Laura Patrussi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7919529/publications.pdf

Version: 2024-02-01

46 papers

1,635 citations

361045 20 h-index 288905 40 g-index

55 all docs 55 docs citations 55 times ranked 2038 citing authors

#	Article	IF	Citations
1	The Helicobacter pylori Vacuolating Toxin Inhibits T Cell Activation by Two Independent Mechanisms. Journal of Experimental Medicine, 2003, 198, 1887-1897.	4.2	274
2	Simvastatin inhibits Tâ€cell activation by selectively impairing the function of Ras superfamily GTPases. FASEB Journal, 2005, 19, 1-24.	0.2	128
3	p66SHC Promotes Apoptosis and Antagonizes Mitogenic Signaling in T Cells. Molecular and Cellular Biology, 2004, 24, 1747-1757.	1.1	124
4	Immune synapse targeting of specific recycling receptors by the intraflagellar transport system. Journal of Cell Science, 2014, 127, 1924-37.	1,2	91
5	F-actin dynamics control segregation of the TCR signaling cascade to clustered lipid rafts. European Journal of Immunology, 2002, 32, 435-446.	1.6	83
6	Simvastatin inhibits the MHC class II pathway of antigen presentation by impairing Ras superfamily GTPases. European Journal of Immunology, 2006, 36, 2885-2893.	1.6	77
7	Anthrax toxins inhibit immune cell chemotaxis by perturbing chemokine receptor signalling. Cellular Microbiology, 2007, 9, 924-929.	1.1	68
8	Defective Vav expression and impaired F-actin reorganization in a subset of patients with common variable immunodeficiency characterized by T-cell defects. Blood, 2005, 106, 626-634.	0.6	59
9	The small GTPase Rab8 interacts with VAMP-3 to regulate the delivery of recycling TCRs to the immune synapse. Journal of Cell Science, 2015, 128, 2541-52.	1.2	59
10	The small GTPase Rab29 is a common regulator of immune synapse assembly and ciliogenesis. Cell Death and Differentiation, 2015, 22, 1687-1699.	5.0	57
11	p52Shc is required for CXCR4-dependent signaling and chemotaxis in T cells. Blood, 2007, 110, 1730-1738.	0.6	55
12	Intracellular mediators of CXCR4-dependent signaling in T cells. Immunology Letters, 2008, 115, 75-82.	1.1	54
13	S1P1 expression is controlled by the pro-oxidant activity of p66Shc and is impaired in B-CLL patients with unfavorable prognosis. Blood, 2012, 120, 4391-4399.	0.6	50
14	SAP-Mediated Inhibition of Diacylglycerol Kinase \hat{l}_{\pm} Regulates TCR-Induced Diacylglycerol Signaling. Journal of Immunology, 2011, 187, 5941-5951.	0.4	43
15	Enhanced Chemokine Receptor Recycling and Impaired S1P1 Expression Promote Leukemic Cell Infiltration of Lymph Nodes in Chronic Lymphocytic Leukemia. Cancer Research, 2015, 75, 4153-4163.	0.4	41
16	Inhibition of diacylglycerol kinase $\hat{l}\pm$ restores restimulation-induced cell death and reduces immunopathology in XLP-1. Science Translational Medicine, 2016, 8, 321ra7.	5.8	41
17	The Bordetella pertussis adenylate cyclase toxin binds to T cells via LFA-1 and induces its disengagement from the immune synapse. Journal of Experimental Medicine, 2011, 208, 1317-1330.	4.2	38
18	The CXCL12/CXCR4 Axis as a Therapeutic Target in Cancer and HIV-1 Infection. Current Medicinal Chemistry, 2011, 18, 497-512.	1.2	37

#	Article	IF	CITATIONS
19	Cooperation and selectivity of the two Grb2 binding sites of p52Shc in T-cell antigen receptor signaling to Ras family GTPases and Myc-dependent survival. Oncogene, 2005, 24, 2218-2228.	2.6	29
20	p66Shc deficiency enhances CXCR4 and CCR7 recycling in CLL B cells by facilitating their dephosphorylation-dependent release from \hat{l}^2 -arrestin at early endosomes. Oncogene, 2018, 37, 1534-1550.	2.6	23
21	Negative regulation of chemokine receptor signaling and B-cell chemotaxis by p66Shc. Cell Death and Disease, 2014, 5, e1068-e1068.	2.7	21
22	Expression of the p66Shc protein adaptor is regulated by the activator of transcription STAT4 in normal and chronic lymphocytic leukemia B cells. Oncotarget, 2016, 7, 57086-57098.	0.8	19
23	The Glycerophosphoinositols: From Lipid Metabolites to Modulators of T-Cell Signaling. Frontiers in Immunology, 2013, 4, 213.	2.2	18
24	Nonsteroidal anti-inflammatory drugs inhibit a Fyn-dependent pathway coupled to Rac and stress kinase activation in TCR signaling. Blood, 2005, 105, 2042-2048.	0.6	17
25	p66Shc deficiency in the $E\hat{l}$ 4-TCL1 mouse model of chronic lymphocytic leukemia enhances leukemogenesis by altering the chemokine receptor landscape. Haematologica, 2019, 104, 2040-2052.	1.7	17
26	Glycerophosphoinositol-4-phosphate enhances SDF-1α-stimulated T-cell chemotaxis through PTK-dependent activation of Vav. Cellular Signalling, 2007, 19, 2351-2360.	1.7	12
27	Azetidin-2-one-based small molecules as dual hHDAC6/HDAC8 inhibitors: Investigation of their mechanism of action and impact of dual inhibition profile on cell viability. European Journal of Medicinal Chemistry, 2022, 238, 114409.	2.6	11
28	p66Shc-dependent apoptosis requires Lck and CamKII activity. Apoptosis: an International Journal on Programmed Cell Death, 2012, 17, 174-186.	2.2	9
29	P66Shc: A Pleiotropic Regulator of B Cell Trafficking and a Gatekeeper in Chronic Lymphocytic Leukemia. Cancers, 2020, 12, 1006.	1.7	9
30	Optimization of Organotypic Cultures of Mouse Spleen for Staining and Functional Assays. Frontiers in Immunology, 2020, 11, 471.	2.2	9
31	Nature vs. Nurture: The Two Opposing Behaviors of Cytotoxic T Lymphocytes in the Tumor Microenvironment. International Journal of Molecular Sciences, 2021, 22, 11221.	1.8	9
32	Abnormalities in chemokine receptor recycling in chronic lymphocytic leukemia. Cellular and Molecular Life Sciences, 2019, 76, 3249-3261.	2.4	8
33	LMW-PTP targeting potentiates the effects of drugs used in chronic lymphocytic leukemia therapy. Cancer Cell International, 2019, 19, 67.	1.8	7
34	Enhanced IL-9 secretion by p66Shc-deficient CLL cells modulates the chemokine landscape of the stromal microenvironment. Blood, 2021, 137, 2182-2195.	0.6	7
35	Positive and negative regulators of Ras in T cells. Signal Transduction, 2004, 4, 9-16.	0.7	6
36	Interleukin (IL)-9 Supports the Tumor-Promoting Environment of Chronic Lymphocytic Leukemia. Cancers, 2021, 13, 6301.	1.7	6

3

#	Article	IF	CITATIONS
37	The Rab GTPase Rab8 as a shared regulator of ciliogenesis and immune synapse assembly: From a conserved pathway to diverse cellular structures. Small GTPases, 2016, 7, 16-20.	0.7	5
38	Analysis of TCR/CD3 Recycling at the Immune Synapse. Methods in Molecular Biology, 2017, 1584, 143-155.	0.4	5
39	p66Shc Deficiency in Chronic Lymphocytic Leukemia Promotes Chemokine Receptor Expression Through the ROS-Dependent Inhibition of NF- $\hat{\mathbb{I}}$ B. Frontiers in Oncology, 0, 12, .	1.3	5
40	Glycerophosphoinositol Promotes Apoptosis of Chronic Lymphocytic Leukemia Cells by Enhancing Bax Expression and Activation. Frontiers in Oncology, 2022, 12, 835290.	1.3	2
41	Themis releases the brakes on TCR signaling during thymocyte selection by disabling SHP-1. Cellular and Molecular Immunology, 2017, 14, 724-726.	4.8	1
42	Dysfunctional Immune Synapses in T Cell Immunodeficiencies. Rare Diseases of the Immune System, 2021, , 43-63.	0.1	1
43	TheBordetella pertussisadenylate cyclase toxin binds to T cells via LFA-1 and induces its disengagement from the immune synapse. Journal of Cell Biology, 2011, 193, i12-i12.	2.3	O
44	Boosting chemokine receptor recycling: an elixir of life for chronic lymphocytic leukemia. Oncotarget, 2018, 9, 33444-33445.	0.8	0
45	The B-Side of theÂlmmune Response. Rare Diseases of the Immune System, 2019, , 1-20.	0.1	O
46	Mucosal B Cells. Rare Diseases of the Immune System, 2019, , 21-34.	0.1	0