## Bao-Yun Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7919420/publications.pdf Version: 2024-02-01



RAO-YUN SUN

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Different mechanisms of improving CH3NH3PbI3 perovskite solar cells brought by fluorinated or<br>nitrogen doped graphdiyne. Nano Research, 2022, 15, 573-580.                                              | 5.8 | 15        |
| 2  | Triazine-graphdiyne with well-defined two kinds of active sites for simultaneous detection of Pb2+<br>and Cd2+. Journal of Environmental Chemical Engineering, 2022, 10, 107159.                           | 3.3 | 12        |
| 3  | Transparent graphene electrodes based hybrid perovskites photodetectors with broad spectral response from UV–visible to near-infrared. Nanotechnology, 2022, 33, 085204.                                   | 1.3 | 3         |
| 4  | Graphdiyne Oxide Quantum Dots: The Enhancement of Peroxidase-like Activity and Their Applications in<br>Sensing H <sub>2</sub> O <sub>2</sub> and Cysteine. ACS Applied Bio Materials, 2022, 5, 3418-3427. | 2.3 | 8         |
| 5  | Carbon phase adjustment by multi-configuration ligand in endohedral metallofullerene derivatives Gd@C82(morpholine)7 under high pressure. Nano Today, 2021, 37, 101079.                                    | 6.2 | 0         |
| 6  | Electrochemical sensor based on graphdiyne is effectively used to determine Cd2+ and Pb2+ in water.<br>Sensors and Actuators B: Chemical, 2021, 332, 129519.                                               | 4.0 | 59        |
| 7  | Paramagnetic properties adjustment for Gd@C(9)-C82 by regioselective multi-amination. Carbon, 2020, 158, 320-326.                                                                                          | 5.4 | 4         |
| 8  | Elucidating the mechanisms underlying PCBM enhancement of CH3NH3PbI3 perovskite solar cells using GIXRD and XAFS. Journal of Materials Chemistry A, 2020, 8, 3145-3153.                                    | 5.2 | 17        |
| 9  | Preparing dangling bonds by nanoholes on graphene oxide nanosheets and their enhanced magnetism.<br>RSC Advances, 2020, 10, 36378-36385.                                                                   | 1.7 | 9         |
| 10 | MnO <sub>2</sub> /Porous Carbon Nanotube/MnO <sub>2</sub> Nanocomposites for High-Performance<br>Supercapacitor. ACS Applied Nano Materials, 2020, 3, 11152-11159.                                         | 2.4 | 33        |
| 11 | Structure optimization of CH3NH3PbI3 by higher-valence Pb in perovskite solar cells with enhanced efficiency and stability. Solar Energy, 2020, 205, 202-210.                                              | 2.9 | 10        |
| 12 | Amination of the Gd@C82 endohedral fullerene: tunable substitution effect on quantum coherence behaviors. Chemical Science, 2020, 11, 10737-10743.                                                         | 3.7 | 9         |
| 13 | N-Doping Holey Graphene TiO <sub>2</sub> –Pt Composite as Efficient Electrocatalyst for Methanol<br>Oxidation. ACS Applied Energy Materials, 2020, 3, 2665-2673.                                           | 2.5 | 21        |
| 14 | High performance determination of Pb2+ in water by 2,4-dithiobiuret-Reduced graphene oxide<br>composite with wide linear range and low detection limit. Analytica Chimica Acta, 2020, 1125, 76-85.         | 2.6 | 10        |
| 15 | Turning On the Near-Infrared Photoluminescence of Erbium Metallofullerenes by Covalent<br>Modification. Inorganic Chemistry, 2019, 58, 14325-14330.                                                        | 1.9 | 12        |
| 16 | The Gold Nanocluster Protects Neurons Directly or via Inhibiting Cytotoxic Secretions of Microglia<br>Cell. Journal of Nanoscience and Nanotechnology, 2019, 19, 1986-1995.                                | 0.9 | 14        |
| 17 | Facile Synthesis of Ni-Based Catalysts by Adsorption and Conversion of Metal Ions on Graphene Oxide<br>for Methanol Oxidation. Electrocatalysis, 2018, 9, 429-436.                                         | 1.5 | 6         |
| 18 | In Situ Synchrotron X-ray Diffraction and Raman Spectroscopy Studies of<br>Gd@C <sub>82</sub> –S <sub>8</sub> under High Pressure. Journal of Physical Chemistry C, 2018, 122,<br>10992-10998.             | 1.5 | 6         |

BAO-YUN SUN

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Highly delocalized endohedral metal in Gd@C2ν(9)-C82 metallofullerenes co-crystallized with α-S8.<br>Nano Research, 2018, 11, 2277-2284.                                                                  | 5.8 | 10        |
| 20 | Nanocrystalline Perovskite Hybrid Photodetectors with High Performance in Almost Every Figure of<br>Merit. Advanced Functional Materials, 2018, 28, 1705589.                                              | 7.8 | 42        |
| 21 | Regioselective Polyamination of Gd@C2v(9)-C82 and Non-High Performance Liquid Chromatography<br>Rapid Separation of Gd@C82(morpholine)7. Chemistry of Materials, 2018, 30, 64-68.                         | 3.2 | 8         |
| 22 | Nanoparticles with High-Surface Negative-Charge Density Disturb the Metabolism of Low-Density<br>Lipoprotein in Cells. International Journal of Molecular Sciences, 2018, 19, 2790.                       | 1.8 | 15        |
| 23 | Fluorescent activatable gadofullerene nanoprobes as NIR-MR dual-modal in vivo imaging contrast agent. Colloids and Surfaces B: Biointerfaces, 2018, 171, 159-166.                                         | 2.5 | 2         |
| 24 | Gd@C82(OH)22 harnesses inflammatory regeneration for osteogenesis of mesenchymal stem cells through JNK/STAT3 signaling pathway. Journal of Materials Chemistry B, 2018, 6, 5802-5811.                    | 2.9 | 12        |
| 25 | Study on the antigenicity of metallofullerenol: antibody production, characterization, and its enzyme immunoassay application. Analytical and Bioanalytical Chemistry, 2017, 409, 6575-6581.              | 1.9 | 0         |
| 26 | Metallofullerenol Inhibits Cellular Iron Uptake by Inducing Transferrin Tetramerization. Chemistry -<br>an Asian Journal, 2017, 12, 2646-2651.                                                            | 1.7 | 8         |
| 27 | Adaption of the structure of carbon nanohybrids toward high-relaxivity for a new MRI contrast agent. RSC Advances, 2016, 6, 58028-58033.                                                                  | 1.7 | 13        |
| 28 | Synthesis of a UCNPs@SiO <sub>2</sub> @gadofullerene nanocomposite and its application in UCL/MR<br>bimodal imaging. RSC Advances, 2016, 6, 98968-98974.                                                  | 1.7 | 13        |
| 29 | Novel exciton dissociation behavior in tin-lead organohalide perovskites. Nano Energy, 2016, 27,<br>638-646.                                                                                              | 8.2 | 28        |
| 30 | Polyhydroxylated fullerenols regulate macrophage for cancer adoptive immunotherapy and greatly<br>inhibit the tumor metastasis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 945-954.   | 1.7 | 46        |
| 31 | Gd-metallofullerenol nanomaterial as non-toxic breast cancer stem cell-specific inhibitor. Nature<br>Communications, 2015, 6, 5988.                                                                       | 5.8 | 164       |
| 32 | Eu <sup>3+</sup> :Y <sub>2</sub> O <sub>3</sub> @CNTs—a rare earth filled carbon nanotube<br>nanomaterial with low toxicity and good photoluminescence properties. RSC Advances, 2015, 5,<br>21634-21639. | 1.7 | 6         |
| 33 | The isotopic effects of <sup>13</sup> C-labeled large carbon cage (C <sub>70</sub> ) fullerenes and their formation process. RSC Advances, 2015, 5, 76949-76956.                                          | 1.7 | 14        |
| 34 | An organic–inorganic hybrid perovskite logic gate for better computing. Journal of Materials<br>Chemistry C, 2015, 3, 10793-10798.                                                                        | 2.7 | 77        |
| 35 | Novel carbon nanohybrids as highly efficient magnetic resonance imaging contrast agents. Nano<br>Research, 2015, 8, 1259-1268.                                                                            | 5.8 | 29        |
| 36 | Polyhydroxylated Metallofullerenols Stimulate ILâ€1β Secretion of Macrophage through TLRs/MyD88/NFâ€₽̂B<br>Pathway and NLRP <sub>3</sub> Inflammasome Activation. Small, 2014, 10, 2362-2372.             | 5.2 | 96        |

BAO-YUN SUN

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Induction of apoptosis through ER stress and TP53 in MCF-7 cells by the nanoparticle<br>[Gd@C82(OH)22]n: A systems biology study. Methods, 2014, 67, 394-406.                                                                                 | 1.9 | 15        |
| 38 | Quantification of carbon nanomaterials in vivo: direct stable isotope labeling on the skeleton of fullerene C <sub>60</sub> . Environmental Science: Nano, 2014, 1, 64-70.                                                                    | 2.2 | 26        |
| 39 | Metallofullerenols: Polyhydroxylated Metallofullerenols Stimulate IL-1β Secretion of Macrophage<br>through TLRs/MyD88/NF-κB Pathway and NLRP3Inflammasome Activation (Small 12/2014). Small, 2014, 10,<br>2310-2310.                          | 5.2 | 2         |
| 40 | An Electrochemical Immunosensor for Fullerenol Detection Based on the Generated Antibody.<br>Analytical Letters, 2013, 46, 2213-2222.                                                                                                         | 1.0 | 4         |
| 41 | Gadolinium metallofullerenol nanoparticles inhibit cancer metastasis through matrix<br>metalloproteinase inhibition: imprisoning instead of poisoning cancer cells. Nanomedicine:<br>Nanotechnology, Biology, and Medicine, 2012, 8, 136-146. | 1.7 | 101       |
| 42 | Electrochemistry of a C <sub>84</sub> - <i>C</i> <sub>2</sub> (IV)-Modified Electrode in Aqueous<br>Solutions and Its Interaction with Guanine. Journal of Physical Chemistry C, 2011, 115, 5966-5973.                                        | 1.5 | 2         |
| 43 | Biosafety assessment of Gd@C82(OH)22 nanoparticles on Caenorhabditis elegans. Nanoscale, 2011, 3, 2636.                                                                                                                                       | 2.8 | 46        |
| 44 | The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-α<br>mediated cellular immunity. Biomaterials, 2009, 30, 3934-3945.                                                                         | 5.7 | 177       |
| 45 | An Anomalous Endohedral Structure of Eu@C82 Metallofullerenes. Angewandte Chemie -<br>International Edition, 2005, 44, 4568-4571.                                                                                                             | 7.2 | 39        |
| 46 | Entrapping of Exohedral Metallofullerenes in Carbon Nanotubes:  (CsC60)n@SWNT Nano-Peapods.<br>Journal of the American Chemical Society, 2005, 127, 17972-17973.                                                                              | 6.6 | 47        |
| 47 | Improved extraction of metallofullerenes with DMF at high temperature. Carbon, 2002, 40, 1591-1595.                                                                                                                                           | 5.4 | 35        |
| 48 | Systematic Study of Perovskite Layers if Doped with Strong Oxidants. Solar Rrl, 0, , 2200159.                                                                                                                                                 | 3.1 | 1         |