doped porous carbon nanosheets decorated with Fe–N ₄ and iron oxides by a biomass coordination strategy for efficient oxygen reduction reaction. New Journal of Chemistry, 2021, 45, 14570-14579.	2.8	6
49	Fe ₁ N ₄ â€"O ₁ site with axial Feâ€"O coordination for highly selective CO ₂ reduction over a wide potential range. Energy and Environmental Science, 2021, 14, 3430-3437.	30.8	119
50	Singleâ€Atom Materials: Small Structures Determine Macroproperties. Small Structures, 2021, 2, 2170006.	12.0	7
51	Notched-Polyoxometalate Strategy to Fabricate Atomically Dispersed Ru Catalysts for Biomass Conversion. ACS Catalysis, 2021, 11, 2669-2675.	11.2	34
52	Construction of Dualâ€Activeâ€6ite Copper Catalyst Containing both CuN ₃ and CuN ₄ Sites. Small, 2021, 17, e2006834.	10.0	52
53	Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Science China Materials, 2021, 64, 1919-1929.	6.3	7 5
54	A fundamental comprehension and recent progress in advanced Ptâ€based ORR nanocatalysts. SmartMat, 2021, 2, 56-75.	10.7	141

#	Article	IF	CITATIONS
55	High-Loading Single-Atomic-Site Silver Catalysts with an Ag ₁ –C ₂ N ₁ Structure Showing Superior Performance for Epoxidation of Styrene. ACS Catalysis, 2021, 11, 4946-4954.	11.2	62
56	Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation. Nature Communications, 2021, 12, 3181.	12.8	156
57	A Supported Pd ₂ Dualâ€Atom Site Catalyst for Efficient Electrochemical CO ₂ Reduction. Angewandte Chemie, 2021, 133, 13500-13505.	2.0	29
58	Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window. CheM, 2021, 7, 1297-1307.	11.7	133
59	Single-atom site catalysts supported on two-dimensional materials for energy applications. Chinese Chemical Letters, 2021, 32, 3771-3781.	9.0	38
60	Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Research, 2021, 14, 3482-3488.	10.4	113
61	A Supported Pd ₂ Dualâ€Atom Site Catalyst for Efficient Electrochemical CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 13388-13393.	13.8	201
62	Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nature Catalysis, 2021, 4, 407-417.	34.4	517
63	A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid O–H bond insertion. Nature Catalysis, 2021, 4, 523-531.	34.4	103
64	Atomically Dispersed Pt–N ₃ C ₁ Sites Enabling Efficient and Selective Electrocatalytic C–C Bond Cleavage in Lignin Models under Ambient Conditions. Journal of the American Chemical Society, 2021, 143, 9429-9439.	13.7	120
65	Electronic structure regulations of single-atom site catalysts and their effects on the electrocatalytic performances. Applied Physics Reviews, 2021, 8, .	11.3	29
66	In Situ Implanting of Single Tungsten Sites into Defective UiOâ€66(Zr) by Solventâ€Free Route for Efficient Oxidative Desulfurization at Room Temperature. Angewandte Chemie, 2021, 133, 20481-20487.	2.0	6
67	Fabricating polyoxometalates-stabilized single-atom site catalysts in confined space with enhanced activity for alkynes diboration. Nature Communications, 2021, 12, 4205.	12.8	69
68	The Electronic Metal–Support Interaction Directing the Design of Single Atomic Site Catalysts: Achieving High Efficiency Towards Hydrogen Evolution. Angewandte Chemie, 2021, 133, 19233-19239.	2.0	149
69	An Adjacent Atomic Platinum Site Enables Singleâ€Atom Iron with High Oxygen Reduction Reaction Performance. Angewandte Chemie - International Edition, 2021, 60, 19262-19271.	13.8	275
70	In Situ Implanting of Single Tungsten Sites into Defective UiOâ€66(Zr) by Solventâ€Free Route for Efficient Oxidative Desulfurization at Room Temperature. Angewandte Chemie - International Edition, 2021, 60, 20318-20324.	13.8	81
71	An Adjacent Atomic Platinum Site Enables Singleâ€Atom Iron with High Oxygen Reduction Reaction Performance. Angewandte Chemie, 2021, 133, 19411-19420.	2.0	32
72	Rational Design of Singleâ€Atom Site Electrocatalysts: From Theoretical Understandings to Practical Applications. Advanced Materials, 2021, 33, e2008151.	21.0	175

#	Article	IF	Citations
73	The Electronic Metal–Support Interaction Directing the Design of Single Atomic Site Catalysts: Achieving High Efficiency Towards Hydrogen Evolution. Angewandte Chemie - International Edition, 2021, 60, 19085-19091.	13.8	189
74	Frontispiece: In Situ Implanting of Single Tungsten Sites into Defective UiOâ€66(Zr) by Solventâ€Free Route for Efficient Oxidative Desulfurization at Room Temperature. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0
75	Frontispiz: In Situ Implanting of Single Tungsten Sites into Defective UiOâ€66(Zr) by Solventâ€Free Route for Efficient Oxidative Desulfurization at Room Temperature. Angewandte Chemie, 2021, 133, .	2.0	0
76	Anion-exchange-mediated internal electric field for boosting photogenerated carrier separation and utilization. Nature Communications, 2021, 12, 4952.	12.8	45
77	Synthesis, Structures of <scp>2D</scp> Coordination Layers <scp>Metalâ€Organic</scp> Frameworks with Highly Selective <scp>CO₂</scp> Uptake ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2789-2794.	4.9	11
78	Polyoxometalateâ€Based Metal–Organic Framework as Molecular Sieve for Highly Selective Semiâ€Hydrogenation of Acetylene on Isolated Single Pd Atom Sites. Angewandte Chemie, 2021, 133, 22696-22702.	2.0	10
79	Lewis Acid Site-Promoted Single-Atomic Cu Catalyzes Electrochemical CO ₂ Methanation. Nano Letters, 2021, 21, 7325-7331.	9.1	133
80	On the occasion of the 80th birthday of Professor Yitai Qian: Celebrating 60 years of innovation in solid-state chemistry and nanoscience. Nano Research, 2021, 14, 3337-3342.	10.4	1
81	Polyoxometalateâ€Based Metal–Organic Framework as Molecular Sieve for Highly Selective Semiâ€Hydrogenation of Acetylene on Isolated Single Pd Atom Sites. Angewandte Chemie - International Edition, 2021, 60, 22522-22528.	13.8	112
82	Construction of Pd-Zn dual sites to enhance the performance for ethanol electro-oxidation reaction. Nature Communications, 2021, 12, 5273.	12.8	94
83	Creating High Regioselectivity by Electronic Metal–Support Interaction of a Single-Atomic-Site Catalyst. Journal of the American Chemical Society, 2021, 143, 15453-15461.	13.7	88
84	Design and structural engineering of single-atomic-site catalysts for acidic oxygen reduction reaction. Trends in Chemistry, 2021, 3, 954-968.	8.5	20
85	Phosphorus Induced Electron Localization of Single Iron Sites for Boosted CO ₂ Electroreduction Reaction. Angewandte Chemie, 2021, 133, 23806-23810.	2.0	22
86	Phosphorus Induced Electron Localization of Single Iron Sites for Boosted CO ₂ Electroreduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 23614-23618.	13.8	197
87	Electronics and coordination engineering of atomic cobalt trapped by oxygen-driven defects for efficient cathode in solar cells. Nano Energy, 2021, 89, 106365.	16.0	25
88	Carbonâ€Supported Singleâ€Atom Catalysts for Formic Acid Oxidation and Oxygen Reduction Reactions. Small, 2021, 17, e2004500.	10.0	63
89	Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy and Environmental Science, 2021, 14, 1016-1028.	30.8	130
90	Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy and Environmental Science, 2021, 14, 2809-2858.	30.8	198

#	Article	IF	Citations
91	The atomic-level regulation of single-atom site catalysts for the electrochemical CO ₂ reduction reaction. Chemical Science, 2021, 12, 4201-4215.	7.4	61
92	Tandem catalyzing the hydrodeoxygenation of 5-hydroxymethylfurfural over a Ni ₃ Fe intermetallic supported Pt single-atom site catalyst. Chemical Science, 2021, 12, 4139-4146.	7.4	33
93	Ru ₁ Co <i>_n</i> Single-Atom Alloy for Enhancing Fischer–Tropsch Synthesis. ACS Catalysis, 2021, 11, 1886-1896.	11.2	49
94	Decreasing the coordinated N atoms in a single-atom Cu catalyst to achieve selective transfer hydrogenation of alkynes. Chemical Science, 2021, 12, 14599-14605.	7.4	20
95	Synergistic Modulation of the Separation of Photoâ€Generated Carriers via Engineering of Dual Atomic Sites for Promoting Photocatalytic Performance. Advanced Materials, 2021, 33, e2105904.	21.0	117
96	Thermal Atomization of Platinum Nanoparticles into Single Atoms: An Effective Strategy for Engineering High-Performance Nanozymes. Journal of the American Chemical Society, 2021, 143, 18643-18651.	13.7	174
97	Isolated Single-Atom Ni–N ₅ Catalytic Site in Hollow Porous Carbon Capsules for Efficient Lithium–Sulfur Batteries. Nano Letters, 2021, 21, 9691-9698.	9.1	167
98	Synergistically Interactive Pyridinicâ€N–MoP Sites: Identified Active Centers for Enhanced Hydrogen Evolution in Alkaline Solution. Angewandte Chemie - International Edition, 2020, 59, 8982-8990.	13.8	263
99	Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie, 2020, 132, 1311-1317.	2.0	59
100	Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie - International Edition, 2020, 59, 1295-1301.	13.8	344
101	Synergistically Interactive Pyridinicâ€N–MoP Sites: Identified Active Centers for Enhanced Hydrogen Evolution in Alkaline Solution. Angewandte Chemie, 2020, 132, 9067-9075.	2.0	45
102	Designing Atomic Active Centers for Hydrogen Evolution Electrocatalysts. Angewandte Chemie - International Edition, 2020, 59, 20794-20812.	13.8	257
103	Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nature Communications, 2020, 11, 48.	12.8	223
104	Atomically dispersed Fe atoms anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts. Chemical Science, 2020, 11, 786-790.	7.4	110
105	Structural Regulation with Atomic-Level Precision: From Single-Atomic Site to Diatomic and Atomic Interface Catalysis. Matter, 2020, 2, 78-110.	10.0	221
106	Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites. Chemical Reviews, 2020, 120, 623-682.	47.7	794
107	Science China Materials enters its sixth year. Science China Materials, 2020, 63, 1-2.	6.3	14
108	Single-atom Sn-Zn pairs in CuO catalyst promote dimethyldichlorosilane synthesis. National Science Review, 2020, 7, 600-608.	9.5	42

#	Article	IF	Citations
109	Modifications of heterogeneous photocatalysts for hydrocarbon C–H bond activation and selective conversion. Chemical Communications, 2020, 56, 13918-13932.	4.1	32
110	Identifying the Types and Characterization of the Active Sites on Mâ^'Xâ^'C Singleâ€Atom Catalysts. ChemPhysChem, 2020, 21, 2486-2496.	2.1	12
111	Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Research, 2020, 13, 3082-3087.	10.4	215
112	Engineering of Coordination Environment and Multiscale Structure in Single-Site Copper Catalyst for Superior Electrocatalytic Oxygen Reduction. Nano Letters, 2020, 20, 6206-6214.	9.1	178
113	Discovery of main group single Sb–N ₄ active sites for CO ₂ electroreduction to formate with high efficiency. Energy and Environmental Science, 2020, 13, 2856-2863.	30.8	245
114	Gramâ€Scale Synthesis of Highâ€Loading Singleâ€Atomicâ€Site Fe Catalysts for Effective Epoxidation of Styrene. Advanced Materials, 2020, 32, e2000896.	21.0	181
115	Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nature Communications, 2020, $11,5884$.	12.8	174
116	A general bottom-up synthesis of CuO-based trimetallic oxide mesocrystal superstructures for efficient catalytic production of trichlorosilane. Nano Research, 2020, 13, 2819-2827.	10.4	17
117	Atomic iron on mesoporous N-doped carbon to achieve dehydrogenation reaction at room temperature. Nano Research, 2020, 13, 3075-3081.	10.4	23
118	Single-atom site catalysts for environmental catalysis. Nano Research, 2020, 13, 3165-3182.	10.4	252
119	Atomically dispersed Ni in cadmium-zinc sulfide quantum dots for high-performance visible-light photocatalytic hydrogen production. Science Advances, 2020, 6, eaaz8447.	10.3	83
120	Photoinduction of Cu Single Atoms Decorated on UiO-66-NH ₂ for Enhanced Photocatalytic Reduction of CO ₂ to Liquid Fuels. Journal of the American Chemical Society, 2020, 142, 19339-19345.	13.7	373
121	Electronic Metal–Support Interaction of Singleâ€Atom Catalysts and Applications in Electrocatalysis. Advanced Materials, 2020, 32, e2003300.	21.0	459
122	Design of a Singleâ€Atom Indium ^{Î'+} â€"N ₄ Interface for Efficient Electroreduction of CO ₂ to Formate. Angewandte Chemie - International Edition, 2020, 59, 22465-22469.	13.8	232
123	Design of a Singleâ€Atom Indium Î'+ –N 4 Interface for Efficient Electroreduction of CO 2 to Formate. Angewandte Chemie, 2020, 132, 22651-22655.	2.0	29
124	The synthetic strategies for single atomic site catalysts based on metal–organic frameworks. Nanoscale, 2020, 12, 20580-20589.	5.6	17
125	Single-Atom Co–N ₄ Electrocatalyst Enabling Four-Electron Oxygen Reduction with Enhanced Hydrogen Peroxide Tolerance for Selective Sensing. Journal of the American Chemical Society, 2020, 142, 16861-16867.	13.7	184
126	Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Science China Materials, 2020, 63, 972-981.	6.3	74

#	Article	IF	Citations
127	Engineering of Electronic States on Co ₃ O ₄ Ultrathin Nanosheets by Cation Substitution and Anion Vacancies for Oxygen Evolution Reaction. Small, 2020, 16, e2001571.	10.0	98
128	Recent progresses in the research of single-atom catalysts. Science China Materials, 2020, 63, 889-891.	6.3	52
129	Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy. Nature Chemistry, 2020, 12, 764-772.	13.6	452
130	Single atomic site catalysts: synthesis, characterization, and applications. Chemical Communications, 2020, 56, 7687-7697.	4.1	53
131	Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nature Communications, 2020, 11, 3049.	12.8	537
132	Au@Pt Nanotubes within CoZn-Based Metal-Organic Framework for Highly Efficient Semi-hydrogenation of Acetylene. IScience, 2020, 23, 101233.	4.1	12
133	Atomic Thickness Catalysts: Synthesis and Applications. Small Methods, 2020, 4, 2000248.	8.6	32
134	Engineering Isolated Mn–N ₂ C ₂ Atomic Interface Sites for Efficient Bifunctional Oxygen Reduction and Evolution Reaction. Nano Letters, 2020, 20, 5443-5450.	9.1	249
135	Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis. Energy and Environmental Science, 2020, 13, 1593-1616.	30.8	166
136	Rareâ€Earth Single Erbium Atoms for Enhanced Photocatalytic CO ₂ Reduction. Angewandte Chemie, 2020, 132, 10738-10744.	2.0	49
137	Rareâ€Earth Single Erbium Atoms for Enhanced Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 10651-10657.	13.8	314
138	Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Research, 2020, 13, 947-951.	10.4	65
139	Facet engineering in metal organic frameworks to improve their electrochemical activity for water oxidation. Chemical Communications, 2020, 56, 4316-4319.	4.1	32
140	Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nature Nanotechnology, 2020, 15, 390-397.	31.5	420
141	Chemical Synthesis of Single Atomic Site Catalysts. Chemical Reviews, 2020, 120, 11900-11955.	47.7	806
142	Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Research, 2020, 13, 1842-1855.	10.4	532
143	Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chemical Society Reviews, 2020, 49, 2215-2264.	38.1	582
144	Single atom alloy: An emerging atomic site material for catalytic applications. Nano Today, 2020, 34, 100917.	11.9	91

#	Article	IF	Citations
145	MOF derived high-density atomic platinum heterogeneous catalyst for C–H bond activation. Materials Chemistry Frontiers, 2020, 4, 1158-1163.	5.9	19
146	Single-Atom Au ^I –N ₃ Site for Acetylene Hydrochlorination Reaction. ACS Catalysis, 2020, 10, 1865-1870.	11.2	76
147	Tuning Polarity of Cu-O Bond in Heterogeneous Cu Catalyst to Promote Additive-free Hydroboration of Alkynes. CheM, 2020, 6, 725-737.	11.7	87
148	Design aktiver atomarer Zentren für HERâ€Elektrokatalysatoren. Angewandte Chemie, 2020, 132, 20978-20998.	2.0	18
149	Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Research, 2020, 13, 1856-1866.	10.4	257
150	Adsorption Site Regulation to Guide Atomic Design of Ni–Ga Catalysts for Acetylene Semiâ€Hydrogenation. Angewandte Chemie - International Edition, 2020, 59, 11647-11652.	13.8	111
151	Adsorption Site Regulation to Guide Atomic Design of Ni–Ga Catalysts for Acetylene Semiâ€Hydrogenation. Angewandte Chemie, 2020, 132, 11744-11749.	2.0	31
152	Isolated Ni Atoms Dispersed on Ru Nanosheets: High-Performance Electrocatalysts toward Hydrogen Oxidation Reaction. Nano Letters, 2020, 20, 3442-3448.	9.1	172
153	In Situ Phosphatizing of Triphenylphosphine Encapsulated within Metal–Organic Frameworks to Design Atomic Co ₁ –P ₁ N ₃ Interfacial Structure for Promoting Catalytic Performance. Journal of the American Chemical Society, 2020, 142, 8431-8439.	13.7	259
154	Structure and Stability of the (001) Surface of Co ₃ O ₄ . Journal of Physical Chemistry C, 2020, 124, 25790-25795.	3.1	13
155	Functionalization of Hollow Nanomaterials for Catalytic Applications: Nanoreactor Construction. Advanced Materials, 2019, 31, e1800426.	21.0	239
156	Metal-organic frameworks-derived nitrogen-doped carbon supported nanostructured PtNi catalyst for enhanced hydrosilylation of 1-octene. Nano Research, 2019, 12, 2584-2588.	10.4	33
157	Strain Regulation to Optimize the Acidic Water Oxidation Performance of Atomic‣ayer lrO <i>_×</i> . Advanced Materials, 2019, 31, e1903616.	21.0	121
158	Isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation. Nature Communications, 2019, 10, 3787.	12.8	119
159	Mesoporous Nitrogenâ€Doped Carbonâ€Nanosphereâ€Supported Isolated Singleâ€Atom Pd Catalyst for Highly Efficient Semihydrogenation of Acetylene. Advanced Materials, 2019, 31, e1901024.	21.0	146
160	Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nature Communications, 2019, 10, 4875.	12.8	253
161	PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption. Nano Research, 2019, 12, 2866-2871.	10.4	61
162	Single-atom electrocatalysis: a new approach to in vivo electrochemical biosensing. Science China Chemistry, 2019, 62, 1720-1724.	8.2	57

#	Article	IF	CITATIONS
163	Isolated Iron Single-Atomic Site-Catalyzed Chemoselective Transfer Hydrogenation of Nitroarenes to Arylamines. ACS Applied Materials & Samp; Interfaces, 2019, 11, 33819-33824.	8.0	74
164	A solid-state chemist's eye for the development of materials science in China. Science China Materials, 2019, 62, 1783-1787.	6.3	4
165	Bismuth Single Atoms Resulting from Transformation of Metal–Organic Frameworks and Their Use as Electrocatalysts for CO ₂ Reduction. Journal of the American Chemical Society, 2019, 141, 16569-16573.	13.7	501
166	Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nature Chemistry, 2019 , 11 , 222 - 228 .	13.6	571
167	Topological self-template directed synthesis of multi-shelled intermetallic Ni ₃ Ga hollow microspheres for the selective hydrogenation of alkyne. Chemical Science, 2019, 10, 614-619.	7.4	31
168	Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chemical Communications, 2019, 55, 2285-2288.	4.1	205
169	Boosting Oxygen Reduction Catalysis with Fe–N ₄ Sites Decorated Porous Carbons toward Fuel Cells. ACS Catalysis, 2019, 9, 2158-2163.	11.2	297
170	Trifunctional Selfâ€Supporting Cobaltâ€Embedded Carbon Nanotube Films for ORR, OER, and HER Triggered by Solid Diffusion from Bulk Metal. Advanced Materials, 2019, 31, e1808043.	21.0	290
171	A single-atom Fe–N ₄ catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection. Chemical Communications, 2019, 55, 159-162.	4.1	209
172	A General Strategy for Fabricating Isolated Single Metal Atomic Site Catalysts in Y Zeolite. Journal of the American Chemical Society, 2019, 141, 9305-9311.	13.7	191
173	Two-Step Carbothermal Welding To Access Atomically Dispersed Pd ₁ on Three-Dimensional Zirconia Nanonet for Direct Indole Synthesis. Journal of the American Chemical Society, 2019, 141, 10590-10594.	13.7	108
174	High-Concentration Single Atomic Pt Sites on Hollow CuSx for Selective O2 Reduction to H2O2 in Acid Solution. CheM, 2019, 5, 2099-2110.	11.7	279
175	Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines. Nano Research, 2019, 12, 1625-1630.	10.4	96
176	Nitrogen-coordinated cobalt nanocrystals for oxidative dehydrogenation and hydrogenation of N-heterocycles. Chemical Science, 2019, 10, 5345-5352.	7.4	60
177	Selective hydrogenation of N-heterocyclic compounds over rhodium-copper bimetallic nanocrystals under ambient conditions. Nano Research, 2019, 12, 1631-1634.	10.4	18
178	Regulating the Catalytic Performance of Single-Atomic-Site Ir Catalyst for Biomass Conversion by Metal–Support Interactions. ACS Catalysis, 2019, 9, 5223-5230.	11,2	87
179	In situ embedding Co9S8 into nitrogen and sulfur codoped hollow porous carbon as a bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. Applied Catalysis B: Environmental, 2019, 254, 186-193.	20.2	135
180	Thermal Emitting Strategy to Synthesize Atomically Dispersed Pt Metal Sites from Bulk Pt Metal. Journal of the American Chemical Society, 2019, 141, 4505-4509.	13.7	285

#	Article	IF	Citations
181	Structure regulation of noble-metal-based nanomaterials at an atomic level. Nano Today, 2019, 26, 164-175.	11.9	33
182	Sub-3 nm Rh nanoclusters confined within a metal–organic framework for enhanced hydrogen generation. Chemical Communications, 2019, 55, 4699-4702.	4.1	32
183	Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Research, 2019, 12, 2067-2080.	10.4	448
184	Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nature Catalysis, 2019, 2, 304-313.	34.4	757
185	Single-atomic-site cobalt stabilized on nitrogen and phosphorus co-doped carbon for selective oxidation of primary alcohols. Nanoscale Horizons, 2019, 4, 902-906.	8.0	29
186	Frontispiece: Surface Atomic Regulation of Core–Shell Noble Metal Catalysts. Chemistry - A European Journal, 2019, 25, .	3.3	0
187	Defect engineering in earth-abundant electrocatalysts for CO ₂ and N ₂ reduction. Energy and Environmental Science, 2019, 12, 1730-1750.	30.8	439
188	2D MOF induced accessible and exclusive Co single sites for an efficient <i>O</i> -silylation of alcohols with silanes. Chemical Communications, 2019, 55, 6563-6566.	4.1	34
189	Review of Metal Catalysts for Oxygen Reduction Reaction: From Nanoscale Engineering to Atomic Design. CheM, 2019, 5, 1486-1511.	11.7	544
190	Atomically Dispersed Ruthenium Species Inside Metal–Organic Frameworks: Combining the High Activity of Atomic Sites and the Molecular Sieving Effect of MOFs. Angewandte Chemie - International Edition, 2019, 58, 4271-4275.	13.8	162
191	Atomically Dispersed Ruthenium Species Inside Metal–Organic Frameworks: Combining the High Activity of Atomic Sites and the Molecular Sieving Effect of MOFs. Angewandte Chemie, 2019, 131, 4315-4319.	2.0	25
192	Carbon nanotube-encapsulated cobalt for oxygen reduction: integration of space confinement and N-doping. Chemical Communications, 2019, 55, 14801-14804.	4.1	85
193	Tuning the Coordination Environment in Single-Atom Catalysts to Achieve Highly Efficient Oxygen Reduction Reactions. Journal of the American Chemical Society, 2019, 141, 20118-20126.	13.7	683
194	Engineering the Electronic Structure of Submonolayer Pt on Intermetallic Pd ₃ Pb via Charge Transfer Boosts the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2019, 141, 19964-19968.	13.7	99
195	A general synthesis approach for amorphous noble metal nanosheets. Nature Communications, 2019, 10, 4855.	12.8	321
196	Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy and Environmental Science, 2019, 12, 3508-3514.	30.8	278
197	Direct Observation of Nanoscale Light Confinement without Metal. Advanced Materials, 2019, 31, e1806341.	21.0	17
198	Surface Atomic Regulation of Core–Shell Noble Metal Catalysts. Chemistry - A European Journal, 2019, 25, 5113-5127.	3.3	20

#	Article	IF	Citations
199	Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy, 2019, 56, 411-419.	16.0	421
200	Design of Noble Metal Electrocatalysts on an Atomic Level. ChemElectroChem, 2019, 6, 289-303.	3.4	46
201	Solid-Diffusion Synthesis of Single-Atom Catalysts Directly from Bulk Metal for Efficient CO2 Reduction. Joule, 2019, 3, 584-594.	24.0	277
202	Ordered two-dimensional porous Co3O4 nanosheets as electrocatalysts for rechargeable Li-O2 batteries. Nano Research, 2019, 12, 299-302.	10.4	26
203	Revealing the Active Species for Aerobic Alcohol Oxidation by Using Uniform Supported Palladium Catalysts. Angewandte Chemie - International Edition, 2018, 57, 4642-4646.	13.8	93
204	Porous organic cage stabilised palladium nanoparticles: efficient heterogeneous catalysts for carbonylation reaction of aryl halides. Chemical Communications, 2018, 54, 2796-2799.	4.1	70
205	A Polymer Encapsulation Strategy to Synthesize Porous Nitrogenâ€Doped Carbonâ€Nanosphereâ€Supported Metal Isolatedâ€Singleâ€Atomicâ€Site Catalysts. Advanced Materials, 2018, 30, e1706508.	21.0	266
206	Design of Single-Atom Co–N ₅ Catalytic Site: A Robust Electrocatalyst for CO ₂ Reduction with Nearly 100% CO Selectivity and Remarkable Stability. Journal of the American Chemical Society, 2018, 140, 4218-4221.	13.7	945
207	Revealing the Active Species for Aerobic Alcohol Oxidation by Using Uniform Supported Palladium Catalysts. Angewandte Chemie, 2018, 130, 4732-4736.	2.0	29
208	Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nature Communications, 2018, 9, 1002.	12.8	255
209	PtAl truncated octahedron nanocrystals for improved formic acid electrooxidation. Chemical Communications, 2018, 54, 3951-3954.	4.1	12
210	Ultrathin Palladium Nanomesh for Electrocatalysis. Angewandte Chemie, 2018, 130, 3493-3496.	2.0	24
211	Tuning defects in oxides at roomÂtemperature by lithium reduction. Nature Communications, 2018, 9, 1302.	12.8	428
212	Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the $\hat{a} \in \text{cesize}$ shackles $\hat{a} \in \text{cesize}$ Nano Research, 2018, 11, 4774-4785.	10.4	49
213	Ultrathin Palladium Nanomesh for Electrocatalysis. Angewandte Chemie - International Edition, 2018, 57, 3435-3438.	13.8	98
214	Effect of Protective Agents upon the Catalytic Property of Platinum Nanocrystals. ChemCatChem, 2018, 10, 2433-2441.	3.7	12
215	Core–Shell ZIF-8@ZIF-67-Derived CoP Nanoparticle-Embedded N-Doped Carbon Nanotube Hollow Polyhedron for Efficient Overall Water Splitting. Journal of the American Chemical Society, 2018, 140, 2610-2618.	13.7	1,556
216	Preparation of freestanding palladium nanosheets modified with gold nanoparticles at edges. Nano Research, 2018, 11, 4142-4148.	10.4	15

#	Article	IF	Citations
217	Strain Engineering to Enhance the Electrooxidation Performance of Atomic-Layer Pt on Intermetallic Pt ₃ Ga. Journal of the American Chemical Society, 2018, 140, 2773-2776.	13.7	193
218	Defect Effects on TiO ₂ Nanosheets: Stabilizing Single Atomic Site Au and Promoting Catalytic Properties. Advanced Materials, 2018, 30, 1705369.	21.0	751
219	Photocatalytic hydrogenation of nitroarenes using Cu1.94S-Zn0.23Cd0.77S heteronanorods. Nano Research, 2018, 11, 3730-3738.	10.4	28
220	Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO ₂ . Angewandte Chemie - International Edition, 2018, 57, 1944-1948.	13.8	888
221	Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO ₂ . Angewandte Chemie, 2018, 130, 1962-1966.	2.0	244
222	General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nature Catalysis, 2018, 1, 63-72.	34.4	1,476
223	Three-year anniversary of Science China Materials—Thank you to our authors, reviewers, and readers!. Science China Materials, 2018, 61, 1-1.	6.3	11
224	Fe Isolated Single Atoms on S, N Codoped Carbon by Copolymer Pyrolysis Strategy for Highly Efficient Oxygen Reduction Reaction. Advanced Materials, 2018, 30, e1800588.	21.0	511
225	Silylation reactions on nanoporous gold via homolytic Si–H activation of silanes. Chemical Science, 2018, 9, 4808-4813.	7.4	19
226	Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction reaction. Chemical Communications, 2018, 54, 4274-4277.	4.1	166
227	A single palladium site catalyst as a bridge for converting homogeneous to heterogeneous in dimerization of terminal aryl acetylenes. Materials Chemistry Frontiers, 2018, 2, 1317-1322.	5.9	23
228	A general synthetic strategy to monolayer graphene. Nano Research, 2018, 11, 3088-3095.	10.4	45
229	Singleâ€Site Au ^I Catalyst for Silane Oxidation with Water. Advanced Materials, 2018, 30, 1704720.	21.0	112
230	Ultrathin Pt–Zn Nanowires: High-Performance Catalysts for Electrooxidation of Methanol and Formic Acid. ACS Sustainable Chemistry and Engineering, 2018, 6, 77-81.	6.7	52
231	50 ppm of Pd dispersed on Ni(OH)2 nanosheets catalyzing semi-hydrogenation of acetylene with high activity and selectivity. Nano Research, 2018, 11, 905-912.	10.4	48
232	Defective molybdenum sulfide quantum dots as highly active hydrogen evolution electrocatalysts. Nano Research, 2018, 11, 751-761.	10.4	83
233	An efficient multifunctional hybrid electrocatalyst: Ni ₂ P nanoparticles on MOF-derived Co,N-doped porous carbon polyhedrons for oxygen reduction and water splitting. Chemical Communications, 2018, 54, 12101-12104.	4.1	107
234	Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy and Environmental Science, 2018, 11, 3375-3379.	30.8	528

#	Article	IF	CITATIONS
235	Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nature Communications, 2018, 9, 4958.	12.8	264
236	Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nature Communications, 2018, 9, 5422.	12.8	696
237	Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12692-12697.	7.1	325
238	Toward Bifunctional Overall Water Splitting Electrocatalyst: General Preparation of Transition Metal Phosphide Nanoparticles Decorated N-Doped Porous Carbon Spheres. ACS Applied Materials & Long Representation (2018, 10, 44201-44208).	8.0	71
239	Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nature Catalysis, 2018, 1, 985-992.	34.4	1,236
240	Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nature Catalysis, 2018, 1, 781-786.	34.4	746
241	A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nature Communications, 2018, 9, 3861.	12.8	210
242	Fabrication of Singleâ€Atom Catalysts with Precise Structure and High Metal Loading. Advanced Materials, 2018, 30, e1801649.	21.0	247
243	Constructing NiCo/Fe ₃ O ₄ Heteroparticles within MOF-74 for Efficient Oxygen Evolution Reactions. Journal of the American Chemical Society, 2018, 140, 15336-15341.	13.7	310
244	A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C–H bonds in toluene. Nature Catalysis, 2018, 1, 704-710.	34.4	273
245	One-Pot Pyrolysis to N-Doped Graphene with High-Density Pt Single Atomic Sites as Heterogeneous Catalyst for Alkene Hydrosilylation. ACS Catalysis, 2018, 8, 10004-10011.	11.2	121
246	Mesoporous Pd@Ru Core–Shell Nanorods for Hydrogen Evolution Reaction in Alkaline Solution. ACS Applied Materials & Diterfaces, 2018, 10, 34147-34152.	8.0	64
247	Temperature-Controlled Selectivity of Hydrogenation and Hydrodeoxygenation in the Conversion of Biomass Molecule by the Ru $<$ sub $>1sub>/mpg-C<sub>3sub>N<sub>4sub> Catalyst. Journal of the American Chemical Society, 2018, 140, 11161-11164.$	13.7	199
248	Ordered Porous Nitrogenâ€Doped Carbon Matrix with Atomically Dispersed Cobalt Sites as an Efficient Catalyst for Dehydrogenation and Transfer Hydrogenation of Nâ€Heterocycles. Angewandte Chemie, 2018, 130, 11432-11436.	2.0	24
249	Ordered Porous Nitrogenâ€Doped Carbon Matrix with Atomically Dispersed Cobalt Sites as an Efficient Catalyst for Dehydrogenation and Transfer Hydrogenation of Nâ€Heterocycles. Angewandte Chemie - International Edition, 2018, 57, 11262-11266.	13.8	165
250	MOFâ€Confined Subâ€2 nm Atomically Ordered Intermetallic PdZn Nanoparticles as Highâ€Performance Catalysts for Selective Hydrogenation of Acetylene. Advanced Materials, 2018, 30, e1801878.	21.0	133
251	Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy and Environmental Science, 2018, 11, 2348-2352.	30.8	336
252	Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Research, 2018, 11, 6260-6269.	10.4	118

#	Article	IF	Citations
253	Scaleâ€Up Biomass Pathway to Cobalt Singleâ€Site Catalysts Anchored on Nâ€Doped Porous Carbon Nanobelt with Ultrahigh Surface Area. Advanced Functional Materials, 2018, 28, 1802167.	14.9	112
254	Quantitative Study of Charge Carrier Dynamics in Well-Defined WO ₃ Nanowires and Nanosheets: Insight into the Crystal Facet Effect in Photocatalysis. Journal of the American Chemical Society, 2018, 140, 9078-9082.	13.7	209
255	Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nature Nanotechnology, 2018, 13, 856-861.	31.5	741
256	Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia. Science Bulletin, 2018, 63, 1246-1253.	9.0	225
257	Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications. Joule, 2018, 2, 1242-1264.	24.0	1,618
258	Size structure–catalytic performance correlation of supported Ni/MCF-17 catalysts for CO _x -free hydrogen production. Chemical Communications, 2018, 54, 6364-6367.	4.1	36
259	A Bimetallic Zn/Fe Polyphthalocyanineâ€Derived Singleâ€Atom Feâ€N ₄ Catalytic Site:A Superior Trifunctional Catalyst for Overall Water Splitting and Zn–Air Batteries. Angewandte Chemie, 2018, 130, 8750-8754.	2.0	51
260	A Bimetallic Zn/Fe Polyphthalocyanineâ€Derived Singleâ€Atom Feâ€N ₄ Catalytic Site:A Superior Trifunctional Catalyst for Overall Water Splitting and Zn–Air Batteries. Angewandte Chemie - International Edition, 2018, 57, 8614-8618.	13.8	455
261	Biofabrication Strategy for Functional Fabrics. Nano Letters, 2018, 18, 6017-6021.	9.1	16
262	Single-layer Rh nanosheets with ultrahigh peroxidase-like activity for colorimetric biosensing. Nano Research, 2018, 11, 6304-6315.	10.4	68
263	Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Science China Materials, 2018, 61, 1527-1535.	6.3	42
264	Discovering Partially Charged Single-Atom Pt for Enhanced Anti-Markovnikov Alkene Hydrosilylation. Journal of the American Chemical Society, 2018, 140, 7407-7410.	13.7	218
265	Recent advances in the precise control of isolated single-site catalysts by chemical methods. National Science Review, 2018, 5, 673-689.	9.5	244
266	Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nature Communications, 2018, 9, 2353.	12.8	278
267	Efficient and Robust Hydrogen Evolution: Phosphorus Nitride Imide Nanotubes as Supports for Anchoring Single Ruthenium Sites. Angewandte Chemie, 2018, 130, 9639-9644.	2.0	31
268	Single Tungsten Atoms Supported on MOFâ€Derived Nâ€Doped Carbon for Robust Electrochemical Hydrogen Evolution. Advanced Materials, 2018, 30, e1800396.	21.0	427
269	Efficient and Robust Hydrogen Evolution: Phosphorus Nitride Imide Nanotubes as Supports for Anchoring Single Ruthenium Sites. Angewandte Chemie - International Edition, 2018, 57, 9495-9500.	13.8	205
270	A Robust and Efficient Pd ₃ Cluster Catalyst for the Suzuki Reaction and Its Odd Mechanism. ACS Catalysis, 2017, 7, 1860-1867.	11.2	99

#	Article	IF	CITATIONS
271	Improved ethanol electrooxidation performance by shortening Pd–Ni active site distance in Pd–Ni–P nanocatalysts. Nature Communications, 2017, 8, 14136.	12.8	351
272	Transparent Ag@Au–graphene patterns with conductive stability via inkjet printing. Journal of Materials Chemistry C, 2017, 5, 2800-2806.	5. 5	42
273	Metal/oxide interfacial effects on the selective oxidation of primary alcohols. Nature Communications, 2017, 8, 14039.	12.8	144
274	Photo-driven redox-neutral decarboxylative carbon-hydrogen trifluoromethylation of (hetero)arenes with trifluoroacetic acid. Nature Communications, 2017, 8, 14353.	12.8	75
275	Controlled Synthesis and Flexible Self-Assembly of Monodisperse Au@Semiconductor Core/Shell Hetero-Nanocrystals into Diverse Superstructures. Chemistry of Materials, 2017, 29, 2355-2363.	6.7	33
276	Isolated Single Iron Atoms Anchored on Nâ€Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2017, 56, 6937-6941.	13.8	1,542
277	Isolated Single Iron Atoms Anchored on Nâ€Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie, 2017, 129, 7041-7045.	2.0	306
278	Isolated Single-Atom Pd Sites in Intermetallic Nanostructures: High Catalytic Selectivity for Semihydrogenation of Alkynes. Journal of the American Chemical Society, 2017, 139, 7294-7301.	13.7	354
279	Innenrücktitelbild: Isolated Single Iron Atoms Anchored on Nâ€Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction (Angew. Chem. 24/2017). Angewandte Chemie, 2017, 129, 7107-7107.	2.0	6
280	Understanding the Dual Active Sites of the FeO/Pt(111) Interface and Reaction Kinetics: Density Functional Theory Study on Methanol Oxidation to Formaldehyde. ACS Catalysis, 2017, 7, 4281-4290.	11.2	50
281	An efficientfficient, controllable and facile two-step synthesis strategy: Fe3O4@RGO composites with various Fe3O4 nanoparticles and their supercapacitance properties. Nano Research, 2017, 10, 3303-3313.	10.4	29
282	Ionic Exchange of Metal–Organic Frameworks to Access Single Nickel Sites for Efficient Electroreduction of CO ₂ . Journal of the American Chemical Society, 2017, 139, 8078-8081.	13.7	1,115
283	Cage-Confinement Pyrolysis Route to Ultrasmall Tungsten Carbide Nanoparticles for Efficient Electrocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2017, 139, 5285-5288.	13.7	336
284	High-Performance Rh ₂ P Electrocatalyst for Efficient Water Splitting. Journal of the American Chemical Society, 2017, 139, 5494-5502.	13.7	343
285	Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the synergetic effect of NaYF4:Er3+/Yb3+ and g-C3N4. Science China Materials, 2017, 60, 228-238.	6.3	25
286	Down-shifting luminescence of water soluble NaYF4:Eu3+@Ag core-shell nanocrystals for fluorescence turn-on detection of glucose. Science China Materials, 2017, 60, 68-74.	6.3	22
287	Preparation and electrochemical characterization of ultrathin WO3â^x /C nanosheets as anode materials in lithium ion batteries. Nano Research, 2017, 10, 1903-1911.	10.4	43
288	Rational Design of Single Molybdenum Atoms Anchored on Nâ€Doped Carbon for Effective Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 16086-16090.	13.8	431

#	Article	IF	Citations
289	Rational Design of Single Molybdenum Atoms Anchored on Nâ€Doped Carbon for Effective Hydrogen Evolution Reaction. Angewandte Chemie, 2017, 129, 16302-16306.	2.0	82
290	Single Ni sites distributed on N-doped carbon for selective hydrogenation of acetylene. Chemical Communications, 2017, 53, 11568-11571.	4.1	88
291	Bimetallic Ru–Co Clusters Derived from a Confined Alloying Process within Zeolite–Imidazolate Frameworks for Efficient NH ₃ Decomposition and Synthesis. ACS Applied Materials & Interfaces, 2017, 9, 39450-39455.	8.0	51
292	Atomically Dispersed Copper–Platinum Dual Sites Alloyed with Palladium Nanorings Catalyze the Hydrogen Evolution Reaction. Angewandte Chemie, 2017, 129, 16263-16267.	2.0	53
293	Atomically Dispersed Copper–Platinum Dual Sites Alloyed with Palladium Nanorings Catalyze the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 16047-16051.	13.8	231
294	Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Science Advances, 2017, 3, e1603068.	10.3	224
295	Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd–Mo catalyst. Nature Communications, 2017, 8, 591.	12.8	110
296	Rational Control of the Selectivity of a Ruthenium Catalyst for Hydrogenation of 4â€Nitrostyrene by Strain Regulation. Angewandte Chemie, 2017, 129, 12133-12137.	2.0	12
297	Rational Control of the Selectivity of a Ruthenium Catalyst for Hydrogenation of 4â€Nitrostyrene by Strain Regulation. Angewandte Chemie - International Edition, 2017, 56, 11971-11975.	13.8	93
298	Metal (Hydr)oxides@Polymer Core–Shell Strategy to Metal Single-Atom Materials. Journal of the American Chemical Society, 2017, 139, 10976-10979.	13.7	257
299	ZIF-derived porous carbon supported Pd nanoparticles within mesoporous silica shells: sintering- and leaching-resistant core–shell nanocatalysts. Chemical Communications, 2017, 53, 9490-9493.	4.1	49
300	Design of N-Coordinated Dual-Metal Sites: A Stable and Active Pt-Free Catalyst for Acidic Oxygen Reduction Reaction. Journal of the American Chemical Society, 2017, 139, 17281-17284.	13.7	1,220
301	Hollow N-Doped Carbon Spheres with Isolated Cobalt Single Atomic Sites: Superior Electrocatalysts for Oxygen Reduction. Journal of the American Chemical Society, 2017, 139, 17269-17272.	13.7	556
302	Confined Pyrolysis within Metal–Organic Frameworks To Form Uniform Ru ₃ Clusters for Efficient Oxidation of Alcohols. Journal of the American Chemical Society, 2017, 139, 9795-9798.	13.7	258
303	Uncoordinated Amine Groups of Metal–Organic Frameworks to Anchor Single Ru Sites as Chemoselective Catalysts toward the Hydrogenation of Quinoline. Journal of the American Chemical Society, 2017, 139, 9419-9422.	13.7	558
304	Nano PdAu Bimetallic Alloy as an Effective Catalyst for the Buchwald–Hartwig Reaction. Chemistry - an Asian Journal, 2016, 11, 351-355.	3.3	23
305	Modulating fcc and hcp Ruthenium on the Surface of Palladium–Copper Alloy through Tunable Lattice Mismatch. Angewandte Chemie, 2016, 128, 5591-5595.	2.0	33
306	Platinumâ€"Copper Nanoframes: Oneâ€Pot Synthesis and Enhanced Electrocatalytic Activity. Chemistry - A European Journal, 2016, 22, 4960-4965.	3.3	24

#	Article	IF	Citations
307	Intermetallic Ni <i>>_xM_y</i> (<i>M</i> = Ga and Sn) Nanocrystals: A Nonâ€precious Metal Catalyst for Semiâ€Hydrogenation of Alkynes. Advanced Materials, 2016, 28, 4747-4754.	21.0	145
308	Kinetically Controlling Surface Structure to Construct Defectâ€Rich Intermetallic Nanocrystals: Effective and Stable Catalysts. Advanced Materials, 2016, 28, 2540-2546.	21.0	95
309	Ultrasmall Cu ₇ S ₄ @MoS ₂ Heteroâ€Nanoframes with Abundant Active Edge Sites for Ultrahighâ€Performance Hydrogen Evolution. Angewandte Chemie, 2016, 128, 6612-6615.	2.0	14
310	Co2C nanoprisms with strong facet effect for Fischer-Tropsch to olefins reaction. Science China Materials, 2016, 59, 1000-1002.	6.3	2
311	Synthesis of pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals for photocatalytic hydrogen production. Nano Research, 2016, 9, 726-734.	10.4	41
312	Controllable synthesis of Pt–Cu nanocrystals and their tunable catalytic properties. CrystEngComm, 2016, 18, 3764-3767.	2.6	6
313	One-step accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor. Nano Research, 2016, 9, 2026-2033.	10.4	117
314	Single Cobalt Atoms with Precise Nâ€Coordination as Superior Oxygen Reduction Reaction Catalysts. Angewandte Chemie - International Edition, 2016, 55, 10800-10805.	13.8	1,836
315	Single Cobalt Atoms with Precise Nâ€Coordination as Superior Oxygen Reduction Reaction Catalysts. Angewandte Chemie, 2016, 128, 10958-10963.	2.0	373
316	Pd3 cluster catalysis: Compelling evidence from in operando spectroscopic, kinetic, and density functional theory studies. Nano Research, 2016, 9, 2544-2550.	10.4	22
317	Understanding of the major reactions in solution synthesis of functional nanomaterials. Science China Materials, 2016, 59, 938-996.	6.3	86
318	Titelbild: Porous Molybdenum Phosphide Nanoâ€Octahedrons Derived from Confined Phosphorization in UIOâ€66 for Efficient Hydrogen Evolution (Angew. Chem. 41/2016). Angewandte Chemie, 2016, 128, 12733-12733.	2.0	0
319	Porous Molybdenum Phosphide Nanoâ€Octahedrons Derived from Confined Phosphorization in UIOâ€66 for Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2016, 55, 12854-12858.	13.8	331
320	Porous Molybdenum Phosphide Nanoâ€Octahedrons Derived from Confined Phosphorization in UIOâ€66 for Efficient Hydrogen Evolution. Angewandte Chemie, 2016, 128, 13046-13050.	2.0	100
321	Au/CuSiO3 nanotubes: High-performance robust catalysts for selective oxidation of ethanol to acetaldehyde. Nano Research, 2016, 9, 2681-2686.	10.4	19
322	Atomically Dispersed Ru on Ultrathin Pd Nanoribbons. Journal of the American Chemical Society, 2016, 138, 13850-13853.	13.7	132
323	Ultrasmall Cu ₇ S ₄ @MoS ₂ Heteroâ€Nanoframes with Abundant Active Edge Sites for Ultrahighâ€Performance Hydrogen Evolution. Angewandte Chemie - International Edition, 2016, 55, 6502-6505.	13.8	128
324	Pd-dispersed CuS hetero-nanoplates for selective hydrogenation of phenylacetylene. Nano Research, 2016, 9, 1209-1219.	10.4	35

#	Article	IF	Citations
325	Controlled one-pot synthesis of RuCu nanocages and Cu@Ru nanocrystals for the regioselective hydrogenation of quinoline. Nano Research, 2016, 9, 2632-2640.	10.4	49
326	Hybrid atomic layers based electrocatalyst converts waste CO2 into liquid fuel. Science China Materials, $2016, 59, 1-3$.	6.3	17
327	Photosynthetic conversion of CO2 to acetic acid by an inorganic-biological hybrid system. Science China Materials, 2016, 59, 93-94.	6.3	3
328	Pt/Y2O3:Eu3+ composite nanotubes: Enhanced photoluminescence and application in dye-sensitized solar cells. Nano Research, 2016, 9, 2338-2346.	10.4	18
329	Ultrathin Icosahedral Pt-Enriched Nanocage with Excellent Oxygen Reduction Reaction Activity. Journal of the American Chemical Society, 2016, 138, 1494-1497.	13.7	316
330	A facile strategy for the synthesis of branched Pt–Pd–M (M = Co, Ni) trimetallic nanocrystals. CrystEngComm, 2016, 18, 4023-4026.	2.6	7
331	Interface-induced formation of onion-like alloy nanocrystals by defects engineering. Nano Research, 2016, 9, 584-592.	10.4	15
332	Ir–Cu nanoframes: one-pot synthesis and efficient electrocatalysts for oxygen evolution reaction. Chemical Communications, 2016, 52, 3793-3796.	4.1	73
333	Remarkable anodic performance of lead titanate 1D nanostructures via in-situ irreversible formation of abundant Ti3+ as conduction pathways. Nano Research, 2016, 9, 353-362.	10.4	7
334	Transition-Metal-Free Deacylative Cleavage of Unstrained C(sp ³)–C(sp ²) Bonds: Cyanide-Free Access to Aryl and Aliphatic Nitriles from Ketones and Aldehydes. Organic Letters, 2016, 18, 228-231.	4.6	61
335	Synthesis of palladium and palladium sulfide nanocrystals via thermolysis of a Pd–thiolate cluster. Science China Materials, 2015, 58, 936-943.	6.3	11
336	Microwave-assisted synthesis of layer-by-layer ultra-large and thin NiAl-LDH/RGO nanocomposites and their excellent performance as electrodes. Science China Materials, 2015, 58, 944-952.	6.3	43
337	Hollow Zn/Co ZIF Particles Derived from Core–Shell ZIFâ€67@ZIFâ€8 as Selective Catalyst for the Semiâ€Hydrogenation of Acetylene. Angewandte Chemie - International Edition, 2015, 54, 10889-10893.	13.8	619
338	Structure Evolution and Associated Catalytic Properties of PtSn Bimetallic Nanoparticles. Chemistry - A European Journal, 2015, 21, 12034-12041.	3.3	53
339	Silver Iodide Nanospheres Wrapped in Reduced Graphene Oxide for Enhanced Photocatalysis. ChemCatChem, 2015, 7, 2918-2923.	3.7	13
340	Bambooâ€Like Nitrogenâ€Doped Carbon Nanotubes with Co Nanoparticles Encapsulated at the Tips: Uniform and Largeâ€Scale Synthesis and Highâ€Performance Electrocatalysts for Oxygen Reduction. Chemistry - A European Journal, 2015, 21, 14022-14029.	3.3	74
341	Hydrogenation of (N,N-disubstituted aminomethyl)nitrobenzenes to (N,N-disubstituted) Tj ETQq1 1 0.784314 rg 47125-47130.	gBT /Overlo 3.6	ock 10 Tf 50 7
342	Phase-transfer interface promoted corrosion from PtNi10 nanoctahedra to Pt4Ni nanoframes. Nano Research, 2015, 8, 140-155.	10.4	50

#	Article	IF	CITATIONS
343	New understanding of phase segregation of bimetallic nanoalloys. Science China Materials, 2015, 58, 3-4.	6.3	6
344	Green chemistry for nanoparticle synthesis. Chemical Society Reviews, 2015, 44, 5778-5792.	38.1	863
345	Nanostructuring gold wires as highly durable nanocatalysts for selective reduction of nitro compounds and azides with organosilanes. Nano Research, 2015, 8, 1365-1372.	10.4	27
346	Porous bimetallic Pt-Fe nanocatalysts for highly efficient hydrogenation of acetone. Nano Research, 2015, 8, 2706-2713.	10.4	49
347	Heterogeneous catalysis for green chemistry based on nanocrystals. National Science Review, 2015, 2, 150-166.	9.5	59
348	Copper Nanocrystal Plane Effect on Stereoselectivity of Catalytic Deoxygenation of Aromatic Epoxides. Journal of the American Chemical Society, 2015, 137, 3791-3794.	13.7	50
349	Room-Temperature Hydrogenation of Citral Catalyzed by Palladium-Silver Nanocrystals Supported on SnO2. European Journal of Inorganic Chemistry, 2015, 2015, 2120-2124.	2.0	5
350	Platinum–nickel frame within metal-organic framework fabricated in situ for hydrogen enrichment and molecular sieving. Nature Communications, 2015, 6, 8248.	12.8	184
351	Realize molecular surgical knife in tumor therapy by nanotechnology. Science China Materials, 2015, 58, 851-851.	6.3	4
352	Seed-mediated synthesis of hexameric octahedral PtPdCu nanocrystals with high electrocatalytic performance. Chemical Communications, 2015, 51, 15406-15409.	4.1	23
353	Ordered Porous Pd Octahedra Covered with Monolayer Ru Atoms. Journal of the American Chemical Society, 2015, 137, 14566-14569.	13.7	59
354	Hydroformylation of alkenes over rhodium supported on the metal-organic framework ZIF-8. Nano Research, 2014, 7, 1364-1369.	10.4	118
355	Removal and Utilization of Capping Agents in Nanocatalysis. Chemistry of Materials, 2014, 26, 72-83.	6.7	640
356	Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science, 2014, 343, 1339-1343.	12.6	2,376
357	Nanocrystals from solutions: catalysts. Chemical Society Reviews, 2014, 43, 2112-2124.	38.1	185
358	A used battery supported Ag catalyst for efficient oxidation of alcohols and carbon oxide. RSC Advances, 2014, 4, 25384-25388.	3.6	12
359	5-fold Twinned Nanowires and Single Twinned Right Bipyramids of Pd: Utilizing Small Organic Molecules To Tune the Etching Degree of O ₂ /Halides. Chemistry of Materials, 2014, 26, 2453-2459.	6.7	40
360	Breakthrough in carbon nanotube growth: unique alloy nanocatalysts lead to the chirality specified tubes. Science China Chemistry, 2014, 57, 1184-1184.	8.2	1

#	Article	IF	Citations
361	Ultrathin rhodium nanosheets. Nature Communications, 2014, 5, 3093.	12.8	428
362	Fabrication of 1D nickel sulfide nanocrystals with high capacitances and remarkable durability. RSC Advances, 2014, 4, 47513-47516.	3.6	18
363	Theoretical study of the crystal plane effect and ion-pair active center for C–H bond activation by Co3O4 nanocrystals. Chinese Journal of Catalysis, 2014, 35, 462-467.	14.0	28
364	Ultrathin Nickel Hydroxide and Oxide Nanosheets: Synthesis, Characterizations and Excellent Supercapacitor Performances. Scientific Reports, 2014, 4, 5787.	3.3	363
365	Defect-Dominated Shape Recovery of Nanocrystals: A New Strategy for Trimetallic Catalysts. Journal of the American Chemical Society, 2013, 135, 12220-12223.	13.7	96
366	Preparation of bimetallic nanocrystals by coreduction of mixed metal ions in a liquid–solid–solution synthetic system according to the electronegativity of alloys. CrystEngComm, 2013, 15, 4806.	2.6	8
367	Assembling TiO2 nanocrystals into nanotube networks on two dimensional substrates. RSC Advances, 2013, 3, 18894.	3.6	0
368	PtM (M=Cu, Co, Ni, Fe) Nanocrystals: From Small Nanoparticles to Wormlike Nanowires by Oriented Attachment. Chemistry - A European Journal, 2013, 19, 233-239.	3.3	110
369	Flexible SnS nanobelts: Facile synthesis, formation mechanism and application in Li-ion batteries. Nano Research, 2013, 6, 55-64.	10.4	135
370	Semiconductor–noble metal hybrid nanomaterials with controlled structures. Journal of Materials Chemistry A, 2013, 1, 1587-1590.	10.3	38
371	Hematite nanodiscs exposing (001) facets: synthesis, formation mechanism and application for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 5232.	10.3	38
372	Highly Active and Selective Catalysis of Bimetallic Rh $<$ sub $>$ 3 $<$ /sub $>$ Ni $<$ sub $>$ 1 $<$ /sub $>$ Nanoparticles in the Hydrogenation of Nitroarenes. ACS Catalysis, 2013, 3, 608-612.	11.2	167
373	Interface-Mediated Synthesis of Transition-Metal (Mn, Co, and Ni) Hydroxide Nanoplates. Crystal Growth and Design, 2013, 13, 1949-1954.	3.0	10
374	ZnO hierarchical aggregates: Solvothermal synthesis and application in dye-sensitized solar cells. Nano Research, 2013, 6, 441-448.	10.4	26
375	Composition-Dependent Catalytic Activity of Bimetallic Nanocrystals: AgPd-Catalyzed Hydrodechlorination of 4-Chlorophenol. ACS Catalysis, 2013, 3, 1560-1563.	11.2	83
376	Size and shape control of LiFePO4 nanocrystals for better lithium ion battery cathode materials. Nano Research, 2013, 6, 469-477.	10.4	123
377	The electronic structure and geometric structure of nanoclusters as catalytic active sites. Nanotechnology Reviews, 2013, 2, 515-528.	5.8	42
378	Highly branched Pt–Ni nanocrystals enclosed by stepped surface for methanol oxidation. Chemical Science, 2012, 3, 1925.	7.4	146

#	Article	IF	CITATIONS
379	Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today, 2012, 7, 448-466.	11.9	463
380	Self-assembly of ZnO nanocrystals into nanoporous pyramids: high selective adsorption and photocatalytic activity. Journal of Materials Chemistry, 2012, 22, 6539.	6.7	33
381	Evidence of an Oxidativeâ€Additionâ€Promoted Pdâ€Leaching Mechanism in the Suzuki Reaction by Using a Pdâ€Nanostructure Design. Chemistry - A European Journal, 2012, 18, 9813-9817.	3.3	82
382	Syntheses of Water-Soluble Octahedral, Truncated Octahedral, and Cubic Pt–Ni Nanocrystals and Their Structure–Activity Study in Model Hydrogenation Reactions. Journal of the American Chemical Society, 2012, 134, 8975-8981.	13.7	322
383	Polyol synthesis and chemical conversion of Cu2O nanospheres. Nano Research, 2012, 5, 320-326.	10.4	37
384	LiCoO2 nanoplates with exposed (001) planes and high rate capability for lithium-ion batteries. Nano Research, 2012, 5, 395-401.	10.4	69
385	Catalysis Based on Nanocrystals with Wellâ€Defined Facets. Angewandte Chemie - International Edition, 2012, 51, 602-613.	13.8	729
386	Facile synthesis of LiCoO2 nanowires with high electrochemical performance. Nano Research, 2012, 5, 27-32.	10.4	68
387	From Single-Component Nanowires to Composite Nanotubes. Crystal Growth and Design, 2011, 11, 4406-4412.	3.0	7
388	Solvothermal synthesis of lithium iron phosphate nanoplates. Journal of Materials Chemistry, 2011, 21, 9994.	6.7	148
389	Controlled synthesis of wurtzite CulnS2 nanocrystals and their side-by-side nanorod assemblies. CrystEngComm, 2011, 13, 4039.	2.6	98
390	Pd nanocrystals with single-, double-, and triple-cavities: facile synthesis and tunable plasmonic properties. Chemical Science, 2011, 2, 2392.	7.4	35
391	Enhanced Photocatalytic Properties of SnO ₂ Nanocrystals with Decreased Size for ppbâ€level Acetaldehyde Decomposition. ChemCatChem, 2011, 3, 371-377.	3.7	41
392	Lowâ€temperature CH ₄ Catalytic Combustion over Pd Catalyst Supported on Co ₃ O ₄ Nanocrystals with Wellâ€Defined Crystal Planes. ChemCatChem, 2011, 3, 868-874.	3.7	55
393	CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance. Nano Research, 2011, 4, 249-258.	10.4	87
394	Effective approach for the synthesis of monodisperse magnetic nanocrystals and M-Fe3O4 (M = Ag, Au,) Tj ETQo	10 9 0.4gB	T /Qverlock 10
395	Copper-mediated synthesis of PdI2 colloidal spheres. Science China Chemistry, 2011, 54, 1027-1031.	8.2	4
396	Bimetallic Nanocrystals: Liquidâ€Phase Synthesis and Catalytic Applications. Advanced Materials, 2011, 23, 1044-1060.	21.0	1,009

#	Article	IF	CITATIONS
397	Bimetallic Nanocrystals: Bimetallic Nanocrystals: Liquid-Phase Synthesis and Catalytic Applications (Adv. Mater. 9/2011). Advanced Materials, 2011, 23, 1036-1036.	21.0	9
398	Oleylamineâ€Mediated Shape Evolution of Palladium Nanocrystals. Angewandte Chemie - International Edition, 2011, 50, 6315-6319.	13.8	152
399	Effect of exchange-type zero-bias anomaly on single-electron tunneling of Au nanoparticles. Physical Review B, 2011, 84, .	3.2	3
400	Solvothermal synthesis and luminescence of nearly monodisperse LnVO ₄ nanoparticles. Journal of Materials Research, 2011, 26, 1168-1173.	2.6	29
401	Synthesis of LiV3O8 nanorods and shape-dependent electrochemical performance. Journal of Materials Research, 2011, 26, 424-429.	2.6	3
402	Nanocrystalline intermetallics and alloys. Nano Research, 2010, 3, 574-580.	10.4	190
403	LiMn2O4 microspheres: Synthesis, characterization and use as a cathode in lithium ion batteries. Nano Research, 2010, 3, 733-737.	10.4	99
404	Shape control of CoO and LiCoO2 nanocrystals. Nano Research, 2010, 3, 1-7.	10.4	76
405	Shape-controlled CuCl crystallite catalysts for aniline coupling. Nano Research, 2010, 3, 174-179.	10.4	26
406	Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation. Nano Research, 2010, 3, 363-368.	10.4	259
407	Reply to Comment on: "Nucleation and Growth of BaF _{<i>x</i>} Cl _{2â°'<i>x</i>} Nanorods― Chemistry - A European Journal, 2010, 16, 12528-12528.	3.3	0
408	Direct Subangstrom Measurement of Surfaces of Oxide Particles. Physical Review Letters, 2010, 105, 226101.	7.8	60
409	Inhibited single-electron transfer by electronic band gap of two-dimensional Au quantum dot superlattice. Applied Physics Letters, 2010, 97, 113101.	3.3	7
410	Mn ₃ O ₄ Nanocrystals: Facile Synthesis, Controlled Assembly, and Application. Chemistry of Materials, 2010, 22, 4232-4236.	6.7	121
411	Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Research, 2009, 2, 30-46.	10.4	170
412	Bi2S3 nanotubes: Facile synthesis and growth mechanism. Nano Research, 2009, 2, 130-134.	10.4	76
413	Hydrothermal synthesis of orthorhombic LiMnO2 nano-particles and LiMnO2 nanorods and comparison of their electrochemical performances. Nano Research, 2009, 2, 923-930.	10.4	59
414	Au/LaVO4 Nanocomposite: Preparation, characterization, and catalytic activity for CO oxidation. Nano Research, 2008, 1, 46-55.	10.4	77

#	Article	IF	Citations
415	Preparation of monodisperse Se colloid spheres and Se nanowires using Na2SeSO3 as precursor. Nano Research, 2008, 1, 403-411.	10.4	50
416	Ultralong Singleâ€Crystalline Ag ₂ S Nanowires: Promising Candidates for Photoswitches and Roomâ€Temperature Oxygen Sensors. Advanced Materials, 2008, 20, 2628-2632.	21.0	121
417	Selective Synthesis of Co ₃ O ₄ Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion. Journal of the American Chemical Society, 2008, 130, 16136-16137.	13.7	865
418	Luminescent Bis-(8-hydroxyquinoline) Cadmium Complex Nanorods. Crystal Growth and Design, 2008, 8, 564-567.	3.0	64
419	Room-Temperature Soft Magnetic Iron Oxide Nanocrystals: Synthesis, Characterization, and Size-Dependent Magnetic Properties. Chemistry of Materials, 2008, 20, 5029-5034.	6.7	82
420	Single-Crystal Metal Nanoplatelets:  Cobalt, Nickel, Copper, and Silver. Crystal Growth and Design, 2007, 7, 1904-1911.	3.0	98
421	Template-Free Synthesis and Characterization of Single-Phase Voided Poly(<i>o</i> -anisidine) and Polyaniline Colloidal Spheres. Chemistry of Materials, 2007, 19, 5773-5778.	6.7	38
422	Monodispersed Nanocrystalline Fluoroperovskite Up-Conversion Phosphors. Crystal Growth and Design, 2007, 7, 2774-2777.	3.0	75
423	Interface-Mediated Growth of Monodispersed Nanostructures. Accounts of Chemical Research, 2007, 40, 635-643.	15.6	155
424	General synthesis of colloidal rare earth orthovanadate nanocrystals. Journal of Materials Chemistry, 2007, 17, 1797.	6.7	132
425	Synthesis and Characterization of Ternary NH4Ln2F7 (Ln = Y, Ho, Er, Tm, Yb, Lu) Nanocages. European Journal of Inorganic Chemistry, 2006, 2006, 2186-2191.	2.0	22
426	Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy. Physical Review B, 2006, 73, .	3.2	512
427	Nearly Monodisperse Cu2O and CuO Nanospheres:Â Preparation and Applications for Sensitive Gas Sensors. Chemistry of Materials, 2006, 18, 867-871.	6.7	1,053
428	Oxides@C Coreâ^'Shell Nanostructures:  One-Pot Synthesis, Rational Conversion, and Li Storage Property. Chemistry of Materials, 2006, 18, 3486-3494.	6.7	226
429	Solution-based routes to transition-metal oxide one-dimensional nanostructures. Pure and Applied Chemistry, 2006, 78, 45-64.	1.9	35
430	Shape-Dependent Catalytic Activity of Silver Nanoparticles for the Oxidation of Styrene. Chemistry - an Asian Journal, 2006, 1, 888-893.	3.3	343
431	Use of Carbonaceous Polysaccharide Microspheres as Templates for Fabricating Metal Oxide Hollow Spheres. Chemistry - A European Journal, 2006, 12, 2039-2047.	3.3	426
432	One-Pot Synthesis and Bioapplication of Amine-Functionalized Magnetite Nanoparticles and Hollow Nanospheres. Chemistry - A European Journal, 2006, 12, 6341-6347.	3.3	455

#	Article	IF	Citations
433	Enhanced low field magnetoresistance of Fe3O4 nanosphere compact. Journal of Applied Physics, 2006, 100, 044314.	2.5	11
434	A general strategy for nanocrystal synthesis. Nature, 2005, 437, 121-124.	27.8	2,439
435	Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. Journal of Catalysis, 2005, 229, 206-212.	6.2	1,010
436	Favorable synergetic effects between CuO and the reactive planes of ceria nanorods. Catalysis Letters, 2005, 101, 169-173.	2.6	62
437	Synthesis, crystal structures and properties of two copper(II) 2-aminomethylbenzimidazole complexes. Transition Metal Chemistry, 2003, 28, 464-467.	1.4	7
438	Synthesis and Characterization of Ion-Exchangeable Titanate Nanotubes. Chemistry - A European Journal, 2003, 9, 2229-2238.	3.3	895
439	Different morphology at different reactant molar ratios: synthesis of silver halide low-dimensional nanomaterials in microemulsions. Journal of Materials Chemistry, 2003, 13, 163-165.	6.7	24
440	Selective Synthesis and Magnetic Properties of $\hat{l}\pm$ -MnSe and MnSe2 Uniform Microcrystals. Journal of Physical Chemistry B, 2002, 106, 9261-9265.	2.6	74
441	From Surfactant–Inorganic Mesostructures to Tungsten Nanowires The authors thank Prof. G. D. Stucky for helpful discussions. This work was supported by the National Science Foundation of China and the State key project of Fundamental Research for Nano-materials and Nano-structures Angewandte Chemie - International Edition. 2002. 41. 333.	13.8	105
442	Synthesis, assembly and device of 1-dimentional nanostructures. Science Bulletin, 2002, 47, 1149-1156.	1.7	1
443	Selected-Control Hydrothermal Synthesis of \hat{l}_z - and \hat{l}_z -MnO2Single Crystal Nanowires. Journal of the American Chemical Society, 2002, 124, 2880-2881.	13.7	1,003
444	Bismuth Nanotubes:Â A Rational Low-Temperature Synthetic Route. Journal of the American Chemical Society, 2001, 123, 9904-9905.	13.7	481
445	The Synthesis of Nanocrystalline Anatase and Rutile Titania in Mixed Organic Media. Inorganic Chemistry, 2001, 40, 5210-5214.	4.0	164
446	Straightforward Conversion Route to Nanocrystalline Monothiooxides of Rare Earths through a High-Temperature Colloid Technique. Inorganic Chemistry, 2000, 39, 3418-3420.	4.0	26
447	Emulsion liquid membrane separation of As(III) and As(V). Fresenius' Journal of Analytical Chemistry, 1999, 363, 317-319.	1.5	6
448	Room Temperature Synthesis of Metal Chalcogenides in Ethylenediamine. Inorganic Chemistry, 1999, 38, 4737-4740.	4.0	79
449	A Solvothermal Elemental Reaction To Produce Nanocrystalline ZnSe. Inorganic Chemistry, 1998, 37, 2844-2845.	4.0	93
450	Engineering Dual Singleâ€Atom Sites on 2D Ultrathin Nâ€doped Carbon Nanosheets Attaining Ultra‣owâ€Temperature Zincâ€Air Battery. Angewandte Chemie, 0, , .	2.0	24

#	Article	lF	CITATIONS
451	Ruâ€Co Pair Sites Catalyst Boosts the Energetics for Oxygen Evolution Reaction. Angewandte Chemie, 0,	2.0	12