Yadong Li

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7920228/yadong-li-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

433	56,955	124	230
papers	citations	h-index	g-index
464 ext. papers	71,174 ext. citations	12.5 avg, IF	8.33 L-index

#	Paper	IF	Citations
433	Engineering Dual Single-Atom Sites on 2D Ultrathin N-doped Carbon Nanosheets Attaining Ultra-Low Temperature Zn-Air Battery <i>Angewandte Chemie - International Edition</i> , 2022 ,	16.4	31
432	Engineering the Local Atomic Environments of Indium Single-Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide <i>Angewandte Chemie - International Edition</i> , 2022 ,	16.4	8
431	Distinct Crystal-Facet-Dependent Behaviors for Single-Atom Palladium-on-Ceria Catalysts: Enhanced Stabilization and Catalytic Properties <i>Advanced Materials</i> , 2022 , e2107721	24	4
430	Regulating the tip effect on single-atom and cluster catalysts: forming reversible oxygen species with high efficiency in chlorine evolution reaction <i>Angewandte Chemie - International Edition</i> , 2022 ,	16.4	9
429	MOF Encapsulating N-Heterocyclic Carbene-Ligated Copper Single-Atom Site Catalyst towards Efficient Methane Electrosynthesis. <i>Angewandte Chemie</i> , 2022 , 134, e202114450	3.6	
428	Surfactant-assisted implantation strategy for facile construction of Pt-based hybrid electrocatalyst to accelerate oxygen reduction reaction. <i>Materials Today Energy</i> , 2022 , 24, 100919	7	1
427	Atom-level interfacial synergy of single-atom site catalysts for electrocatalysis. <i>Journal of Energy Chemistry</i> , 2022 , 65, 103-115	12	10
426	Engineering Lattice Disorder on a Photocatalyst: Photochromic BiOBr Nanosheets Enhance Activation of Aromatic C-H Bonds via Water Oxidation <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	11
425	Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. <i>Nature Catalysis</i> , 2022 , 5, 300-310	36.5	14
424	Revealing the Origin of Low-Temperature Activity of Ni-Rh Nanostructures during CO Oxidation Reaction with Operando TEM <i>Advanced Science</i> , 2022 , e2105599	13.6	O
423	Thermal Atomization of Platinum Nanoparticles into Single Atoms: An Effective Strategy for Engineering High-Performance Nanozymes. <i>Journal of the American Chemical Society</i> , 2021 , 143, 18643-	·18651	26
422	Isolated Single-Atom Ni-N Catalytic Site in Hollow Porous Carbon Capsules for Efficient Lithium-Sulfur Batteries. <i>Nano Letters</i> , 2021 , 21, 9691-9698	11.5	27
421	MOF Encapsulating N-Heterocyclic Carbene-Ligated Copper Single-Atom Site Catalyst towards Efficient Methane Electrosynthesis. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	18
420	Striding the threshold of an atom era of organic synthesis by single-atom catalysis. CheM, 2021,	16.2	16
4 1 9	Cobalt Single Atom Incorporated in Ruthenium Oxide Sphere: A Robust Bifunctional Electrocatalyst for HER and OER. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	16
418	Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis 2021 , 100013-100013		75
417	Decreasing the coordinated N atoms in a single-atom Cu catalyst to achieve selective transfer hydrogenation of alkynes. <i>Chemical Science</i> , 2021 , 12, 14599-14605	9.4	4

(2021-2021)

416	Synergistic Modulation of the Separation of Photo-Generated Carries via Engineering of Dual Atomic Sites for Promoting Photocatalytic Performance. <i>Advanced Materials</i> , 2021 , e2105904	24	26
415	A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. <i>SmartMat</i> , 2021 , 2, 56-75	22.8	43
414	High-Loading Single-Atomic-Site Silver Catalysts with an Ag1t2N1 Structure Showing Superior Performance for Epoxidation of Styrene. <i>ACS Catalysis</i> , 2021 , 11, 4946-4954	13.1	13
413	Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation. <i>Nature Communications</i> , 2021 , 12, 3181	17.4	40
412	A Supported Pd 2 Dual-Atom Site Catalyst for Efficient Electrochemical CO 2 Reduction. <i>Angewandte Chemie</i> , 2021 , 133, 13500-13505	3.6	3
411	Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window. <i>CheM</i> , 2021 , 7, 1297-1307	16.2	44
410	Single-atom site catalysts supported on two-dimensional materials for energy applications. <i>Chinese Chemical Letters</i> , 2021 , 32, 3771-3771	8.1	5
409	Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. <i>Nano Research</i> , 2021 , 14, 3482-3488	10	27
408	A Supported Pd Dual-Atom Site Catalyst for Efficient Electrochemical CO Reduction. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 13388-13393	16.4	54
407	Matching the kinetics of natural enzymes with a single-atom iron nanozyme. <i>Nature Catalysis</i> , 2021 , 4, 407-417	36.5	134
406	A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid OH bond insertion. <i>Nature Catalysis</i> , 2021 , 4, 523-531	36.5	28
405	Atomically Dispersed Pt-NC Sites Enabling Efficient and Selective Electrocatalytic C-C Bond Cleavage in Lignin Models under Ambient Conditions. <i>Journal of the American Chemical Society</i> , 2021 , 143, 9429-9439	16.4	43
404	Electronic structure regulations of single-atom site catalysts and their effects on the electrocatalytic performances. <i>Applied Physics Reviews</i> , 2021 , 8, 021321	17.3	9
403	In Situ Implanting of Single Tungsten Sites into Defective UiO-66(Zr) by Solvent-Free Route for Efficient Oxidative Desulfurization at Room Temperature. <i>Angewandte Chemie</i> , 2021 , 133, 20481-20487	,3.6	1
402	Fabricating polyoxometalates-stabilized single-atom site catalysts in confined space with enhanced activity for alkynes diboration. <i>Nature Communications</i> , 2021 , 12, 4205	17.4	21
401	The Electronic MetalBupport Interaction Directing the Design of Single Atomic Site Catalysts: Achieving High Efficiency Towards Hydrogen Evolution. <i>Angewandte Chemie</i> , 2021 , 133, 19233-19239	3.6	16
400	An Adjacent Atomic Platinum Site Enables Single-Atom Iron with High Oxygen Reduction Reaction Performance. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 19262-19271	16.4	81
399	Single-Atom Materials: Small Structures Determine Macroproperties. <i>Small Structures</i> , 2021 , 2, 2000051	8.7	147

398	Atomically dispersed Ni R u P interface sites for high-efficiency pH-universal electrocatalysis of hydrogen evolution. <i>Nano Energy</i> , 2021 , 80, 105467	17.1	44
397	Silver Single-Atom Catalyst for Efficient Electrochemical CO Reduction Synthesized from Thermal Transformation and Surface Reconstruction. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 6170-	-617 6	98
396	Porous Fe2O3 nanoparticle decorated with atomically dispersed platinum: Study on atomic site structural change and gas sensor activity evolution. <i>Nano Research</i> , 2021 , 14, 1435-1442	10	17
395	How to select effective electrocatalysts: Nano or single atom?. <i>Nano Select</i> , 2021 , 2, 492-511	3.1	42
394	Silver Single-Atom Catalyst for Efficient Electrochemical CO2 Reduction Synthesized from Thermal Transformation and Surface Reconstruction. <i>Angewandte Chemie</i> , 2021 , 133, 6235-6241	3.6	10
393	Atomic-Level Modulation of Electronic Density at Cobalt Single-Atom Sites Derived from Metal-Organic Frameworks: Enhanced Oxygen Reduction Performance. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3212-3221	16.4	180
392	Atomic-Level Modulation of Electronic Density at Cobalt Single-Atom Sites Derived from MetallDrganic Frameworks: Enhanced Oxygen Reduction Performance. <i>Angewandte Chemie</i> , 2021 , 133, 3249-3258	3.6	22
391	Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc-air battery. <i>Nano Research</i> , 2021 , 14, 998-1003	10	21
390	Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. <i>Science China Materials</i> , 2021 , 64, 642-650	7.1	59
389	Manganese vacancy-confined single-atom Ag in cryptomelane nanorods for efficient Wacker oxidation of styrene derivatives. <i>Chemical Science</i> , 2021 , 12, 6099-6106	9.4	8
388	Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. <i>Nano Research</i> , 2021 , 14, 2418	10	99
387	One-step synthesis of single-site vanadium substitution in 1T-WS monolayers for enhanced hydrogen evolution catalysis. <i>Nature Communications</i> , 2021 , 12, 709	17.4	42
386	Construction of nitrogen-doped porous carbon nanosheets decorated with FeN4 and iron oxides by a biomass coordination strategy for efficient oxygen reduction reaction. <i>New Journal of Chemistry</i> , 2021 , 45, 14570-14579	3.6	1
385	Fe1N4D1 site with axial FeD coordination for highly selective CO2 reduction over a wide potential range. <i>Energy and Environmental Science</i> , 2021 , 14, 3430-3437	35.4	40
384	Single-Atom Materials: Small Structures Determine Macroproperties. Small Structures, 2021 , 2, 2170000	58. ₇	4
383	Notched-Polyoxometalate Strategy to Fabricate Atomically Dispersed Ru Catalysts for Biomass Conversion. <i>ACS Catalysis</i> , 2021 , 11, 2669-2675	13.1	13
382	Construction of Dual-Active-Site Copper Catalyst Containing both Cu?N and Cu?N Sites. <i>Small</i> , 2021 , 17, e2006834	11	14
381	Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. <i>Science China Materials</i> , 2021 , 64, 1919-1929	7.1	35

(2021-2021)

380	In Situ Implanting of Single Tungsten Sites into Defective UiO-66(Zr) by Solvent-Free Route for Efficient Oxidative Desulfurization at Room Temperature. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 20318-20324	16.4	19	
379	An Adjacent Atomic Platinum Site Enables Single-Atom Iron with High Oxygen Reduction Reaction Performance. <i>Angewandte Chemie</i> , 2021 , 133, 19411-19420	3.6	11	
378	Rational Design of Single-Atom Site Electrocatalysts: From Theoretical Understandings to Practical Applications. <i>Advanced Materials</i> , 2021 , 33, e2008151	24	60	
377	The Electronic Metal-Support Interaction Directing the Design of Single Atomic Site Catalysts: Achieving High Efficiency Towards Hydrogen Evolution. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 19085-19091	16.4	64	
376	Anion-exchange-mediated internal electric field for boosting photogenerated carrier separation and utilization. <i>Nature Communications</i> , 2021 , 12, 4952	17.4	12	
375	Synthesis, Structures of 2D Coordination Layers Metal-Organic Frameworks with Highly Selective CO2 Uptake Chinese Journal of Chemistry, 2021, 39, 2789-2794	4.9	0	
374	Polyoxometalate-Based Metal©rganic Framework as Molecular Sieve for Highly Selective Semi-Hydrogenation of Acetylene on Isolated Single Pd Atom Sites. <i>Angewandte Chemie</i> , 2021 , 133, 226	5 9 6-22	2702	
373	Lewis Acid Site-Promoted Single-Atomic Cu Catalyzes Electrochemical CO Methanation. <i>Nano Letters</i> , 2021 , 21, 7325-7331	11.5	38	
372	Polyoxometalate-Based Metal-Organic Framework as Molecular Sieve for Highly Selective Semi-Hydrogenation of Acetylene on Isolated Single Pd Atom Sites. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 22522-22528	16.4	27	•
371	Construction of Pd-Zn dual sites to enhance the performance for ethanol electro-oxidation reaction. <i>Nature Communications</i> , 2021 , 12, 5273	17.4	20	
370	Creating High Regioselectivity by Electronic Metal-Support Interaction of a Single-Atomic-Site Catalyst. <i>Journal of the American Chemical Society</i> , 2021 , 143, 15453-15461	16.4	23	
369	Phosphorus Induced Electron Localization of Single Iron Sites for Boosted CO2 Electroreduction Reaction. <i>Angewandte Chemie</i> , 2021 , 133, 23806	3.6	11	
368	Phosphorus Induced Electron Localization of Single Iron Sites for Boosted CO Electroreduction Reaction. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 23614-23618	16.4	60	
367	Electronics and coordination engineering of atomic cobalt trapped by oxygen-driven defects for efficient cathode in solar cells. <i>Nano Energy</i> , 2021 , 89, 106365	17.1	9	
366	Carbon-Supported Single-Atom Catalysts for Formic Acid Oxidation and Oxygen Reduction Reactions. <i>Small</i> , 2021 , 17, e2004500	11	19	
365	Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. <i>Energy and Environmental Science</i> , 2021 , 14, 1016-1028	35.4	28	
364	Non-carbon-supported single-atom site catalysts for electrocatalysis. <i>Energy and Environmental Science</i> , 2021 , 14, 2809-2858	35.4	66	
363	The atomic-level regulation of single-atom site catalysts for the electrochemical CO reduction reaction. <i>Chemical Science</i> , 2021 , 12, 4201-4215	9.4	29	

362	Tandem catalyzing the hydrodeoxygenation of 5-hydroxymethylfurfural over a NiFe intermetallic supported Pt single-atom site catalyst. <i>Chemical Science</i> , 2021 , 12, 4139-4146	9.4	11
361	Ru1Con Single-Atom Alloy for Enhancing Fischer Tropsch Synthesis. ACS Catalysis, 2021, 11, 1886-1896	13.1	16
360	Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. <i>Science China Materials</i> , 2020 , 63, 972-981	7.1	62
359	Engineering of Electronic States on Co O Ultrathin Nanosheets by Cation Substitution and Anion Vacancies for Oxygen Evolution Reaction. <i>Small</i> , 2020 , 16, e2001571	11	49
358	Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. <i>Nature Chemistry</i> , 2020 , 12, 764-772	17.6	207
357	Single atomic site catalysts: synthesis, characterization, and applications. <i>Chemical Communications</i> , 2020 , 56, 7687-7697	5.8	26
356	Engineering unsymmetrically coordinated Cu-SN single atom sites with enhanced oxygen reduction activity. <i>Nature Communications</i> , 2020 , 11, 3049	17.4	210
355	Au@Pt Nanotubes within CoZn-Based Metal-Organic Framework for Highly Efficient Semi-hydrogenation of Acetylene. <i>IScience</i> , 2020 , 23, 101233	6.1	9
354	Atomic Thickness Catalysts: Synthesis and Applications. Small Methods, 2020, 4, 2000248	12.8	21
353	Engineering Isolated Mn-NC Atomic Interface Sites for Efficient Bifunctional Oxygen Reduction and Evolution Reaction. <i>Nano Letters</i> , 2020 , 20, 5443-5450	11.5	135
352	Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis. <i>Energy and Environmental Science</i> , 2020 , 13, 1593-1616	35.4	86
351	Rare-Earth Single Erbium Atoms for Enhanced Photocatalytic CO2 Reduction. <i>Angewandte Chemie</i> , 2020 , 132, 10738-10744	3.6	31
350	Rare-Earth Single Erbium Atoms for Enhanced Photocatalytic CO Reduction. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10651-10657	16.4	148
349	Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. <i>Nano Research</i> , 2020 , 13, 947-951	10	41
348	Facet engineering in metal organic frameworks to improve their electrochemical activity for water oxidation. <i>Chemical Communications</i> , 2020 , 56, 4316-4319	5.8	14
347	Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. <i>Nature Nanotechnology</i> , 2020 , 15, 390-397	28.7	208
346	Chemical Synthesis of Single Atomic Site Catalysts. <i>Chemical Reviews</i> , 2020 , 120, 11900-11955	68.1	368
345	Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. <i>Nano Research</i> , 2020 , 13, 1842-1855	10	297

(2020-2020)

344	Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. <i>Chemical Society Reviews</i> , 2020 , 49, 2215-2264	58.5	309
343	Single atom alloy: An emerging atomic site material for catalytic applications. <i>Nano Today</i> , 2020 , 34, 10	0 2/1 .7 ₉	44
342	MOF derived high-density atomic platinum heterogeneous catalyst for C⊞ bond activation. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 1158-1163	7.8	4
341	Single-Atom Aul N3 Site for Acetylene Hydrochlorination Reaction. ACS Catalysis, 2020, 10, 1865-1870	13.1	41
340	Tuning Polarity of Cu-O Bond in Heterogeneous Cu Catalyst to Promote Additive-free Hydroboration of Alkynes. <i>CheM</i> , 2020 , 6, 725-737	16.2	53
339	Design aktiver atomarer Zentren fEHER-Elektrokatalysatoren. <i>Angewandte Chemie</i> , 2020 , 132, 20978-2	.0 <u>9</u> . 8 8	9
338	Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. <i>Nano Research</i> , 2020 , 13, 1856-1866	10	161
337	Adsorption Site Regulation to Guide Atomic Design of Ni-Ga Catalysts for Acetylene Semi-Hydrogenation. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 11647-11652	16.4	40
336	Structure and Stability of the (001) Surface of Co3O4. Journal of Physical Chemistry C, 2020, 124, 25790	-258795	8
335	Synergistically Interactive Pyridinic-NMoP Sites: Identified Active Centers for Enhanced Hydrogen Evolution in Alkaline Solution. <i>Angewandte Chemie</i> , 2020 , 132, 9067-9075	3.6	24
334	Designing Atomic Active Centers for Hydrogen Evolution Electrocatalysts. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 20794-20812	16.4	136
333	Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. <i>Nature Communications</i> , 2020 , 11, 48	17.4	101
332	Structural Regulation with Atomic-Level Precision: From Single-Atomic Site to Diatomic and Atomic Interface Catalysis. <i>Matter</i> , 2020 , 2, 78-110	12.7	107
331	Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites. <i>Chemical Reviews</i> , 2020 , 120, 623-682	68.1	407
330	Single-atom Sn-Zn pairs in CuO catalyst promote dimethyldichlorosilane synthesis. <i>National Science Review</i> , 2020 , 7, 600-608	10.8	16
329	Modifications of heterogeneous photocatalysts for hydrocarbon C-H bond activation and selective conversion. <i>Chemical Communications</i> , 2020 , 56, 13918-13932	5.8	14
328	Identifying the Types and Characterization of the Active Sites on M-X-C Single-Atom Catalysts.		6
	ChemPhysChem, 2020 , 21, 2486-2496	3.2	

326	Engineering of Coordination Environment and Multiscale Structure in Single-Site Copper Catalyst for Superior Electrocatalytic Oxygen Reduction. <i>Nano Letters</i> , 2020 , 20, 6206-6214	11.5	99
325	Discovery of main group single SbN4 active sites for CO2 electroreduction to formate with high efficiency. <i>Energy and Environmental Science</i> , 2020 , 13, 2856-2863	35.4	113
324	Gram-Scale Synthesis of High-Loading Single-Atomic-Site Fe Catalysts for Effective Epoxidation of Styrene. <i>Advanced Materials</i> , 2020 , 32, e2000896	24	78
323	Synthetic strategies of supported atomic clusters for heterogeneous catalysis. <i>Nature Communications</i> , 2020 , 11, 5884	17.4	74
322	A general bottom-up synthesis of CuO-based trimetallic oxide mesocrystal superstructures for efficient catalytic production of trichlorosilane. <i>Nano Research</i> , 2020 , 13, 2819-2827	10	10
321	Atomic iron on mesoporous N-doped carbon to achieve dehydrogenation reaction at room temperature. <i>Nano Research</i> , 2020 , 13, 3075-3081	10	13
320	Single-atom site catalysts for environmental catalysis. <i>Nano Research</i> , 2020 , 13, 3165-3182	10	134
319	Atomically dispersed Ni in cadmium-zinc sulfide quantum dots for high-performance visible-light photocatalytic hydrogen production. <i>Science Advances</i> , 2020 , 6, eaaz8447	14.3	47
318	Photoinduction of Cu Single Atoms Decorated on UiO-66-NH for Enhanced Photocatalytic Reduction of CO to Liquid Fuels. <i>Journal of the American Chemical Society</i> , 2020 , 142, 19339-19345	16.4	138
317	Electronic Metal-Support Interaction of Single-Atom Catalysts and Applications in Electrocatalysis. <i>Advanced Materials</i> , 2020 , 32, e2003300	24	191
316	Design of a Single-Atom Indium -N Interface for Efficient Electroreduction of CO to Formate. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 22465-22469	16.4	102
315	Design of a Single-Atom Indium N4 Interface for Efficient Electroreduction of CO2 to Formate. Angewandte Chemie, 2020, 132, 22651-22655	3.6	12
314	The synthetic strategies for single atomic site catalysts based on metal-organic frameworks. <i>Nanoscale</i> , 2020 , 12, 20580-20589	7.7	5
313	Single-Atom Co-N Electrocatalyst Enabling Four-Electron Oxygen Reduction with Enhanced Hydrogen Peroxide Tolerance for Selective Sensing. <i>Journal of the American Chemical Society</i> , 2020 , 142, 16861-16867	16.4	77
312	Synergistically Interactive Pyridinic-N-MoP Sites: Identified Active Centers for Enhanced Hydrogen Evolution in Alkaline Solution. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 8982-8990	16.4	134
311	Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production. <i>Angewandte Chemie</i> , 2020 , 132, 1311-1317	3.6	21
310	Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 1295-1301	16.4	197
309	Adsorption Site Regulation to Guide Atomic Design of Ni🏗 Catalysts for Acetylene Semi-Hydrogenation. <i>Angewandte Chemie</i> , 2020 , 132, 11744-11749	3.6	11

308	Isolated Ni Atoms Dispersed on Ru Nanosheets: High-Performance Electrocatalysts toward Hydrogen Oxidation Reaction. <i>Nano Letters</i> , 2020 , 20, 3442-3448	11.5	80
307	In Situ Phosphatizing of Triphenylphosphine Encapsulated within Metal-Organic Frameworks to Design Atomic Co-PN Interfacial Structure for Promoting Catalytic Performance. <i>Journal of the American Chemical Society</i> , 2020 , 142, 8431-8439	16.4	123
306	Isolated Iron Single-Atomic Site-Catalyzed Chemoselective Transfer Hydrogenation of Nitroarenes to Arylamines. <i>ACS Applied Materials & Acs Applied & Acs </i>	9.5	42
305	Bismuth Single Atoms Resulting from Transformation of Metal-Organic Frameworks and Their Use as Electrocatalysts for CO Reduction. <i>Journal of the American Chemical Society</i> , 2019 , 141, 16569-16573	16.4	267
304	Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO. <i>Nature Chemistry</i> , 2019 , 11, 222-228	17.6	337
303	Topological self-template directed synthesis of multi-shelled intermetallic NiGa hollow microspheres for the selective hydrogenation of alkyne. <i>Chemical Science</i> , 2019 , 10, 614-619	9.4	20
302	Unraveling the enzyme-like activity of heterogeneous single atom catalyst. <i>Chemical Communications</i> , 2019 , 55, 2285-2288	5.8	120
301	Boosting Oxygen Reduction Catalysis with FeN4 Sites Decorated Porous Carbons toward Fuel Cells. <i>ACS Catalysis</i> , 2019 , 9, 2158-2163	13.1	209
300	Trifunctional Self-Supporting Cobalt-Embedded Carbon Nanotube Films for ORR, OER, and HER Triggered by Solid Diffusion from Bulk Metal. <i>Advanced Materials</i> , 2019 , 31, e1808043	24	186
299	A General Strategy for Fabricating Isolated Single Metal Atomic Site Catalysts in Y Zeolite. <i>Journal of the American Chemical Society</i> , 2019 , 141, 9305-9311	16.4	124
298	Two-Step Carbothermal Welding To Access Atomically Dispersed Pd on Three-Dimensional Zirconia Nanonet for Direct Indole Synthesis. <i>Journal of the American Chemical Society</i> , 2019 , 141, 10590-10594	16.4	66
297	High-Concentration Single Atomic Pt Sites on Hollow CuSx for Selective O2 Reduction to H2O2 in Acid Solution. <i>CheM</i> , 2019 , 5, 2099-2110	16.2	152
296	Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines. <i>Nano Research</i> , 2019 , 12, 1625-1630	10	62
295	Nitrogen-coordinated cobalt nanocrystals for oxidative dehydrogenation and hydrogenation of N-heterocycles. <i>Chemical Science</i> , 2019 , 10, 5345-5352	9.4	39
294	Selective hydrogenation of N-heterocyclic compounds over rhodium-copper bimetallic nanocrystals under ambient conditions. <i>Nano Research</i> , 2019 , 12, 1631-1634	10	14
293	Regulating the Catalytic Performance of Single-Atomic-Site Ir Catalyst for Biomass Conversion by MetalBupport Interactions. <i>ACS Catalysis</i> , 2019 , 9, 5223-5230	13.1	52
292	In situ embedding Co9S8 into nitrogen and sulfur codoped hollow porous carbon as a bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. <i>Applied Catalysis B: Environmental</i> , 2019 , 254, 186-193	21.8	87
291	Thermal Emitting Strategy to Synthesize Atomically Dispersed Pt Metal Sites from Bulk Pt Metal. Journal of the American Chemical Society, 2019 , 141, 4505-4509	16.4	174

290	Structure regulation of noble-metal-based nanomaterials at an atomic level. <i>Nano Today</i> , 2019 , 26, 164-	117/59	24
289	Sub-3 nm Rh nanoclusters confined within a metal-organic framework for enhanced hydrogen generation. <i>Chemical Communications</i> , 2019 , 55, 4699-4702	5.8	24
288	Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. <i>Nano Research</i> , 2019 , 12, 2067-2080	10	320
287	Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. <i>Nature Catalysis</i> , 2019 , 2, 304-313	36.5	420
286	Single-atomic-site cobalt stabilized on nitrogen and phosphorus co-doped carbon for selective oxidation of primary alcohols. <i>Nanoscale Horizons</i> , 2019 , 4, 902-906	10.8	16
285	Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. <i>Energy and Environmental Science</i> , 2019 , 12, 1730-1750	35.4	293
284	2D MOF induced accessible and exclusive Co single sites for an efficient O-silylation of alcohols with silanes. <i>Chemical Communications</i> , 2019 , 55, 6563-6566	5.8	25
283	Review of Metal Catalysts for Oxygen Reduction Reaction: From Nanoscale Engineering to Atomic Design. <i>CheM</i> , 2019 , 5, 1486-1511	16.2	297
282	Atomically Dispersed Ruthenium Species Inside Metal-Organic Frameworks: Combining the High Activity of Atomic Sites and the Molecular Sieving Effect of MOFs. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 4271-4275	16.4	92
281	Atomically Dispersed Ruthenium Species Inside Metal (Drganic Frameworks: Combining the High Activity of Atomic Sites and the Molecular Sieving Effect of MOFs. <i>Angewandte Chemie</i> , 2019 , 131, 4315	- 4 319	12
2 80	Functionalization of Hollow Nanomaterials for Catalytic Applications: Nanoreactor Construction. <i>Advanced Materials</i> , 2019 , 31, e1800426	24	147
279	Metal-organic frameworks-derived nitrogen-doped carbon supported nanostructured PtNi catalyst for enhanced hydrosilylation of 1-octene. <i>Nano Research</i> , 2019 , 12, 2584-2588	10	18
278	Strain Regulation to Optimize the Acidic Water Oxidation Performance of Atomic-Layer IrO. <i>Advanced Materials</i> , 2019 , 31, e1903616	24	65
277	Isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation. <i>Nature Communications</i> , 2019 , 10, 3787	17.4	60
276	Mesoporous Nitrogen-Doped Carbon-Nanosphere-Supported Isolated Single-Atom Pd Catalyst for Highly Efficient Semihydrogenation of Acetylene. <i>Advanced Materials</i> , 2019 , 31, e1901024	24	84
275	Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. <i>Nature Communications</i> , 2019 , 10, 4875	17.4	119
274	PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption. <i>Nano Research</i> , 2019 , 12, 2866-2871	10	38
273	Single-atom electrocatalysis: a new approach to in vivo electrochemical biosensing. <i>Science China Chemistry</i> , 2019 , 62, 1720-1724	7.9	32

272	Atomically dispersed Fe atoms anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts. <i>Chemical Science</i> , 2019 , 11, 786-790).4	64
271	Carbon nanotube-encapsulated cobalt for oxygen reduction: integration of space confinement and N-doping. <i>Chemical Communications</i> , 2019 , 55, 14801-14804	;.8	62
270	Tuning the Coordination Environment in Single-Atom Catalysts to Achieve Highly Efficient Oxygen Reduction Reactions. <i>Journal of the American Chemical Society</i> , 2019 , 141, 20118-20126	6.4	352
269	Engineering the Electronic Structure of Submonolayer Pt on Intermetallic PdPb via Charge Transfer Boosts the Hydrogen Evolution Reaction. <i>Journal of the American Chemical Society</i> , 2019 , 141, 19964-199	68 ¹	71
268	A general synthesis approach for amorphous noble metal nanosheets. <i>Nature Communications</i> , 2019 , 10, 4855	7.4	145
267	Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy and Environmental Science, 2019 , 12, 3508-3514	5-4	146
266	Direct Observation of Nanoscale Light Confinement without Metal. <i>Advanced Materials</i> , 2019 , 31, e18063	B 4 1	12
265	Surface Atomic Regulation of Core-Shell Noble Metal Catalysts. <i>Chemistry - A European Journal</i> , 2019 , 25, 5113-5127	µ.8	14
264	Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. <i>Nano Energy</i> , 2019 , 56, 411-419	7.1	252
263	Design of Noble Metal Electrocatalysts on an Atomic Level. <i>ChemElectroChem</i> , 2019 , 6, 289-303	1 .3	23
262	Solid-Diffusion Synthesis of Single-Atom Catalysts Directly from Bulk Metal for Efficient CO2 Reduction. <i>Joule</i> , 2019 , 3, 584-594	27.8	186
261	Ordered two-dimensional porous Co3O4 nanosheets as electrocatalysts for rechargeable Li-O2 batteries. <i>Nano Research</i> , 2019 , 12, 299-302	0	15
260	A single-atom Fe-N catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection. <i>Chemical Communications</i> , 2018 , 55, 159-162	;.8	120
259	Revealing the Active Species for Aerobic Alcohol Oxidation by Using Uniform Supported Palladium Catalysts. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 4642-4646	6.4	62
258	Porous organic cage stabilised palladium nanoparticles: efficient heterogeneous catalysts for carbonylation reaction of aryl halides. <i>Chemical Communications</i> , 2018 , 54, 2796-2799	5.8	48
257	A Polymer Encapsulation Strategy to Synthesize Porous Nitrogen-Doped Carbon-Nanosphere-Supported Metal Isolated-Single-Atomic-Site Catalysts. <i>Advanced Materials</i> , 2018, 30, e1706508	24	203
256	Design of Single-Atom Co-N Catalytic Site: A Robust Electrocatalyst for CO Reduction with Nearly 100% CO Selectivity and Remarkable Stability. <i>Journal of the American Chemical Society</i> , 2018 , 140, 4218	4221	634
255	Revealing the Active Species for Aerobic Alcohol Oxidation by Using Uniform Supported Palladium Catalysts. <i>Angewandte Chemie</i> , 2018 , 130, 4732-4736	6	15

254	Cation vacancy stabilization of single-atomic-site Pt/Ni(OH) catalyst for diboration of alkynes and alkenes. <i>Nature Communications</i> , 2018 , 9, 1002	17.4	179
253	PtAl truncated octahedron nanocrystals for improved formic acid electrooxidation. <i>Chemical Communications</i> , 2018 , 54, 3951-3954	5.8	9
252	Ultrathin Palladium Nanomesh for Electrocatalysis. <i>Angewandte Chemie</i> , 2018 , 130, 3493-3496	3.6	19
251	Tuning defects in oxides at roomlemperature by lithium reduction. <i>Nature Communications</i> , 2018 , 9, 1302	17.4	225
250	Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the Bize shackles Nano Research, 2018, 11, 4774-4785	10	25
249	Ultrathin Palladium Nanomesh for Electrocatalysis. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 3435-3438	16.4	75
248	Effect of Protective Agents upon the Catalytic Property of Platinum Nanocrystals. <i>ChemCatChem</i> , 2018 , 10, 2433-2441	5.2	8
247	Core-Shell ZIF-8@ZIF-67-Derived CoP Nanoparticle-Embedded N-Doped Carbon Nanotube Hollow Polyhedron for Efficient Overall Water Splitting. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2610-2618	16.4	1073
246	Preparation of freestanding palladium nanosheets modified with gold nanoparticles at edges. <i>Nano Research</i> , 2018 , 11, 4142-4148	10	10
245	Strain Engineering to Enhance the Electrooxidation Performance of Atomic-Layer Pt on Intermetallic PtGa. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2773-2776	16.4	141
244	Defect Effects on TiO Nanosheets: Stabilizing Single Atomic Site Au and Promoting Catalytic Properties. <i>Advanced Materials</i> , 2018 , 30, 1705369	24	474
243	Photocatalytic hydrogenation of nitroarenes using Cu1.94S-Zn0.23Cd0.77S heteronanorods. <i>Nano Research</i> , 2018 , 11, 3730-3738	10	17
242	Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 1944-1948	16.4	607
241	Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO2. <i>Angewandte Chemie</i> , 2018 , 130, 1962-1966	3.6	176
240	General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. <i>Nature Catalysis</i> , 2018 , 1, 63-72	36.5	968
239	Fe Isolated Single Atoms on S, N Codoped Carbon by Copolymer Pyrolysis Strategy for Highly Efficient Oxygen Reduction Reaction. <i>Advanced Materials</i> , 2018 , 30, e1800588	24	338
238	Silylation reactions on nanoporous gold homolytic Si-H activation of silanes. <i>Chemical Science</i> , 2018 , 9, 4808-4813	9.4	13
237	Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction reaction. <i>Chemical Communications</i> , 2018 , 54, 4274-4277	5.8	128

236	A single palladium site catalyst as a bridge for converting homogeneous to heterogeneous in dimerization of terminal aryl acetylenes. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 1317-1322	7.8	20
235	A general synthetic strategy to monolayer graphene. <i>Nano Research</i> , 2018 , 11, 3088-3095	10	36
234	Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. <i>Nano Research</i> , 2018 , 11, 6260-6269	10	83
233	Scale-Up Biomass Pathway to Cobalt Single-Site Catalysts Anchored on N-Doped Porous Carbon Nanobelt with Ultrahigh Surface Area. <i>Advanced Functional Materials</i> , 2018 , 28, 1802167	15.6	78
232	Quantitative Study of Charge Carrier Dynamics in Well-Defined WO Nanowires and Nanosheets: Insight into the Crystal Facet Effect in Photocatalysis. <i>Journal of the American Chemical Society</i> , 2018 , 140, 9078-9082	16.4	137
231	Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. <i>Nature Nanotechnology</i> , 2018 , 13, 856-861	28.7	47 ¹
230	Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia. <i>Science Bulletin</i> , 2018 , 63, 1246-1253	10.6	158
229	Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications. <i>Joule</i> , 2018 , 2, 1242-1264	4 27.8	1046
228	Size structure-catalytic performance correlation of supported Ni/MCF-17 catalysts for CO-free hydrogen production. <i>Chemical Communications</i> , 2018 , 54, 6364-6367	5.8	25
227	A Bimetallic Zn/Fe Polyphthalocyanine-Derived Single-Atom Fe-N4 Catalytic Site:A Superior Trifunctional Catalyst for Overall Water Splitting and ZnAir Batteries. <i>Angewandte Chemie</i> , 2018 , 130, 8750-8754	3.6	40
226	A Bimetallic Zn/Fe Polyphthalocyanine-Derived Single-Atom Fe-N Catalytic Site:A Superior Trifunctional Catalyst for Overall Water Splitting and Zn-Air Batteries. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8614-8618	16.4	305
225	Biofabrication Strategy for Functional Fabrics. <i>Nano Letters</i> , 2018 , 18, 6017-6021	11.5	12
224	Single-layer Rh nanosheets with ultrahigh peroxidase-like activity for colorimetric biosensing. <i>Nano Research</i> , 2018 , 11, 6304-6315	10	43
223	Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. <i>Science China Materials</i> , 2018 , 61, 1527-1535	7.1	35
222	Discovering Partially Charged Single-Atom Pt for Enhanced Anti-Markovnikov Alkene Hydrosilylation. <i>Journal of the American Chemical Society</i> , 2018 , 140, 7407-7410	16.4	147
221	Recent advances in the precise control of isolated single-site catalysts by chemical methods. <i>National Science Review</i> , 2018 , 5, 673-689	10.8	153
220	Carbon nitride supported Fe cluster catalysts with superior performance for alkene epoxidation. <i>Nature Communications</i> , 2018 , 9, 2353	17.4	162
219	Efficient and Robust Hydrogen Evolution: Phosphorus Nitride Imide Nanotubes as Supports for Anchoring Single Ruthenium Sites. <i>Angewandte Chemie</i> , 2018 , 130, 9639-9644	3.6	21

218	Single Tungsten Atoms Supported on MOF-Derived N-Doped Carbon for Robust Electrochemical Hydrogen Evolution. <i>Advanced Materials</i> , 2018 , 30, e1800396	24	302
217	Efficient and Robust Hydrogen Evolution: Phosphorus Nitride Imide Nanotubes as Supports for Anchoring Single Ruthenium Sites. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 9495-9500	16.4	140
216	Single-Site Au Catalyst for Silane Oxidation with Water. Advanced Materials, 2018, 30, 1704720	24	84
215	Ultrathin Ptan Nanowires: High-Performance Catalysts for Electrooxidation of Methanol and Formic Acid. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 77-81	8.3	41
214	50 ppm of Pd dispersed on Ni(OH)2 nanosheets catalyzing semi-hydrogenation of acetylene with high activity and selectivity. <i>Nano Research</i> , 2018 , 11, 905-912	10	39
213	Defective molybdenum sulfide quantum dots as highly active hydrogen evolution electrocatalysts. Nano Research, 2018, 11, 751-761	10	60
212	An efficient multifunctional hybrid electrocatalyst: NiP nanoparticles on MOF-derived Co,N-doped porous carbon polyhedrons for oxygen reduction and water splitting. <i>Chemical Communications</i> , 2018 , 54, 12101-12104	5.8	77
211	Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. <i>Energy and Environmental Science</i> , 2018 , 11, 3375-3379	35.4	276
210	Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. <i>Nature Communications</i> , 2018 , 9, 4958	17.4	147
209	Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. <i>Nature Communications</i> , 2018 , 9, 5422	17.4	431
208	Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 12692-12697	11.5	222
207	Toward Bifunctional Overall Water Splitting Electrocatalyst: General Preparation of Transition Metal Phosphide Nanoparticles Decorated N-Doped Porous Carbon Spheres. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 44201-44208	9.5	51
206	Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. <i>Nature Catalysis</i> , 2018 , 1, 985-992	36.5	739
205	Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nature Catalysis, 2018, 1, 781-786	36.5	492
204	A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. <i>Nature Communications</i> , 2018 , 9, 3861	17.4	132
203	Fabrication of Single-Atom Catalysts with Precise Structure and High Metal Loading. <i>Advanced Materials</i> , 2018 , 30, e1801649	24	149
202	Constructing NiCo/FeO Heteroparticles within MOF-74 for Efficient Oxygen Evolution Reactions. Journal of the American Chemical Society, 2018, 140, 15336-15341	16.4	193
201	A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic CH bonds in toluene. <i>Nature Catalysis</i> , 2018 , 1, 704-710	36.5	144

200	One-Pot Pyrolysis to N-Doped Graphene with High-Density Pt Single Atomic Sites as Heterogeneous Catalyst for Alkene Hydrosilylation. <i>ACS Catalysis</i> , 2018 , 8, 10004-10011	13.1	75
199	Mesoporous Pd@Ru Core-Shell Nanorods for Hydrogen Evolution Reaction in Alkaline Solution. <i>ACS Applied Materials & ACS Applied & ACS Applie</i>	9.5	48
198	Temperature-Controlled Selectivity of Hydrogenation and Hydrodeoxygenation in the Conversion of Biomass Molecule by the Ru/mpg-CN Catalyst. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11161-11164	16.4	120
197	Ordered Porous Nitrogen-Doped Carbon Matrix with Atomically Dispersed Cobalt Sites as an Efficient Catalyst for Dehydrogenation and Transfer Hydrogenation of N-Heterocycles. <i>Angewandte Chemie</i> , 2018 , 130, 11432-11436	3.6	23
196	Ordered Porous Nitrogen-Doped Carbon Matrix with Atomically Dispersed Cobalt Sites as an Efficient Catalyst for Dehydrogenation and Transfer Hydrogenation of N-Heterocycles. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 11262-11266	16.4	119
195	MOF-Confined Sub-2 nm Atomically Ordered Intermetallic PdZn Nanoparticles as High-Performance Catalysts for Selective Hydrogenation of Acetylene. <i>Advanced Materials</i> , 2018 , 30, e1801878	24	77
194	Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. <i>Energy and Environmental Science</i> , 2018 , 11, 2348-2352	35.4	203
193	A Robust and Efficient Pd3 Cluster Catalyst for the Suzuki Reaction and Its Odd Mechanism. <i>ACS Catalysis</i> , 2017 , 7, 1860-1867	13.1	70
192	Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts. <i>Nature Communications</i> , 2017 , 8, 14136	17.4	272
191	Transparent Ag@Augraphene patterns with conductive stability via inkjet printing. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 2800-2806	7.1	28
190	Metal/oxide interfacial effects on the selective oxidation of primary alcohols. <i>Nature Communications</i> , 2017 , 8, 14039	17.4	115
189	Photo-driven redox-neutral decarboxylative carbon-hydrogen trifluoromethylation of (hetero)arenes with trifluoroacetic acid. <i>Nature Communications</i> , 2017 , 8, 14353	17.4	52
188	Controlled Synthesis and Flexible Self-Assembly of Monodisperse [email[protected] Core/Shell Hetero-Nanocrystals into Diverse Superstructures. <i>Chemistry of Materials</i> , 2017 , 29, 2355-2363	9.6	29
187	Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 6937-6941	16.4	1138
186	Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. <i>Angewandte Chemie</i> , 2017 , 129, 7041-7045	3.6	241
185	Isolated Single-Atom Pd Sites in Intermetallic Nanostructures: High Catalytic Selectivity for Semihydrogenation of Alkynes. <i>Journal of the American Chemical Society</i> , 2017 , 139, 7294-7301	16.4	238
184	Innenröktitelbild: Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction (Angew. Chem. 24/2017). <i>Angewandte Chemie</i> , 2017 , 129, 7107-7107	3.6	5
183	Understanding the Dual Active Sites of the FeO/Pt(111) Interface and Reaction Kinetics: Density Functional Theory Study on Methanol Oxidation to Formaldehyde. <i>ACS Catalysis</i> , 2017 , 7, 4281-4290	13.1	36

182	An efficientfficient, controllable and facile two-step synthesis strategy: Fe3O4@RGO composites with various Fe3O4 nanoparticles and their supercapacitance properties. <i>Nano Research</i> , 2017 , 10, 3303	3- 3 313	24
181	Ionic Exchange of Metal-Organic Frameworks to Access Single Nickel Sites for Efficient Electroreduction of CO. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8078-8081	16.4	825
180	Cage-Confinement Pyrolysis Route to Ultrasmall Tungsten Carbide Nanoparticles for Efficient Electrocatalytic Hydrogen Evolution. <i>Journal of the American Chemical Society</i> , 2017 , 139, 5285-5288	16.4	274
179	High-Performance RhP Electrocatalyst for Efficient Water Splitting. <i>Journal of the American Chemical Society</i> , 2017 , 139, 5494-5502	16.4	267
178	Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the synergetic effect of NaYF4:Er3+/Yb3+ and g-C3N4. <i>Science China Materials</i> , 2017 , 60, 228-238	7.1	21
177	Down-shifting luminescence of water soluble NaYF4:Eu3+@Ag core-shell nanocrystals for fluorescence turn-on detection of glucose. <i>Science China Materials</i> , 2017 , 60, 68-74	7.1	19
176	Preparation and electrochemical characterization of ultrathin WO3☑ /C nanosheets as anode materials in lithium ion batteries. <i>Nano Research</i> , 2017 , 10, 1903-1911	10	29
175	Rational Design of Single Molybdenum Atoms Anchored on N-Doped Carbon for Effective Hydrogen Evolution Reaction. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 16086-16090	16.4	299
174	Rational Design of Single Molybdenum Atoms Anchored on N-Doped Carbon for Effective Hydrogen Evolution Reaction. <i>Angewandte Chemie</i> , 2017 , 129, 16302-16306	3.6	66
173	Single Ni sites distributed on N-doped carbon for selective hydrogenation of acetylene. <i>Chemical Communications</i> , 2017 , 53, 11568-11571	5.8	58
172	Bimetallic Ru-Co Clusters Derived from a Confined Alloying Process within Zeolite-Imidazolate Frameworks for Efficient NH Decomposition and Synthesis. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 39450-39455	9.5	30
171	Atomically Dispersed Copper B latinum Dual Sites Alloyed with Palladium Nanorings Catalyze the Hydrogen Evolution Reaction. <i>Angewandte Chemie</i> , 2017 , 129, 16263-16267	3.6	39
170	Atomically Dispersed Copper-Platinum Dual Sites Alloyed with Palladium Nanorings Catalyze the Hydrogen Evolution Reaction. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 16047-16051	16.4	164
169	Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. <i>Science Advances</i> , 2017 , 3, e1603068	14.3	181
168	Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst. <i>Nature Communications</i> , 2017 , 8, 591	17.4	69
167	Rational Control of the Selectivity of a Ruthenium Catalyst for Hydrogenation of 4-Nitrostyrene by Strain Regulation. <i>Angewandte Chemie</i> , 2017 , 129, 12133-12137	3.6	12
166	Rational Control of the Selectivity of a Ruthenium Catalyst for Hydrogenation of 4-Nitrostyrene by Strain Regulation. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 11971-11975	16.4	65
165	Metal (Hydr)oxides@Polymer Core-Shell Strategy to Metal Single-Atom Materials. <i>Journal of the American Chemical Society</i> , 2017 , 139, 10976-10979	16.4	193

(2016-2017)

164	ZIF-derived porous carbon supported Pd nanoparticles within mesoporous silica shells: sintering-and leaching-resistant core-shell nanocatalysts. <i>Chemical Communications</i> , 2017 , 53, 9490-9493	5.8	41
163	Design of N-Coordinated Dual-Metal Sites: A Stable and Active Pt-Free Catalyst for Acidic Oxygen Reduction Reaction. <i>Journal of the American Chemical Society</i> , 2017 , 139, 17281-17284	16.4	815
162	Hollow N-Doped Carbon Spheres with Isolated Cobalt Single Atomic Sites: Superior Electrocatalysts for Oxygen Reduction. <i>Journal of the American Chemical Society</i> , 2017 , 139, 17269-17272	16.4	444
161	Confined Pyrolysis within Metal-Organic Frameworks To Form Uniform Ru Clusters for Efficient Oxidation of Alcohols. <i>Journal of the American Chemical Society</i> , 2017 , 139, 9795-9798	16.4	157
160	Uncoordinated Amine Groups of Metal-Organic Frameworks to Anchor Single Ru Sites as Chemoselective Catalysts toward the Hydrogenation of Quinoline. <i>Journal of the American Chemical Society</i> , 2017 , 139, 9419-9422	16.4	389
159	Understanding of the major reactions in solution synthesis of functional nanomaterials. <i>Science China Materials</i> , 2016 , 59, 938-996	7.1	75
158	Titelbild: Porous Molybdenum Phosphide Nano-Octahedrons Derived from Confined Phosphorization in UIO-66 for Efficient Hydrogen Evolution (Angew. Chem. 41/2016). <i>Angewandte Chemie</i> , 2016 , 128, 12733-12733	3.6	
157	Porous Molybdenum Phosphide Nano-Octahedrons Derived from Confined Phosphorization in UIO-66 for Efficient Hydrogen Evolution. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12854-8	16.4	269
156	Porous Molybdenum Phosphide Nano-Octahedrons Derived from Confined Phosphorization in UIO-66 for Efficient Hydrogen Evolution. <i>Angewandte Chemie</i> , 2016 , 128, 13046-13050	3.6	86
155	Au/CuSiO3 nanotubes: High-performance robust catalysts for selective oxidation of ethanol to acetaldehyde. <i>Nano Research</i> , 2016 , 9, 2681-2686	10	17
154	Atomically Dispersed Ru on Ultrathin Pd Nanoribbons. <i>Journal of the American Chemical Society</i> , 2016 , 138, 13850-13853	16.4	105
153	Ultrasmall Cu7 S4 @MoS2 Hetero-Nanoframes with Abundant Active Edge Sites for Ultrahigh-Performance Hydrogen Evolution. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 6502-	.5 ^{16.4}	110
152	Pd-dispersed CuS hetero-nanoplates for selective hydrogenation of phenylacetylene. <i>Nano Research</i> , 2016 , 9, 1209-1219	10	25
151	Controlled one-pot synthesis of RuCu nanocages and Cu@Ru nanocrystals for the regioselective hydrogenation of quinoline. <i>Nano Research</i> , 2016 , 9, 2632-2640	10	40
150	Hybrid atomic layers based electrocatalyst converts waste CO2 into liquid fuel. <i>Science China Materials</i> , 2016 , 59, 1-3	7.1	16
149	Photosynthetic conversion of CO2 to acetic acid by an inorganic-biological hybrid system. <i>Science China Materials</i> , 2016 , 59, 93-94	7.1	3
148	Pt/Y2O3:Eu3+ composite nanotubes: Enhanced photoluminescence and application in dye-sensitized solar cells. <i>Nano Research</i> , 2016 , 9, 2338-2346	10	17
147	Ultrathin Icosahedral Pt-Enriched Nanocage with Excellent Oxygen Reduction Reaction Activity. Journal of the American Chemical Society, 2016, 138, 1494-7	16.4	255

146	A facile strategy for the synthesis of branched PtPdM (M = Co, Ni) trimetallic nanocrystals. CrystEngComm, 2016 , 18, 4023-4026	3.3	5
145	Interface-induced formation of onion-like alloy nanocrystals by defects engineering. <i>Nano Research</i> , 2016 , 9, 584-592	10	12
144	Ir-Cu nanoframes: one-pot synthesis and efficient electrocatalysts for oxygen evolution reaction. <i>Chemical Communications</i> , 2016 , 52, 3793-6	5.8	63
143	Remarkable anodic performance of lead titanate 1D nanostructures via in-situ irreversible formation of abundant Ti3+ as conduction pathways. <i>Nano Research</i> , 2016 , 9, 353-362	10	6
142	Transition-Metal-Free Deacylative Cleavage of Unstrained C(sp(3))-C(sp(2)) Bonds: Cyanide-Free Access to Aryl and Aliphatic Nitriles from Ketones and Aldehydes. <i>Organic Letters</i> , 2016 , 18, 228-31	6.2	54
141	Nano PdAu Bimetallic Alloy as an Effective Catalyst for the Buchwald-Hartwig Reaction. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 351-5	4.5	16
140	Modulating fcc and hcp Ruthenium on the Surface of Palladium©opper Alloy through Tunable Lattice Mismatch. <i>Angewandte Chemie</i> , 2016 , 128, 5591-5595	3.6	27
139	Platinum-Copper Nanoframes: One-Pot Synthesis and Enhanced Electrocatalytic Activity. <i>Chemistry - A European Journal</i> , 2016 , 22, 4960-5	4.8	23
138	Intermetallic Nix My (M = Ga and Sn) Nanocrystals: A Non-precious Metal Catalyst for Semi-Hydrogenation of Alkynes. <i>Advanced Materials</i> , 2016 , 28, 4747-54	24	104
137	Kinetically Controlling Surface Structure to Construct Defect-Rich Intermetallic Nanocrystals: Effective and Stable Catalysts. <i>Advanced Materials</i> , 2016 , 28, 2540-6	24	72
136	Ultrasmall Cu7S4@MoS2 Hetero-Nanoframes with Abundant Active Edge Sites for Ultrahigh-Performance Hydrogen Evolution. <i>Angewandte Chemie</i> , 2016 , 128, 6612-6615	3.6	14
135	Co2C nanoprisms with strong facet effect for Fischer-Tropsch to olefins reaction. <i>Science China Materials</i> , 2016 , 59, 1000-1002	7.1	2
134	Synthesis of pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals for photocatalytic hydrogen production. <i>Nano Research</i> , 2016 , 9, 726-734	10	32
133	Controllable synthesis of Pttu nanocrystals and their tunable catalytic properties. <i>CrystEngComm</i> , 2016 , 18, 3764-3767	3.3	6
132	One-step accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor. <i>Nano Research</i> , 2016 , 9, 2026-2033	10	99
131	Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 10800-5	16.4	1397
130	Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts. <i>Angewandte Chemie</i> , 2016 , 128, 10958-10963	3.6	259
129	Pd3 cluster catalysis: Compelling evidence from in operando spectroscopic, kinetic, and density functional theory studies. <i>Nano Research</i> , 2016 , 9, 2544-2550	10	15

(2015-2015)

128	Nanostructuring gold wires as highly durable nanocatalysts for selective reduction of nitro compounds and azides with organosilanes. <i>Nano Research</i> , 2015 , 8, 1365-1372	10	27
127	Porous bimetallic Pt-Fe nanocatalysts for highly efficient hydrogenation of acetone. <i>Nano Research</i> , 2015 , 8, 2706-2713	10	38
126	Heterogeneous catalysis for green chemistry based on nanocrystals. <i>National Science Review</i> , 2015 , 2, 150-166	10.8	50
125	Copper nanocrystal plane effect on stereoselectivity of catalytic deoxygenation of aromatic epoxides. <i>Journal of the American Chemical Society</i> , 2015 , 137, 3791-4	16.4	44
124	Room-Temperature Hydrogenation of Citral Catalyzed by PalladiumBilver Nanocrystals Supported on SnO2. <i>European Journal of Inorganic Chemistry</i> , 2015 , 2015, 2120-2124	2.3	4
123	Platinum-nickel frame within metal-organic framework fabricated in situ for hydrogen enrichment and molecular sieving. <i>Nature Communications</i> , 2015 , 6, 8248	17.4	152
122	Realize molecular surgical knife in tumor therapy by nanotechnology. <i>Science China Materials</i> , 2015 , 58, 851-851	7.1	3
121	Seed-mediated synthesis of hexameric octahedral PtPdCu nanocrystals with high electrocatalytic performance. <i>Chemical Communications</i> , 2015 , 51, 15406-9	5.8	19
120	Ordered Porous Pd Octahedra Covered with Monolayer Ru Atoms. <i>Journal of the American Chemical Society</i> , 2015 , 137, 14566-9	16.4	50
	Synthesis of palladium and palladium sulfide nanocrystals via thermolysis of a PdEhiolate cluster.		
119	Science China Materials, 2015 , 58, 936-943	7.1	9
119		7.1 7.1	32
	Science China Materials, 2015, 58, 936-943 Microwave-assisted synthesis of layer-by-layer ultra-large and thin NiAl-LDH/RGO nanocomposites	<i>,</i>	
118	Microwave-assisted synthesis of layer-by-layer ultra-large and thin NiAl-LDH/RGO nanocomposites and their excellent performance as electrodes. <i>Science China Materials</i> , 2015 , 58, 944-952 Hollow Zn/Co ZIF Particles Derived from CoreBhell ZIF-67@ZIF-8 as Selective Catalyst for the	7.1	32
118	Microwave-assisted synthesis of layer-by-layer ultra-large and thin NiAl-LDH/RGO nanocomposites and their excellent performance as electrodes. <i>Science China Materials</i> , 2015 , 58, 944-952 Hollow Zn/Co ZIF Particles Derived from CoreBhell ZIF-67@ZIF-8 as Selective Catalyst for the Semi-Hydrogenation of Acetylene. <i>Angewandte Chemie</i> , 2015 , 127, 11039-11043 Hollow Zn/Co ZIF Particles Derived from Core-Shell ZIF-67@ZIF-8 as Selective Catalyst for the	7.1 3.6	32
118 117 116	Microwave-assisted synthesis of layer-by-layer ultra-large and thin NiAl-LDH/RGO nanocomposites and their excellent performance as electrodes. <i>Science China Materials</i> , 2015 , 58, 944-952 Hollow Zn/Co ZIF Particles Derived from CoreBhell ZIF-67@ZIF-8 as Selective Catalyst for the Semi-Hydrogenation of Acetylene. <i>Angewandte Chemie</i> , 2015 , 127, 11039-11043 Hollow Zn/Co ZIF Particles Derived from Core-Shell ZIF-67@ZIF-8 as Selective Catalyst for the Semi-Hydrogenation of Acetylene. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 10889-93 Structure Evolution and Associated Catalytic Properties of Pt-Sn Bimetallic Nanoparticles.	7.1 3.6 16.4	32 126 491
118 117 116	Microwave-assisted synthesis of layer-by-layer ultra-large and thin NiAl-LDH/RGO nanocomposites and their excellent performance as electrodes. <i>Science China Materials</i> , 2015 , 58, 944-952 Hollow Zn/Co ZIF Particles Derived from CoreBhell ZIF-67@ZIF-8 as Selective Catalyst for the Semi-Hydrogenation of Acetylene. <i>Angewandte Chemie</i> , 2015 , 127, 11039-11043 Hollow Zn/Co ZIF Particles Derived from Core-Shell ZIF-67@ZIF-8 as Selective Catalyst for the Semi-Hydrogenation of Acetylene. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 10889-93 Structure Evolution and Associated Catalytic Properties of Pt-Sn Bimetallic Nanoparticles. <i>Chemistry - A European Journal</i> , 2015 , 21, 12034-41 Silver Iodide Nanospheres Wrapped in Reduced Graphene Oxide for Enhanced Photocatalysis.	7.1 3.6 16.4 4.8	32 126 491 43
118 117 116 115	Microwave-assisted synthesis of layer-by-layer ultra-large and thin NiAl-LDH/RGO nanocomposites and their excellent performance as electrodes. Science China Materials, 2015, 58, 944-952 Hollow Zn/Co ZIF Particles Derived from CoreBhell ZIF-67@ZIF-8 as Selective Catalyst for the Semi-Hydrogenation of Acetylene. Angewandte Chemie, 2015, 127, 11039-11043 Hollow Zn/Co ZIF Particles Derived from Core-Shell ZIF-67@ZIF-8 as Selective Catalyst for the Semi-Hydrogenation of Acetylene. Angewandte Chemie - International Edition, 2015, 54, 10889-93 Structure Evolution and Associated Catalytic Properties of Pt-Sn Bimetallic Nanoparticles. Chemistry - A European Journal, 2015, 21, 12034-41 Silver Iodide Nanospheres Wrapped in Reduced Graphene Oxide for Enhanced Photocatalysis. ChemCatChem, 2015, 7, 2918-2923 Bamboo-Like Nitrogen-Doped Carbon Nanotubes with Co Nanoparticles Encapsulated at the Tips: Uniform and Large-Scale Synthesis and High-Performance Electrocatalysts for Oxygen Reduction.	7.1 3.6 16.4 4.8	32 126 491 43

110	New understanding of phase segregation of bimetallic nanoalloys. <i>Science China Materials</i> , 2015 , 58, 3-4	7.1	6
109	Green chemistry for nanoparticle synthesis. <i>Chemical Society Reviews</i> , 2015 , 44, 5778-92	58.5	625
108	Ultrathin nickel hydroxide and oxide nanosheets: synthesis, characterizations and excellent supercapacitor performances. <i>Scientific Reports</i> , 2014 , 4, 5787	4.9	301
107	Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. <i>Science</i> , 2014 , 343, 1339-43	33.3	1989
106	Nanocrystals from solutions: catalysts. <i>Chemical Society Reviews</i> , 2014 , 43, 2112-24	58.5	158
105	A used battery supported Ag catalyst for efficient oxidation of alcohols and carbon oxide. <i>RSC Advances</i> , 2014 , 4, 25384-25388	3.7	11
104	5-fold Twinned Nanowires and Single Twinned Right Bipyramids of Pd: Utilizing Small Organic Molecules To Tune the Etching Degree of O2/Halides. <i>Chemistry of Materials</i> , 2014 , 26, 2453-2459	9.6	38
103	Breakthrough in carbon nanotube growth: unique alloy nanocatalysts lead to the chirality specified tubes. <i>Science China Chemistry</i> , 2014 , 57, 1184-1184	7.9	1
102	Ultrathin rhodium nanosheets. <i>Nature Communications</i> , 2014 , 5, 3093	17.4	350
101	Fabrication of 1D nickel sulfide nanocrystals with high capacitances and remarkable durability. <i>RSC Advances</i> , 2014 , 4, 47513-47516	3.7	16
100	Theoretical study of the crystal plane effect and ion-pair active center for Cℍ bond activation by Co3O4 nanocrystals. <i>Chinese Journal of Catalysis</i> , 2014 , 35, 462-467	11.3	25
99	Hydroformylation of alkenes over rhodium supported on the metal-organic framework ZIF-8. <i>Nano Research</i> , 2014 , 7, 1364-1369	10	83
98	Removal and Utilization of Capping Agents in Nanocatalysis. <i>Chemistry of Materials</i> , 2014 , 26, 72-83	9.6	543
97	Pd-Cu2O and Ag-Cu2O Hybrid Concave Nanomaterials for an Effective Synergistic Catalyst. <i>Angewandte Chemie</i> , 2013 , 125, 11255-11259	3.6	15
96	Defect-dominated shape recovery of nanocrystals: a new strategy for trimetallic catalysts. <i>Journal of the American Chemical Society</i> , 2013 , 135, 12220-3	16.4	88
95	Preparation of bimetallic nanocrystals by coreduction of mixed metal ions in a liquid s olid s olution synthetic system according to the electronegativity of alloys. <i>CrystEngComm</i> , 2013 , 15, 4806	3.3	7
94	Assembling TiO2 nanocrystals into nanotube networks on two dimensional substrates. <i>RSC Advances</i> , 2013 , 3, 18894	3.7	
93	Pt-M (M = Cu, Co, Ni, Fe) nanocrystals: from small nanoparticles to wormlike nanowires by oriented attachment. <i>Chemistry - A European Journal</i> , 2013 , 19, 233-9	4.8	100

(2012-2013)

92	Flexible SnS nanobelts: Facile synthesis, formation mechanism and application in Li-ion batteries. <i>Nano Research</i> , 2013 , 6, 55-64	10	122
91	SemiconductorBoble metal hybrid nanomaterials with controlled structures. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 1587-1590	13	35
90	Hematite nanodiscs exposing (001) facets: synthesis, formation mechanism and application for Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5232	13	33
89	Highly Active and Selective Catalysis of Bimetallic Rh3Ni1 Nanoparticles in the Hydrogenation of Nitroarenes. <i>ACS Catalysis</i> , 2013 , 3, 608-612	13.1	151
88	Interface-Mediated Synthesis of Transition-Metal (Mn, Co, and Ni) Hydroxide Nanoplates. <i>Crystal Growth and Design</i> , 2013 , 13, 1949-1954	3.5	9
87	ZnO hierarchical aggregates: Solvothermal synthesis and application in dye-sensitized solar cells. <i>Nano Research</i> , 2013 , 6, 441-448	10	24
86	Composition-Dependent Catalytic Activity of Bimetallic Nanocrystals: AgPd-Catalyzed Hydrodechlorination of 4-Chlorophenol. <i>ACS Catalysis</i> , 2013 , 3, 1560-1563	13.1	73
85	Size and shape control of LiFePO4 nanocrystals for better lithium ion battery cathode materials. <i>Nano Research</i> , 2013 , 6, 469-477	10	108
84	The electronic structure and geometric structure of nanoclusters as catalytic active sites. <i>Nanotechnology Reviews</i> , 2013 , 2, 515-528	6.3	34
83	Magnetic Tuning of Upconversion Luminescence in Lanthanide-Doped Bifunctional Nanocrystals. <i>Angewandte Chemie</i> , 2013 , 125, 4462-4465	3.6	20
82	Catalysis based on nanocrystals with well-defined facets. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 602-13	16.4	641
81	Facile synthesis of LiCoO2 nanowires with high electrochemical performance. <i>Nano Research</i> , 2012 , 5, 27-32	10	57
80	A Strategy for Designing a Concave PtNi Alloy through Controllable Chemical Etching. <i>Angewandte Chemie</i> , 2012 , 124, 12692-12696	3.6	37
79	Highly branched PtNi nanocrystals enclosed by stepped surface for methanol oxidation. <i>Chemical Science</i> , 2012 , 3, 1925	9.4	136
78	Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. <i>Nano Today</i> , 2012 , 7, 448-466	17.9	405
77	Self-assembly of ZnO nanocrystals into nanoporous pyramids: high selective adsorption and photocatalytic activity. <i>Journal of Materials Chemistry</i> , 2012 , 22, 6539		32
76	Nanokristalle mit wohldefinierten Kristallfl\(\text{l}\)hen f\(\text{l}\) die Katalyse. Angewandte Chemie, 2012 , 124, 622-635	53.6	64
75	Evidence of an oxidative-addition-promoted Pd-leaching mechanism in the Suzuki reaction by using a Pd-nanostructure design. <i>Chemistry - A European Journal</i> , 2012 , 18, 9813-7	4.8	77

74	Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions. <i>Journal of the American Chemical Society</i> , 2012 , 134, 8975-81	16.4	295
73	Polyol synthesis and chemical conversion of Cu2O nanospheres. <i>Nano Research</i> , 2012 , 5, 320-326	10	33
72	LiCoO2 nanoplates with exposed (001) planes and high rate capability for lithium-ion batteries. <i>Nano Research</i> , 2012 , 5, 395-401	10	61
71	Solvothermal synthesis of lithium iron phosphate nanoplates. <i>Journal of Materials Chemistry</i> , 2011 , 21, 9994		136
70	Controlled synthesis of wurtzite CuInS2 nanocrystals and their side-by-side nanorod assemblies. <i>CrystEngComm</i> , 2011 , 13, 4039	3.3	94
69	Pd nanocrystals with single-, double-, and triple-cavities: facile synthesis and tunable plasmonic properties. <i>Chemical Science</i> , 2011 , 2, 2392	9.4	35
68	Enhanced Photocatalytic Properties of SnO2 Nanocrystals with Decreased Size for ppb-level Acetaldehyde Decomposition. <i>ChemCatChem</i> , 2011 , 3, 371-377	5.2	38
67	Low-temperature CH4 Catalytic Combustion over Pd Catalyst Supported on Co3O4 Nanocrystals with Well-Defined Crystal Planes. <i>ChemCatChem</i> , 2011 , 3, 868-874	5.2	47
66	CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance. <i>Nano Research</i> , 2011 , 4, 249-258	10	78
65	Effective approach for the synthesis of monodisperse magnetic nanocrystals and M-Fe3O4 (M = Ag, Au, Pt, Pd) heterostructures. <i>Nano Research</i> , 2011 , 4, 1223-1232	10	56
64	Copper-mediated synthesis of PdI2 colloidal spheres. Science China Chemistry, 2011, 54, 1027-1031	7.9	4
63	Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. <i>Advanced Materials</i> , 2011 , 23, 1044-60	24	901
62	Bimetallic Nanocrystals: Bimetallic Nanocrystals: Liquid-Phase Synthesis and Catalytic Applications (Adv. Mater. 9/2011). <i>Advanced Materials</i> , 2011 , 23, 1036-1036	24	9
61	Mesoporous Multicomponent Nanocomposite Colloidal Spheres: Ideal High-Temperature Stable Model Catalysts. <i>Angewandte Chemie</i> , 2011 , 123, 3809-3813	3.6	14
60	Oleylamine-Mediated Shape Evolution of Palladium Nanocrystals. <i>Angewandte Chemie</i> , 2011 , 123, 6439	9- <u>6</u> 4643	46
59	Oleylamine-mediated shape evolution of palladium nanocrystals. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 6315-9	16.4	140
58	From Single-Component Nanowires to Composite Nanotubes. <i>Crystal Growth and Design</i> , 2011 , 11, 440	6 344 12	7
57	Effect of exchange-type zero-bias anomaly on single-electron tunneling of Au nanoparticles. <i>Physical Review B</i> , 2011 , 84,	3.3	3

(2008-2011)

56	Solvothermal synthesis and luminescence of nearly monodisperse LnVO4 nanoparticles. <i>Journal of Materials Research</i> , 2011 , 26, 1168-1173	2.5	28
55	Synthesis of LiV3O8 nanorods and shape-dependent electrochemical performance. <i>Journal of Materials Research</i> , 2011 , 26, 424-429	2.5	3
54	Direct subangstrom measurement of surfaces of oxide particles. <i>Physical Review Letters</i> , 2010 , 105, 226	51704	53
53	Inhibited single-electron transfer by electronic band gap of two-dimensional Au quantum dot superlattice. <i>Applied Physics Letters</i> , 2010 , 97, 113101	3.4	7
52	Mn3O4 Nanocrystals: Facile Synthesis, Controlled Assembly, and Application. <i>Chemistry of Materials</i> , 2010 , 22, 4232-4236	9.6	112
51	Nanocrystalline intermetallics and alloys. <i>Nano Research</i> , 2010 , 3, 574-580	10	172
50	LiMn2O4 microspheres: Synthesis, characterization and use as a cathode in lithium ion batteries. <i>Nano Research</i> , 2010 , 3, 733-737	10	88
49	Shape control of CoO and LiCoO2 nanocrystals. <i>Nano Research</i> , 2010 , 3, 1-7	10	67
48	Shape-controlled CuCl crystallite catalysts for aniline coupling. <i>Nano Research</i> , 2010 , 3, 174-179	10	24
47	Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation. <i>Nano Research</i> , 2010 , 3, 363-368	10	240
46	Reply to Comment on: Nucleation and Growth of BaFxCl2N Nanorods (Chemistry - A European Journal, 2010 , 16, 12528-12528	4.8	
45	Nanocrystals: Solution-based synthesis and applications as nanocatalysts. <i>Nano Research</i> , 2009 , 2, 30-46	510	159
44	Bi2S3 nanotubes: Facile synthesis and growth mechanism. <i>Nano Research</i> , 2009 , 2, 130-134	10	66
43	Hydrothermal synthesis of orthorhombic LiMnO2 nano-particles and LiMnO2 nanorods and comparison of their electrochemical performances. <i>Nano Research</i> , 2009 , 2, 923-930	10	55
42	Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. <i>Journal of the American Chemical Society</i> , 2008 , 130, 16136-7	16.4	7 ⁸ 5
41	Luminescent Bis-(8-hydroxyquinoline) Cadmium Complex Nanorods. <i>Crystal Growth and Design</i> , 2008 , 8, 564-567	3.5	59
40	Room-Temperature Soft Magnetic Iron Oxide Nanocrystals: Synthesis, Characterization, and Size-Dependent Magnetic Properties. <i>Chemistry of Materials</i> , 2008 , 20, 5029-5034	9.6	75
39	Au/LaVO4 Nanocomposite: Preparation, characterization, and catalytic activity for CO oxidation. <i>Nano Research</i> , 2008 , 1, 46-55	10	73

		Yadong Li	
38	Preparation of monodisperse Se colloid spheres and Se nanowires using Na2SeSO3 as precursor. <i>Nano Research</i> , 2008 , 1, 403-411	10	45
37	Ultralong Single-Crystalline Ag2S Nanowires: Promising Candidates for Photoswitches and Room-Temperature Oxygen Sensors. <i>Advanced Materials</i> , 2008 , 20, 2628-2632	24	109
36	Template-Free Synthesis and Characterization of Single-Phase Voided Poly(o-anisidine) and Polyaniline Colloidal Spheres. <i>Chemistry of Materials</i> , 2007 , 19, 5773-5778	9.6	37
35	Monodispersed Nanocrystalline Fluoroperovskite Up-Conversion Phosphors. <i>Crystal Growth and Design</i> , 2007 , 7, 2774-2777	3.5	67
34	Interface-mediated growth of monodispersed nanostructures. <i>Accounts of Chemical Research</i> , 2007 , 40, 635-43	24.3	146
33	General synthesis of colloidal rare earth orthovanadate nanocrystals. <i>Journal of Materials Chemistry</i> , 2007 , 17, 1797		127
32	Single-Crystal Metal Nanoplatelets: Cobalt, Nickel, Copper, and Silver. <i>Crystal Growth and Design</i> , 2007 , 7, 1904-1911	3.5	94
31	Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. <i>Chemistry - A European Journal</i> , 2006 , 12, 2039-47	4.8	406
30	One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. <i>Chemistry - A European Journal</i> , 2006 , 12, 6341-7	4.8	401
29	Enhanced low field magnetoresistance of Fe3O4 nanosphere compact. <i>Journal of Applied Physics</i> , 2006 , 100, 044314	2.5	11
28	Synthesis and Characterization of Ternary NH4Ln2F7 (Ln = Y, Ho, Er, Tm, Yb, Lu) Nanocages. <i>European Journal of Inorganic Chemistry</i> , 2006 , 2006, 2186-2191	2.3	19
27	Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy. <i>Physical Review B</i> , 2006 , 73,	3.3	446
26	Nearly Monodisperse Cu2O and CuO Nanospheres: Preparation and Applications for Sensitive Gas Sensors. <i>Chemistry of Materials</i> , 2006 , 18, 867-871	9.6	966
25	Oxides@C CoreBhell Nanostructures: One-Pot Synthesis, Rational Conversion, and Li Storage Property. <i>Chemistry of Materials</i> , 2006 , 18, 3486-3494	9.6	222
24	Solution-based routes to transition-metal oxide one-dimensional nanostructures. <i>Pure and Applied Chemistry</i> , 2006 , 78, 45-64	2.1	35
23	Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. <i>Chemistry - an Asian Journal</i> , 2006 , 1, 888-93	4.5	302
22	A general strategy for nanocrystal synthesis. <i>Nature</i> , 2005 , 437, 121-4	50.4	2257

Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. *Journal of Catalysis*, **2005**, 229, 206-212

7.3 916

20	Favorable synergetic effects between CuO and the reactive planes of ceria nanorods. <i>Catalysis Letters</i> , 2005 , 101, 169-173	2.8	57
19	Synthesis, crystal structures and properties of two copper(II) 2-aminomethylbenzimidazole complexes. <i>Transition Metal Chemistry</i> , 2003 , 28, 464-467	2.1	5
18	Synthesis and characterization of ion-exchangeable titanate nanotubes. <i>Chemistry - A European Journal</i> , 2003 , 9, 2229-38	4.8	835
17	Different morphology at different reactant molar ratios: synthesis of silver halide low-dimensional nanomaterials in microemulsions. <i>Journal of Materials Chemistry</i> , 2003 , 13, 163-165		17
16	From surfactant-inorganic mesostructures to tungsten nanowires. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 333-5	16.4	92
15	Synthesis, assembly and device of 1-dimentional nanostructures. <i>Science Bulletin</i> , 2002 , 47, 1149-1156		
14	Selected-control hydrothermal synthesis of alpha- and beta-MnO(2) single crystal nanowires. <i>Journal of the American Chemical Society</i> , 2002 , 124, 2880-1	16.4	910
13	Selective Synthesis and Magnetic Properties of \(\frac{1}{2}\)MnSe and MnSe2 Uniform Microcrystals. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 9261-9265	3.4	65
12	Bismuth nanotubes: a rational low-temperature synthetic route. <i>Journal of the American Chemical Society</i> , 2001 , 123, 9904-5	16.4	445
11	The synthesis of nanocrystalline anatase and rutile titania in mixed organic media. <i>Inorganic Chemistry</i> , 2001 , 40, 5210-4	5.1	151
10	Straightforward conversion route to nanocrystalline monothiooxides of rare earths through a high-temperature colloid technique. <i>Inorganic Chemistry</i> , 2000 , 39, 3418-20	5.1	23
9	Emulsion liquid membrane separation of As(III) and As(V). <i>FreseniusnJournal of Analytical Chemistry</i> , 1999 , 363, 317-319		4
8	Room Temperature Synthesis of Metal Chalcogenides in Ethylenediamine. <i>Inorganic Chemistry</i> , 1999 , 38, 4737-4740	5.1	71
7	A Solvothermal Elemental Reaction To Produce Nanocrystalline ZnSe. <i>Inorganic Chemistry</i> , 1998 , 37, 28	4 4. 284	· 5 83
6	Atomically dispersed Ni anchored on polymer-derived mesh-like N-doped carbon nanofibers as an efficient CO2 electrocatalytic reduction catalyst. <i>Nano Research</i> ,1	10	2
5	Revealing the surface atomic arrangement of noble metal alkane dehydrogenation catalysts by a stepwise reduction-oxidation approach. <i>Nano Research</i> ,1	10	4
4	RuO2 clusters derived from bulk SrRuO3: Robust catalyst for oxygen evolution reaction in acid. <i>Nano Research</i> ,1	10	5
3	Construction of N, P co-doped carbon frames anchored with Fe single atoms and Fe 2 P nanoparticles as robust coupling catalyst for electrocatalytic oxygen reduction. <i>Advanced Materials</i> ,220	3621	9

Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. *Nano Research*,

10 22

Recent Progress in Thermal Conversion of CO 2 via Single-Atom Site Catalysis. Small Structures,

8.7