Catherine Mollereau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7919969/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature, 1995, 377, 532-535.	27.8	1,853
2	ORL1, a novel member of the opioid receptor family. FEBS Letters, 1994, 341, 33-38.	2.8	969
3	Molecular Cloning and Functional Expression of a New Human CC-Chemokine Receptor Geneâ€. Biochemistry, 1996, 35, 3362-3367.	2.5	665
4	Expression of members of the putative olfactory receptor gene family in mammalian germ cells. Nature, 1992, 355, 453-455.	27.8	390
5	ChemR23, a putative chemoattractant receptor, is expressed in monocyte-derived dendritic cells and macrophages and is a coreceptor for SIV and some primary HIV-1 strains. European Journal of Immunology, 1998, 28, 1689-1700.	2.9	232
6	Tissue distribution of the opioid receptor-like (ORL1) receptor. Peptides, 2000, 21, 907-917.	2.4	223
7	RF9, a potent and selective neuropeptide FF receptor antagonist, prevents opioid-induced tolerance associated with hyperalgesia. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 466-471.	7.1	206
8	Recognition and activation of the opioid receptor-like ORL1 receptor by nociceptin, nociceptin analogs and opioids. European Journal of Pharmacology, 1997, 321, 97-103.	3.5	130
9	Pharmacological characterization of human NPFF1 and NPFF2 receptors expressed in CHO cells by using NPY Y1 receptor antagonists. European Journal of Pharmacology, 2002, 451, 245-256.	3.5	124
10	Functional characterization of a human receptor for neuropeptide FF and related peptides. British Journal of Pharmacology, 2001, 133, 138-144.	5.4	111
11	Opioid-modulating Peptides: Mechanisms of Action. Current Topics in Medicinal Chemistry, 2005, 5, 341-355.	2.1	90
12	[Phe1̈r(CH2-NH)Gly2]nociceptin-(1-13)-NH2 is an agonist of the nociceptin (ORL1) receptor. European Journal of Pharmacology, 1998, 349, R5-R6.	3.5	88
13	Distinct Mechanisms for Activation of the Opioid Receptor-Like 1 and κ-Opioid Receptors by Nociceptin and Dynorphin A. Molecular Pharmacology, 1999, 55, 324-331.	2.3	78
14	Neuropeptide FF (NPFF) Analogs Functionally Antagonize Opioid Activities in NPFF2 Receptor-Transfected SH-SY5Y Neuroblastoma Cells. Molecular Pharmacology, 2005, 67, 965-975.	2.3	70
15	Involvement of neuropeptide FF receptors in neuroadaptive responses to acute and chronic opiate treatments. British Journal of Pharmacology, 2012, 165, 424-435.	5.4	64
16	Comparison of the structure-activity relationships of nociceptin and dynorphin A using chimeric peptides. FEBS Letters, 1997, 417, 333-336.	2.8	61
17	Structure-activity relationships of neuropeptide FF: role of C-terminal regions. Peptides, 2001, 22, 1471-1478.	2.4	60
18	Opioidâ€modulating properties of the neuropeptide FF system. BioFactors, 2010, 36, 423-429.	5.4	60

#	Article	IF	CITATIONS
19	Agonist and antagonist activities on human NPFF2 receptors of the NPY ligands GR231118 and BIBP3226. British Journal of Pharmacology, 2001, 133, 1-4.	5.4	54
20	Functional Inactivation of the Nociceptin Receptor by Alanine Substitution of Glutamine 286 at the C Terminus of Transmembrane Segment VI: Evidence from a Site-Directed Mutagenesis Study of the ORL1 Receptor Transmembrane-Binding Domain. Molecular Pharmacology, 2000, 57, 495-502.	2.3	52
21	Physical Association between Neuropeptide FF and μ-Opioid Receptors as a Possible Molecular Basis for Anti-opioid Activity. Journal of Biological Chemistry, 2007, 282, 8332-8342.	3.4	46
22	Loss of Morphine Reward and Dependence in Mice Lacking G Protein–Coupled Receptor Kinase 5. Biological Psychiatry, 2014, 76, 767-774.	1.3	45
23	Anti-analgesia of a selective NPFF2 agonist depends on opioid activity. Biochemical and Biophysical Research Communications, 2005, 336, 197-203.	2.1	44
24	Replacement of Gln280by His in TM6 of the human ORL1 receptor increases affinity but reduces intrinsic activity of opioids. FEBS Letters, 1996, 395, 17-21.	2.8	42
25	Evidence for a new type of opioid binding site in the brain of the frog Rana ridibunda. European Journal of Pharmacology, 1988, 150, 75-84.	3.5	38
26	GRK2 Protein-mediated Transphosphorylation Contributes to Loss of Function of μ-Opioid Receptors Induced by Neuropeptide FF (NPFF2) Receptors. Journal of Biological Chemistry, 2012, 287, 12736-12749.	3.4	37
27	Anti-opioid activities of NPFF1 receptors in a SH-SY5Y model. Peptides, 2006, 27, 980-989.	2.4	35
28	Mimicking of Arginine by Functionalized <i>N</i> ^{ï‰} -Carbamoylated Arginine As a New Broadly Applicable Approach to Labeled Bioactive Peptides: High Affinity Angiotensin, Neuropeptide Y, Neuropeptide FF, and Neurotensin Receptor Ligands As Examples. Journal of Medicinal Chemistry, 2016, 59, 1925-1945.	6.4	34
29	Different domains of the ORL1 and κ-opioid receptors are involved in recognition of nociceptin and dynorphin A. FEBS Letters, 1998, 427, 296-300.	2.8	32
30	Structure–activity relationships of neuropeptide FF and related peptidic and non-peptidic derivatives. Peptides, 2006, 27, 990-996.	2.4	32
31	A Switch of G Protein-Coupled Receptor Binding Preference from Phosphoinositide 3-Kinase (PI3K)–p85 to Filamin A Negatively Controls the PI3K Pathway. Molecular and Cellular Biology, 2012, 32, 1004-1016.	2.3	32
32	Introduction. Peptides, 2006, 27, 941-942.	2.4	29
33	Characterization of two novel tritiated radioligands for labelling Neuropeptide FF (NPFF1 and NPFF2) receptors. Neurochemistry International, 2009, 55, 815-819.	3.8	25
34	The High-Affinity Interleukin 8 Receptor Gene (IL8RA) Maps to the 2q33-q36 Region of the Human Genome: Cloning of a Pseudogene (IL8RBP) for the Low-Affinity Receptor. Genomics, 1993, 16, 248-251.	2.9	23
35	N ^ω -Carbamoylation of the Argininamide Moiety: An Avenue to Insurmountable NPY Y ₁ Receptor Antagonists and a Radiolabeled Selective High-Affinity Molecular Tool ([³ H]UR-MK299) with Extended Residence Time. Journal of Medicinal Chemistry, 2015, 58, 8834-8849.	6.4	23
36	Development of a Peptidomimetic Antagonist of Neuropeptide FF Receptors for the Prevention of Opioid-Induced Hyperalgesia. ACS Chemical Neuroscience, 2015, 6, 438-445.	3.5	22

#	Article	IF	CITATIONS
37	Nonpeptide Small Molecule Agonist and Antagonist Original Leads for Neuropeptide FF1 and FF2 Receptors. Journal of Medicinal Chemistry, 2014, 57, 8903-8927.	6.4	21
38	Analysis of 5000†year-old human teeth using optimized large-scale and targeted proteomics approaches for detection of sex-specific peptides. Journal of Proteomics, 2020, 211, 103548.	2.4	20
39	[125I]EYF: a new high affinity radioligand to neuropeptide FF receptors. Peptides, 2001, 22, 623-629.	2.4	19
40	Heterologous Regulation of Mu-Opioid (MOP) Receptor Mobility in the Membrane of SH-SY5Y Cells. Journal of Biological Chemistry, 2014, 289, 28697-28706.	3.4	19
41	Anti-opioid effects of neuropeptide FF receptors in the ventral tegmental area. Neuroscience Letters, 2011, 488, 305-309.	2.1	18
42	Phosphoproteomic analysis of the mouse brain muâ€opioid (MOP) receptor. FEBS Letters, 2015, 589, 2401-2408.	2.8	17
43	Staurosporine differentiation of NPFF2 receptor-transfected SH-SY5Y neuroblastoma cells induces selectivity of NPFF activity towards opioid receptors. Peptides, 2007, 28, 1125-1128.	2.4	16
44	Identification and Functional Characterization of the Phosphorylation Sites of the Neuropeptide FF2 Receptor. Journal of Biological Chemistry, 2014, 289, 33754-33766.	3.4	15
45	Neanderthal and Denisova tooth protein variants in present-day humans. PLoS ONE, 2017, 12, e0183802.	2.5	15
46	Development of sub-nanomolar dipeptidic ligands of neuropeptide FF receptors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7471-7474.	2.2	14
47	Neuropeptide FF-sensitive confinement of mu opioid receptor does not involve lipid rafts in SH-SY5Y cells. Biochemical and Biophysical Research Communications, 2008, 373, 80-84.	2.1	13
48	Denatured G-Protein Coupled Receptors as Immunogens to Generate Highly Specific Antibodies. PLoS ONE, 2012, 7, e46348.	2.5	12
49	Pharmacological characterization of the mouse NPFF2 receptor. Peptides, 2010, 31, 215-220.	2.4	11
50	Modulation by Neuropeptide FF of the interaction of Mu-opioid (MOP) receptor with G-proteins. Neurochemistry International, 2010, 56, 768-773.	3.8	9
51	HA-MOP knockin mice express the canonical µ-opioid receptor but lack detectable splice variants. Communications Biology, 2021, 4, 1070.	4.4	9
52	Photoactivatable opiate derivatives as irreversible probes of the .muopioid receptor. Journal of Medicinal Chemistry, 1990, 33, 2456-2464.	6.4	8
53	Neuropeptide FF receptor modulates potassium currents in a dorsal root ganglion cell line. Pharmacological Reports, 2011, 63, 1061-1065.	3.3	6
54	Solubilization and reconstitution of the mu-opioid receptor expressed in human neuronal SH-SY5Y and CHO cells. Peptides, 2014, 55, 79-84.	2.4	6

CATHERINE MOLLEREAU

#	Article	IF	CITATIONS
55	Solubilization and functional reconstitution of human neuropeptide FF2 receptors. Analytical Biochemistry, 2010, 398, 225-229.	2.4	4
56	Study of the N-terminal part of peptidic selective NPFF2 agonists. Peptides, 2012, 37, 157-160.	2.4	4
57	Expression of opioid and anti-opioid receptors in Chinese hamster ovary cells after exposure to dimethyl sulfoxide. Analytical Biochemistry, 2012, 420, 99-100.	2.4	4
58	<scp>NPYF</scp> a, A Chimeric Peptide of Metâ€Enkephalin, and <scp>NPFF</scp> Induces Toleranceâ€Free Analgesia. Chemical Biology and Drug Design, 2016, 87, 885-894.	3.2	4
59	The repertoire of family A-peptide GPCRs in archaic hominins. Peptides, 2019, 122, 170154.	2.4	2
60	Protein sequence comparison of human and non-human primate tooth proteomes. Journal of Proteomics, 2021, 231, 104045.	2.4	2
61	Pharmacological insight into the activation of the human neuropeptide FF2 receptor. Peptides, 2020, 134, 170406.	2.4	1
62	Regulation by Na+ ions and GppNHp of the interaction between a G protein and the amphibian type of opioid receptor. European Journal of Pharmacology, 1990, 189, 393-397.	2.6	0