
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7919365/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SNAREs — engines for membrane fusion. Nature Reviews Molecular Cell Biology, 2006, 7, 631-643.	16.1	2,220
2	Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 à resolution. Nature, 1998, 395, 347-353.	13.7	2,191
3	Molecular Anatomy of a Trafficking Organelle. Cell, 2006, 127, 831-846.	13.5	1,985
4	Membrane Fusion. Cell, 2003, 112, 519-533.	13.5	1,336
5	Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature, 1993, 365, 160-163.	13.7	1,145
6	Membrane Fusion and Exocytosis. Annual Review of Biochemistry, 1999, 68, 863-911.	5.0	1,136
7	STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature, 2006, 440, 935-939.	13.7	1,031
8	Molecular machines governing exocytosis of synaptic vesicles. Nature, 2012, 490, 201-207.	13.7	830
9	Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature, 1990, 345, 260-263.	13.7	788
10	Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature, 2000, 407, 189-194.	13.7	771
11	Structure and Conformational Changes in NSF and Its Membrane Receptor Complexes Visualized by Quick-Freeze/Deep-Etch Electron Microscopy. Cell, 1997, 90, 523-535.	13.5	747
12	Video-Rate Far-Field Optical Nanoscopy Dissects Synaptic Vesicle Movement. Science, 2008, 320, 246-249.	6.0	710
13	Vesicle fusion from yeast to man. Nature, 1994, 370, 191-193.	13.7	644
14	Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron, 1991, 6, 665-677.	3.8	530
15	SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse. Neuron, 2019, 103, 217-234.e4.	3.8	518
16	Membrane protein sequestering by ionic protein–lipid interactions. Nature, 2011, 479, 552-555.	13.7	515
17	Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein. Nature, 1993, 364, 346-349.	13.7	489
18	Macromolecular-scale resolution in biological fluorescence microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11440-11445.	3.3	481

#	Article	IF	CITATIONS
19	Disruption of ClC-3, a Chloride Channel Expressed on Synaptic Vesicles, Leads to a Loss of the Hippocampus. Neuron, 2001, 29, 185-196.	3.8	480
20	A Broken α-Helix in Folded α-Synuclein. Journal of Biological Chemistry, 2003, 278, 15313-15318.	1.6	453
21	A small GTP-binding protein dissociates from synaptic vesicles during exocytosis. Nature, 1991, 349, 79-81.	13.7	438
22	Real-time measurement of transmitter release from single synaptic vesicles. Nature, 1995, 377, 62-65.	13.7	395
23	Neurotransmitter release — four years of SNARE complexes. Current Opinion in Neurobiology, 1997, 7, 310-315.	2.0	371
24	Helical extension of the neuronal SNARE complex into the membrane. Nature, 2009, 460, 525-528.	13.7	368
25	Identification of Differentiation-Associated Brain-Specific Phosphate Transporter as a Second Vesicular Glutamate Transporter (VGLUT2). Journal of Neuroscience, 2001, 21, RC182-RC182.	1.7	358
26	Ca2+ Regulates the Interaction between Synaptotagmin and Syntaxin 1. Journal of Biological Chemistry, 1995, 270, 23667-23671.	1.6	338
27	Clostridial neurotoxins: new tools for dissecting exocytosis. Trends in Cell Biology, 1994, 4, 179-185.	3.6	326
28	Tetanus toxin action: Inhibition of neurotransmitter release linked to synaptobrevin proteolysis. Biochemical and Biophysical Research Communications, 1992, 189, 1017-1023.	1.0	316
29	Structural Changes Are Associated with Soluble N-Ethylmaleimide-sensitive Fusion Protein Attachment Protein Receptor Complex Formation. Journal of Biological Chemistry, 1997, 272, 28036-28041.	1.6	308
30	Inhibition of SNARE Complex Assembly Differentially Affects Kinetic Components of Exocytosis. Cell, 1999, 99, 713-722.	13.5	286
31	Synaptic vesicles immunoisolated from rat cerebral cortex contain high levels of glutamate. Neuron, 1989, 3, 715-720.	3.8	273
32	Mixed and Non-cognate SNARE Complexes. Journal of Biological Chemistry, 1999, 274, 15440-15446.	1.6	271
33	A synaptic vesicle membrane protein is conserved from mammals to Drosophila. Neuron, 1989, 2, 1475-1481.	3.8	266
34	A Complete Genetic Analysis of Neuronal Rab3 Function. Journal of Neuroscience, 2004, 24, 6629-6637.	1.7	258
35	CASK Functions as a Mg2+-Independent Neurexin Kinase. Cell, 2008, 133, 328-339.	13.5	246
36	Phosphatidylinositol 4,5-bisphosphate clusters act as molecular beacons for vesicle recruitment. Nature Structural and Molecular Biology, 2013, 20, 679-686.	3.6	246

#	Article	IF	CITATIONS
37	Structure of the ATP-dependent oligomerization domain of N-ethylmaleimide sensitive factor complexed with ATP. Nature Structural Biology, 1998, 5, 803-811.	9.7	240
38	ldentification of a Minimal Core of the Synaptic SNARE Complex Sufficient for Reversible Assembly and Disassembly. Biochemistry, 1998, 37, 10354-10362.	1.2	239
39	Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs. Nature Structural Biology, 2002, 9, 107-111.	9.7	239
40	One SNARE complex is sufficient for membrane fusion. Nature Structural and Molecular Biology, 2010, 17, 358-364.	3.6	233
41	Amino acid neurotransmission: spotlight on synaptic vesicles. Trends in Neurosciences, 1990, 13, 83-87.	4.2	226
42	Two-Color Far-Field Fluorescence Nanoscopy. Biophysical Journal, 2007, 92, L67-L69.	0.2	226
43	Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia. EMBO Journal, 2020, 39, e105380.	3.5	217
44	The 2018 biomembrane curvature and remodeling roadmap. Journal Physics D: Applied Physics, 2018, 51, 343001.	1.3	212
45	Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex. Science, 2012, 336, 1581-1584.	6.0	210
46	Plasmalemmal Phosphatidylinositol-4,5-Bisphosphate Level Regulates the Releasable Vesicle Pool Size in Chromaffin Cells. Journal of Neuroscience, 2005, 25, 2557-2565.	1.7	208
47	The N-Ethylmaleimide-sensitive Fusion Protein and α-SNAP Induce a Conformational Change in Syntaxin. Journal of Biological Chemistry, 1995, 270, 16955-16961.	1.6	200
48	16-BAC/SDS–PAGE: A Two-Dimensional Gel Electrophoresis System Suitable for the Separation of Integral Membrane Proteins. Analytical Biochemistry, 1996, 240, 126-133.	1.1	195
49	Quantal Release of Serotonin. Neuron, 2000, 28, 205-220.	3.8	194
50	Molecular cloning and functional characterization of human vesicular glutamate transporter 3. EMBO Reports, 2002, 3, 798-803.	2.0	194
51	Rab proteins in regulated exocytosis. Trends in Biochemical Sciences, 1994, 19, 164-168.	3.7	193
52	Synaptic targeting of rabphilin-3A, a synaptic vesicle Ca2+/phospholipid-binding protein, depends on rab3A/3C. Neuron, 1994, 13, 885-898.	3.8	193
53	Membrane fusion. Current Opinion in Cell Biology, 2002, 14, 488-495.	2.6	181
54	A Novel Function for the Second C2 Domain of Synaptotagmin. Journal of Biological Chemistry, 1996, 271, 5844-5849.	1.6	180

#	Article	IF	CITATIONS
55	GABA and glycine in synaptic vesicles: storage and transport characteristics. Neuron, 1991, 7, 287-293.	3.8	177
56	Determinants of liposome fusion mediated by synaptic SNARE proteins. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2858-2863.	3.3	176
57	Imaging direct, dynamin-dependent recapture of fusing secretory granules on plasma membrane lawns from PC12 cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16806-16811.	3.3	171
58	The Synaptophysin–Synaptobrevin Complex: a Hallmark of Synaptic Vesicle Maturation. Journal of Neuroscience, 1999, 19, 1922-1931.	1.7	168
59	A Structural Change Occurs upon Binding of Syntaxin to SNAP-25. Journal of Biological Chemistry, 1997, 272, 4582-4590.	1.6	167
60	Selective Interaction of Complexin with the Neuronal SNARE Complex. Journal of Biological Chemistry, 2000, 275, 19808-19818.	1.6	162
61	Interaction of synaptotagmin with the cytoplasmic domains of neurexins. Neuron, 1993, 10, 307-315.	3.8	160
62	Immunoisolation of GABA-Specific Synaptic Vesicles Defines a Functionally Distinct Subset of Synaptic Vesicles. Journal of Neuroscience, 2000, 20, 4904-4911.	1.7	160
63	Quantitative Comparison of Glutamatergic and GABAergic Synaptic Vesicles Unveils Selectivity for Few Proteins Including MAL2, a Novel Synaptic Vesicle Protein. Journal of Neuroscience, 2010, 30, 2-12.	1.7	154
64	Synaptotagmin activates membrane fusion through a Ca2+-dependent trans interaction with phospholipids. Nature Structural and Molecular Biology, 2007, 14, 904-911.	3.6	152
65	Two synaptobrevin molecules are sufficient for vesicle fusion in central nervous system synapses. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14318-14323.	3.3	152
66	Storage and Uptake of d-Serine into Astrocytic Synaptic-Like Vesicles Specify Gliotransmission. Journal of Neuroscience, 2013, 33, 3413-3423.	1.7	148
67	Localization Versus Function of Rab3 Proteins. Journal of Biological Chemistry, 2002, 277, 40919-40929.	1.6	146
68	Botulinum neurotoxins C, E and F bind gangliosides via a conserved binding site prior to stimulationâ€dependent uptake with botulinum neurotoxin F utilising the three isoforms of SV2 as second receptor. Journal of Neurochemistry, 2009, 110, 1942-1954.	2.1	146
69	The R-SNARE Endobrevin/VAMP-8 Mediates Homotypic Fusion of Early Endosomes and Late Endosomes. Molecular Biology of the Cell, 2000, 11, 3289-3298.	0.9	145
70	SNAREs Prefer Liquid-disordered over "Raft―(Liquid-ordered) Domains When Reconstituted into Giant Unilamellar Vesicles. Journal of Biological Chemistry, 2004, 279, 37951-37955.	1.6	145
71	Export of Cellubrevin from the Endoplasmic Reticulum Is Controlled by BAP31. Journal of Cell Biology, 1997, 139, 1397-1410.	2.3	142
72	SNARE assembly and disassembly exhibit a pronounced hysteresis. Nature Structural Biology, 2002, 9, 144-151.	9.7	141

#	Article	IF	CITATIONS
73	The GTPase Rab26 links synaptic vesicles to the autophagy pathway. ELife, 2015, 4, e05597.	2.8	138
74	Methods for studying synaptosomal copper release. Journal of Neuroscience Methods, 2003, 128, 159-172.	1.3	135
75	Distinct Kinetic Changes in Neurotransmitter Release After SNARE Protein Cleavage. Science, 2005, 309, 491-494.	6.0	133
76	Molecular Profiling of Synaptic Vesicle Docking Sites Reveals Novel Proteins but Few Differences between Glutamatergic and GABAergic Synapses. Neuron, 2013, 78, 285-297.	3.8	130
77	Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains. Nature Communications, 2015, 6, 5984.	5.8	130
78	The Ca2+ Affinity of Synaptotagmin 1 Is Markedly Increased by a Specific Interaction of Its C2B Domain with Phosphatidylinositol 4,5-Bisphosphate. Journal of Biological Chemistry, 2009, 284, 25749-25760.	1.6	125
79	Synaptotagmin-1 may be a distance regulator acting upstream of SNARE nucleation. Nature Structural and Molecular Biology, 2011, 18, 805-812.	3.6	125
80	The R-SNARE Motif of Tomosyn Forms SNARE Core Complexes with Syntaxin 1 and SNAP-25 and Down-regulates Exocytosis. Journal of Biological Chemistry, 2003, 278, 31159-31166.	1.6	122
81	Homotypic fusion of early endosomes: SNAREs do not determine fusion specificity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2701-2706.	3.3	122
82	Rapid and Selective Binding to the Synaptic SNARE Complex Suggests a Modulatory Role of Complexins in Neuroexocytosis. Journal of Biological Chemistry, 2002, 277, 7838-7848.	1.6	121
83	Rab3D Is Not Required for Exocrine Exocytosis but for Maintenance of Normally Sized Secretory Granules. Molecular and Cellular Biology, 2002, 22, 6487-6497.	1.1	121
84	Homo- and Heterooligomeric SNARE Complexes Studied by Site-directed Spin Labeling. Journal of Biological Chemistry, 2001, 276, 13169-13177.	1.6	115
85	Munc18-Bound Syntaxin Readily Forms SNARE Complexes with Synaptobrevin in Native Plasma Membranes. PLoS Biology, 2006, 4, e330.	2.6	113
86	NSF N-Terminal Domain Crystal Structure. Molecular Cell, 1999, 4, 97-107.	4.5	112
87	Phosphatidylinositol 4,5-Bisphosphate Increases Ca2+ Affinity of Synaptotagmin-1 by 40-fold. Journal of Biological Chemistry, 2012, 287, 16447-16453.	1.6	112
88	Divergent Functions of Neuronal Rab11b in Ca ²⁺ -Regulated versus Constitutive Exocytosis. Journal of Neuroscience, 2003, 23, 10531-10539.	1.7	111
89	Synaptic and vesicular co-localization of the glutamate transporters VGLUT1 and VGLUT2 in the mouse hippocampus. Journal of Neurochemistry, 2006, 99, 1011-1018.	2.1	111
90	SNAREs in native plasma membranes are active and readily form core complexes with endogenous and exogenous SNAREs. Journal of Cell Biology, 2002, 158, 751-760.	2.3	108

#	Article	IF	CITATIONS
91	Core Proteins of the Secretory Machinery. Handbook of Experimental Pharmacology, 2008, , 107-127.	0.9	108
92	Synaptotagmin-1 binds to PIP2-containing membrane but not to SNAREs at physiological ionic strength. Nature Structural and Molecular Biology, 2015, 22, 815-823.	3.6	107
93	Sec1/Munc18 Proteins. Neuron, 2000, 27, 201-204.	3.8	102
94	Dynamic structure of lipid-bound synaptobrevin suggests a nucleation-propagation mechanism for trans-SNARE complex formation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20306-20311.	3.3	102
95	Subcellular Localization of Tetanus Neurotoxin-Insensitive Vesicle-Associated Membrane Protein (VAMP)/VAMP7 in Neuronal Cells: Evidence for a Novel Membrane Compartment. Journal of Neuroscience, 1999, 19, 9803-9812.	1.7	100
96	The riddle of the Sec1/Munc-18 proteins – new twists added to their interactions with SNAREs. Trends in Biochemical Sciences, 2003, 28, 113-116.	3.7	98
97	Rabphilin regulates SNARE-dependent re-priming of synaptic vesicles for fusion. EMBO Journal, 2006, 25, 2856-2866.	3.5	98
98	rab3A attachment to the synaptic vesicle membrane mediated by a conserved polyisoprenylated carboxy-terminal sequence. Neuron, 1991, 7, 101-109.	3.8	97
99	A Cell-Free System for Regulated Exocytosis in Pc12 Cells. Journal of Cell Biology, 2000, 148, 317-324.	2.3	97
100	Kissâ€andâ€run, Collapse and â€~Readily Retrievable' Vesicles. Traffic, 2007, 8, 1137-1144.	1.3	97
101	The architecture of an excitatory synapse. Journal of Cell Science, 2010, 123, 819-823.	1.2	96
102	PtdInsP2 and PtdSer cooperate to trap synaptotagmin-1 to the plasma membrane in the presence of calcium. ELife, 2016, 5, .	2.8	93
103	Synaptic PI(3,4,5)P3 Is Required for Syntaxin1A Clustering and Neurotransmitter Release. Neuron, 2013, 77, 1097-1108.	3.8	91
104	Identification of SNAP-47, a Novel Qbc-SNARE with Ubiquitous Expression*. Journal of Biological Chemistry, 2006, 281, 17076-17083.	1.6	90
105	Synaptic Vesicle Traffic: Rush Hour in the Nerve Terminal. Journal of Neurochemistry, 1993, 61, 12-21.	2.1	89
106	Unique Luminal Localization of VGAT-C Terminus Allows for Selective Labeling of Active Cortical GABAergic Synapses. Journal of Neuroscience, 2008, 28, 13125-13131.	1.7	87
107	Quantitative Analysis of Synaptic Vesicle Rabs Uncovers Distinct Yet Overlapping Roles for Rab3a and Rab27b in Ca ²⁺ -Triggered Exocytosis. Journal of Neuroscience, 2010, 30, 13441-13453.	1.7	87
108	Rab3D Regulates a Novel Vesicular Trafficking Pathway That Is Required for Osteoclastic Bone Resorption. Molecular and Cellular Biology, 2005, 25, 5253-5269.	1.1	86

#	Article	IF	CITATIONS
109	Quantitation of nerve terminal populations: Synaptic vesicle-associated proteins as markers for synaptic density in the rat neostriatum. Synapse, 1988, 2, 516-520.	0.6	85
110	Synaptotagmin, a synaptic vesicle protein, is present in human cerebrospinal fluid. Molecular and Chemical Neuropathology, 1996, 27, 195-210.	1.0	85
111	SNAREs line up in new environment. Nature, 1998, 393, 14-15.	13.7	85
112	3D reconstruction of highâ€resolution STED microscope images. Microscopy Research and Technique, 2008, 71, 644-650.	1.2	85
113	Principles of Exocytosis and Membrane Fusion. Annals of the New York Academy of Sciences, 2004, 1014, 170-178.	1.8	84
114	A stable interaction between syntaxin 1a and synaptobrevin 2 mediated by their transmembrane domains. FEBS Letters, 1999, 446, 40-44.	1.3	82
115	The Subcellular Localizations of Atypical Synaptotagmins III and VI. Journal of Biological Chemistry, 1999, 274, 18290-18296.	1.6	82
116	The Secretory Granule Protein Syncollin Binds to Syntaxin in a Ca2+-Sensitive Manner. Cell, 1997, 90, 325-333.	13.5	81
117	Variable cooperativity in SNARE-mediated membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12037-12042.	3.3	81
118	Alzheimer Amyloid Protein Precursor Is Localized in Nerve Terminal Preparations to Rab5-containing Vesicular Organelles Distinct from Those Implicated in the Synaptic Vesicle Pathway. Journal of Biological Chemistry, 1996, 271, 31783-31786.	1.6	77
119	Vesicle Tethering on the Surface of Phase-Separated Active Zone Condensates. Molecular Cell, 2021, 81, 13-24.e7.	4.5	77
120	Live cell imaging by multifocal multiphoton microscopy. European Journal of Cell Biology, 2000, 79, 726-734.	1.6	76
121	Fusion of Endosomes Involved in Synaptic Vesicle Recycling. Molecular Biology of the Cell, 1999, 10, 3035-3044.	0.9	75
122	Vesicular Glutamate Transporters Use Flexible Anion and Cation Binding Sites for Efficient Accumulation of Neurotransmitter. Neuron, 2014, 84, 1287-1301.	3.8	74
123	Specific Protein Phosphorylation during Stimulation of Amylase Secretion by beta-Agonists or Dibutyryl Adenosine 3',5'-Monophosphate in the Rat Parotid Gland. FEBS Journal, 1980, 112, 345-352.	0.2	73
124	Spring-loaded unraveling of a single SNARE complex by NSF in one round of ATP turnover. Science, 2015, 347, 1485-1489.	6.0	73
125	Fatty Acylation of Synaptotagmin in PC12 Cells and Synaptosomes. Biochemical and Biophysical Research Communications, 1996, 225, 326-332.	1.0	72
126	Discrimination between docking and fusion of liposomes reconstituted with neuronal SNARE-proteins using FCS. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18575-18580.	3.3	72

#	Article	IF	CITATIONS
127	Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles. Science, 2016, 351, 981-984.	6.0	72
128	Adrenocorticotropic Hormone and alpha-Melanocyte-Stimulating Hormone Induce Secretion and Protein Phosphorylation in the Rat Lacrimal Gland by Activation of a cAMP-Dependent Pathway. FEBS Journal, 1982, 126, 623-629.	0.2	71
129	Early endosomal SNAREs form a structurally conserved SNARE complex and fuse liposomes with multiple topologies. EMBO Journal, 2007, 26, 9-18.	3.5	71
130	Molecular Mechanisms of Clostridial Neurotoxins. Annals of the New York Academy of Sciences, 1994, 733, 245-255.	1.8	70
131	Controlling synaptotagmin activity by electrostatic screening. Nature Structural and Molecular Biology, 2012, 19, 991-997.	3.6	69
132	The Neuronal Monoamine Transporter VMAT2 Is Regulated by the Trimeric GTPase Go ₂ . Journal of Neuroscience, 2000, 20, 2131-2141.	1.7	68
133	Use of G-protein fusions to monitor integral membrane protein–protein interactions in yeast. Nature Biotechnology, 2000, 18, 1075-1079.	9.4	67
134	Synaptic Vesicles Are Constitutively Active Fusion Machines that Function Independently of Ca 2+. Current Biology, 2008, 18, 715-722.	1.8	67
135	Synaptophysin immunoreactivity and small clear vesicles in neuroendocrine cells and related tumours. Molecular and Cellular Probes, 1987, 1, 367-381.	0.9	66
136	Distinct yet overlapping roles of Rab GTPases on synaptic vesicles. Small GTPases, 2011, 2, 77-81.	0.7	66
137	Localization of the Mouse 5-Hydroxytryptamine1A Receptor in Lipid Microdomains Depends on Its Palmitoylation and Is Involved in Receptor-Mediated Signaling. Molecular Pharmacology, 2007, 72, 502-513.	1.0	65
138	The N-terminal Domains of Syntaxin 7 and vti1b Form Three-helix Bundles That Differ in Their Ability to Regulate SNARE Complex Assembly. Journal of Biological Chemistry, 2002, 277, 36449-36456.	1.6	63
139	Evidence for Early Endosome-like Fusion of Recently Endocytosed Synaptic Vesicles. Traffic, 2006, 7, 1163-1176.	1.3	62
140	SNAREs define targeting specificity of trafficking vesicles by combinatorial interaction with tethering factors. Nature Communications, 2019, 10, 1608.	5.8	62
141	VAMP3 is associated with endothelial Weibel–Palade bodies and participates in their Ca2+-dependent exocytosis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1038-1044.	1.9	61
142	<i>Cis</i> - and <i>trans</i> -membrane interactions of synaptotagmin-1. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11037-11042.	3.3	61
143	Molecular determinants of exocytosis. Pflugers Archiv European Journal of Physiology, 2002, 443, 333-338.	1.3	59
144	Small-scale isolation of synaptic vesicles from mammalian brain. Nature Protocols, 2013, 8, 998-1009.	5.5	59

#	Article	IF	CITATIONS
145	Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease. Nature Communications, 2017, 8, 678.	5.8	59
146	Hidden proteome of synaptic vesicles in the mammalian brain. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33586-33596.	3.3	59
147	Determinants of Synaptobrevin Regulation in Membranes. Molecular Biology of the Cell, 2007, 18, 2037-2046.	0.9	58
148	A dual function for Munc-18 in exocytosis of PC12 cells. European Journal of Neuroscience, 2005, 21, 2419-2432.	1.2	55
149	Ca ²⁺ induces clustering of membrane proteins in the plasma membrane via electrostatic interactions. EMBO Journal, 2011, 30, 1209-1220.	3.5	55
150	SNARE derived peptide mimic inducing membrane fusion. Chemical Communications, 2011, 47, 9405.	2.2	54
151	The cDNA and derived amino acid sequences for rat and human synaptophysin. Nucleic Acids Research, 1987, 15, 9607-9607.	6.5	51
152	Functions of Rab Proteins at Presynaptic Sites. Cells, 2016, 5, 7.	1.8	50
153	Inhibition of Transmitter Release Correlates with the Proteolytic Activity of Tetanus Toxin and Botulinus Toxin A in Individual Cultured Synapses ofHirudo medicinalis. Journal of Neuroscience, 1997, 17, 1898-1910.	1.7	49
154	Transmembrane Domain Peptide/Peptide Nucleic Acid Hybrid as a Model of a SNARE Protein in Vesicle Fusion. Angewandte Chemie - International Edition, 2011, 50, 8597-8601.	7.2	49
155	The specificity of SNARE pairing in biological membranes is mediated by both proof-reading and spatial segregation. EMBO Journal, 2007, 26, 3981-3992.	3.5	48
156	Evolution of CASK into a Mg ²⁺ -Sensitive Kinase. Science Signaling, 2010, 3, ra33.	1.6	48
157	Review: Progresses in understanding Nâ€ethylmaleimide sensitive factor (NSF) mediated disassembly of SNARE complexes. Biopolymers, 2016, 105, 518-531.	1.2	48
158	RECONSTITUTION OF REGULATED EXOCYTOSIS IN CELL-FREE SYSTEMS: A Critical Appraisal. Annual Review of Physiology, 1999, 61, 777-807.	5.6	47
159	Endobrevin/VAMP8 mediates exocytotic release of hexosaminidase from rat basophilic leukaemia cells. FEBS Letters, 2007, 581, 3479-3484.	1.3	46
160	Reinvestigation of the Role of Snapin in Neurotransmitter Release. Journal of Biological Chemistry, 2004, 279, 26251-26256.	1.6	45
161	Sorting in early endosomes reveals connections to docking- and fusion-associated factors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9697-9702.	3.3	45
162	Reconstitution of calcium-mediated exocytosis of dense-core vesicles. Science Advances, 2017, 3, e1603208.	4.7	45

#	Article	IF	CITATIONS
163	A convenient protocol for generating giant unilamellar vesicles containing SNARE proteins using electroformation. Scientific Reports, 2018, 8, 9422.	1.6	45
164	Phosphorylation-regulated axonal dependent transport of syntaxin 1 is mediated by a Kinesin-1 adapter. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5862-5867.	3.3	44
165	Structure Parameters of Synaptic Vesicles Quantified by Small-Angle X-Ray Scattering. Biophysical Journal, 2010, 98, 1200-1208.	0.2	43
166	NEUROSCIENCE: A Neuronal Receptor for Botulinum Toxin. Science, 2006, 312, 540-541.	6.0	42
167	Control of membrane gaps by synaptotagmin-Ca2+ measured with a novel membrane distance ruler. Nature Communications, 2014, 5, 5859.	5.8	42
168	The Habc Domain and the SNARE Core Complex Are Connected by a Highly Flexible Linker. Biochemistry, 2003, 42, 4009-4014.	1.2	41
169	A Novel Site of Action for α-SNAP in the SNARE Conformational Cycle Controlling Membrane Fusion. Molecular Biology of the Cell, 2008, 19, 776-784.	0.9	41
170	An activated Q― <scp>SNARE</scp> / <scp>SM</scp> protein complex as a possible intermediate in <scp>SNARE</scp> assembly. EMBO Journal, 2017, 36, 1788-1802.	3.5	41
171	Analysis of protein phosphorylation in nerve terminal reveals extensive changes in active zone proteins upon exocytosis. ELife, 2016, 5, .	2.8	41
172	Membrane tension increases fusion efficiency of model membranes in the presence of SNAREs. Scientific Reports, 2017, 7, 12070.	1.6	40
173	Rapid Fusion of Synaptic Vesicles with Reconstituted Target SNARE Membranes. Biophysical Journal, 2013, 104, 1950-1958.	0.2	39
174	Resolving single membrane fusion events on planar pore-spanning membranes. Scientific Reports, 2015, 5, 12006.	1.6	39
175	Vesicle Adhesion and Fusion Studied by Small-Angle X-Ray Scattering. Biophysical Journal, 2018, 114, 1908-1920.	0.2	39
176	GÂo2 Regulates Vesicular Glutamate Transporter Activity by Changing Its Chloride Dependence. Journal of Neuroscience, 2005, 25, 4672-4680.	1.7	37
177	Endosomal Fusion upon SNARE Knockdown is Maintained by Residual SNARE Activity and Enhanced Docking. Traffic, 2009, 10, 1543-1559.	1.3	37
178	α-SNAP Interferes with the Zippering of the SNARE Protein Membrane Fusion Machinery. Journal of Biological Chemistry, 2014, 289, 16326-16335.	1.6	37
179	SLC10A4 Is a Vesicular Amine-Associated Transporter Modulating Dopamine Homeostasis. Biological Psychiatry, 2015, 77, 526-536.	0.7	37
180	In vitro fusion of single synaptic and dense core vesicles reproduces key physiological properties. Nature Communications, 2019, 10, 3904.	5.8	37

#	Article	IF	CITATIONS
181	A fluorescence-based in vitro assay for investigating early endosome dynamics. Nature Protocols, 2010, 5, 1127-1137.	5.5	36
182	Elevated synaptic vesicle release probability in synaptophysin/gyrin family quadruple knockouts. ELife, 2019, 8, .	2.8	36
183	SNARE proteins: zip codes in vesicle targeting?. Biochemical Journal, 2022, 479, 273-288.	1.7	35
184	A functional reconstitution of the .gammaaminobutyric acid transporter from synaptic vesicles using artificial ion gradients. Biochemistry, 1991, 30, 11795-11800.	1.2	34
185	Synaptic vesicle proteins in exocytosis: what do we know?. Current Opinion in Neurobiology, 1993, 3, 329-336.	2.0	34
186	Microdomains of SNARE Proteins in the Plasma Membrane. Current Topics in Membranes, 2013, 72, 193-230.	0.5	34
187	Direct targeting of membrane fusion by SNARE mimicry: Convergent evolution of <i>Legionella</i> effectors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8807-8812.	3.3	33
188	Organization and dynamics of SNARE proteins in the presynaptic membrane. Frontiers in Physiology, 2015, 6, 89.	1.3	32
189	An overview of the synaptic vesicle lipid composition. Archives of Biochemistry and Biophysics, 2021, 709, 108966.	1.4	32
190	Loss of the Zymogen Granule Protein Syncollin Affects Pancreatic Protein Synthesis and Transport but Not Secretion. Molecular and Cellular Biology, 2002, 22, 1545-1554.	1.1	30
191	Tctex-1, a Novel Interaction Partner of Rab3D, Is Required for Osteoclastic Bone Resorption. Molecular and Cellular Biology, 2011, 31, 1551-1564.	1.1	30
192	Clathrin coat controls synaptic vesicle acidification by blocking vacuolar ATPase activity. ELife, 2018, 7, .	2.8	30
193	Counting the SNAREs needed for membrane fusion. Journal of Molecular Cell Biology, 2011, 3, 204-205.	1.5	29
194	Calcium Promotes the Formation of Syntaxin 1 Mesoscale Domains through Phosphatidylinositol 4,5-Bisphosphate. Journal of Biological Chemistry, 2016, 291, 7868-7876.	1.6	29
195	SNARE-mediated membrane fusion trajectories derived from force-clamp experiments. Proceedings of the United States of America, 2016, 113, 13051-13056.	3.3	28
196	Structural dynamics and transient lipid binding of synaptobrevin-2 tune SNARE assembly and membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8699-8708.	3.3	28
197	Colocalization of different neurotransmitter transporters on synaptic vesicles is sparse except for VGLUT1 and ZnT3. Neuron, 2022, 110, 1483-1497.e7.	3.8	28
198	SNARE Function Is Not Involved in Early Endosome Docking. Molecular Biology of the Cell, 2008, 19, 5327-5337.	0.9	27

#	Article	IF	CITATIONS
199	Identification of Functionally Interacting SNAREs by Using Complementary Substitutions in the Conserved `0' Layer. Molecular Biology of the Cell, 2005, 16, 2263-2274.	0.9	26
200	Arrest of trans-SNARE zippering uncovers loosely and tightly docked intermediates in membrane fusion. Journal of Biological Chemistry, 2018, 293, 8645-8655.	1.6	26
201	Cross-linking mass spectrometry uncovers protein interactions and functional assemblies in synaptic vesicle membranes. Nature Communications, 2021, 12, 858.	5.8	26
202	Analysis of the Association of Syncollin with the Membrane of the Pancreatic Zymogen Granule. Journal of Biological Chemistry, 2000, 275, 11306-11311.	1.6	25
203	Proton electrochemical gradient: Driving and regulating neurotransmitter uptake. BioEssays, 2017, 39, 1600240.	1.2	25
204	A solid-phase assay for the phosphorylation of proteins blotted on nitrocellulose membrane filters. Analytical Biochemistry, 1986, 158, 130-137.	1.1	24
205	Binding of Rab3A to Synaptic Vesicles. Journal of Biological Chemistry, 2000, 275, 9433-9440.	1.6	24
206	Differential expression of active zone proteins in neuromuscular junctions suggests functional diversification. European Journal of Neuroscience, 2006, 24, 3043-3052.	1.2	24
207	Identification of distinct cytotoxic granules as the origin of supramolecular attack particles in T lymphocytes. Nature Communications, 2022, 13, 1029.	5.8	24
208	Synaptic vesicle fusion: today and beyond. Nature Structural and Molecular Biology, 2019, 26, 663-668.	3.6	23
209	Dual and Direction-Selective Mechanisms of Phosphate Transport by the Vesicular Glutamate Transporter. Cell Reports, 2018, 23, 535-545.	2.9	22
210	Measuring Ca2+-Induced Structural Changes in Lipid Monolayers: Implications for Synaptic Vesicle Exocytosis. Biophysical Journal, 2012, 102, 1394-1402.	0.2	21
211	Total Synthesis of Dansylated Park's Nucleotide for Highâ€Throughput MraY Assays. Chemistry - A European Journal, 2016, 22, 17813-17819.	1.7	21
212	Rapid SNARE-Mediated Fusion of Liposomes and Chromaffin Granules with Giant Unilamellar Vesicles. Biophysical Journal, 2017, 113, 1251-1259.	0.2	21
213	En route to dynamic life processes by SNARE-mediated fusion of polymer and hybrid membranes. Nature Communications, 2021, 12, 4972.	5.8	21
214	Synaptic membrane proteins form stable microdomains in early endosomes. Microscopy Research and Technique, 2010, 73, 606-617.	1.2	20
215	Distance Regulated Vesicle Fusion and Docking Mediated by βâ€Peptide Nucleic Acid SNARE Protein Analogues. ChemBioChem, 2016, 17, 479-485.	1.3	20
216	Role of the transmembrane domain in SNARE protein mediated membrane fusion: peptide nucleic acid/peptide model systems. Molecular BioSystems, 2016, 12, 2770-2776.	2.9	20

#	Article	IF	CITATIONS
217	Probing and manipulating intracellular membrane traffic by microinjection of artificial vesicles. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9883-E9892.	3.3	20
218	Tight docking of membranes before fusion represents a metastable state with unique properties. Nature Communications, 2021, 12, 3606.	5.8	20
219	High- and Small-Molecular-Weight GTP-Binding Proteins in Zymogen Granule Membranes of Rat Pancreatic Acinar Cells. Cellular Physiology and Biochemistry, 1992, 2, 77-89.	1.1	19
220	A sandwich enzyme-linked immunosorbent assay for the quantification of insoluble membrane and scaffold proteins. Analytical Biochemistry, 2010, 402, 161-169.	1.1	19
221	Isolation of large dense-core vesicles from bovine adrenal medulla for functional studies. Scientific Reports, 2020, 10, 7540.	1.6	19
222	CLC-3 spices up GABAergic synaptic vesicles. Nature Neuroscience, 2011, 14, 405-407.	7.1	18
223	Specific phosphorylation of a protein in calcium accumulating endoplasmic reticulum from rat parotid glands following stimulation by agonists involving cAMP as second messenger. FEBS Letters, 1984, 166, 96-103.	1.3	17
224	Chapter 28: Molecular approaches to synaptic vesicle exocytosis. Progress in Brain Research, 1993, 98, 235-240.	0.9	16
225	Distribution of Rab3a in rat nervous system: comparison with other synaptic vesicle proteins and neuropeptides. Brain Research, 1996, 706, 103-112.	1.1	16
226	Editorial. European Journal of Cell Biology, 2004, 83, 1-2.	1.6	14
227	The Na+/H+ Exchanger Nhe1 Modulates Network Excitability via GABA Release. Cerebral Cortex, 2019, 29, 4263-4276.	1.6	13
228	Is protein carboxymethylation involved in stimulus-secretion coupling?. FEBS Letters, 1981, 123, 211-214.	1.3	12
229	Extended synaptotagmins (E-Syts): Architecture and dynamics of membrane contact sites revealed. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4837-4838.	3.3	12
230	Regulation of protein kinases in exocrine secretory cells during agonist-induced exocytosis. Advances in Enzyme Regulation, 1985, 23, 141-156.	2.9	11
231	PNA Hybrid Sequences as Recognition Units in SNAREâ€Proteinâ€Mimicking Peptides. Angewandte Chemie - International Edition, 2018, 57, 14932-14936.	7.2	11
232	Protein Phosphorylation in Depolarized Synaptosomes: Dissecting Primary Effects of Calcium from Synaptic Vesicle Cycling. Molecular and Cellular Proteomics, 2021, 20, 100061.	2.5	11
233	3 Tetanus and botulinal neurotoxins tools to understand exocytosis in neurons. Advances in Second Messenger and Phosphoprotein Research, 1994, 29, 47-58.	4.5	11
234	Vesicle transport: Klarsicht clears up the matter. Current Biology, 1998, 8, R542-R544.	1.8	10

#	Article	IF	CITATIONS
235	Budding insights on cell polarity. Nature Structural and Molecular Biology, 2007, 14, 360-362.	3.6	10
236	Some classic papers in the field of membrane fusion—a personal view. Nature Structural and Molecular Biology, 2008, 15, 655-657.	3.6	10
237	Docking of Liposomes to Planar Surfaces Mediated by trans-SNARE Complexes. Biophysical Journal, 2008, 95, 1295-1302.	0.2	10
238	PI(4,5)P ₂ -dependent regulation of exocytosis by amisyn, the vertebrate-specific competitor of synaptobrevin 2. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13468-13479.	3.3	10
239	Synaptic transmission: Two players team up for a new tune. Current Biology, 1998, 8, R856-R858.	1.8	9
240	SNARE-Mediated Fusion of Single Chromaffin Granules with Pore-Spanning Membranes. Biophysical Journal, 2019, 116, 308-318.	0.2	9
241	Extreme parsimony in ATP consumption by 20S complexes in the global disassembly of single SNARE complexes. Nature Communications, 2021, 12, 3206.	5.8	8
242	[8] Bioenergetic characterization of γ-aminobutyric acid transporter of synaptic vesicles. Methods in Enzymology, 1998, 296, 116-124.	0.4	7
243	Into Great Silence without VGLUT3. Neuron, 2008, 57, 173-174.	3.8	7
244	A Tethering Complex Recruits SNAREs and Grabs Vesicles. Cell, 2009, 139, 1053-1055.	13.5	7
245	Complexins Living Up to Their Name— New Light on Their Role in Exocytosis. Neuron, 2009, 64, 295-297.	3.8	7
246	VGLUTs—Potential Targets for the Treatment of Seizures?. Neuron, 2010, 68, 6-8.	3.8	7
247	Vesicular Glutamate Transporters (SLCA17 A6, 7, 8) Control Synaptic Phosphate Levels. Cell Reports, 2021, 34, 108623.	2.9	7
248	Reconstitution of SNARE proteins into solid-supported lipid bilayer stacks and X-ray structure analysis. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 566-578.	1.4	7
249	Forces, Kinetics, and Fusion Efficiency Altered by the Full-Length Synaptotagmin-1 -PI(4,5)P ₂ Interaction in Constrained Geometries. Nano Letters, 2022, 22, 1449-1455.	4.5	7
250	NEUROSCIENCE: Synaptic Vesicles in the Fast Lane. Science, 2004, 303, 1986-1987.	6.0	5
251	Preparation of Synaptic Vesicles from Mammalian Brain. , 2006, , 85-90.		5
252	Inside insight to membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11729-11730.	3.3	5

REINHARD JAHN

#	Article	IF	CITATIONS
253	Recycling of synaptic vesicle membrane within nerve terminals. Brain Research Bulletin, 1999, 50, 313-314.	1.4	4
254	Endocytosis in Neurons: Editorial Introduction and Overview. Traffic, 2007, 8, 1121-1122.	1.3	4
255	Active zone protein expression changes at the key stages of cerebellar cortex neurogenesis in the rat. Acta Histochemica, 2013, 115, 616-625.	0.9	4
256	Managing intracellular transport. Worm, 2013, 2, e21564.	1.0	4
257	Differential Diffusional Properties in Loose and Tight Docking Prior to Membrane Fusion. Biophysical Journal, 2020, 119, 2431-2439.	0.2	4
258	Monoamine Transmitter Release from Small Synaptic and Large Dense-Core Vesicles. Advances in Pharmacology, 1997, 42, 87-90.	1.2	3
259	Selected tools to visualize membrane interactions. European Biophysics Journal, 2021, 50, 211-222.	1.2	3
260	On the trail of the Ca2+ receptor(s) for exocytosis. Seminars in Neuroscience, 1994, 6, 159-165.	2.3	2
261	Fusion of Vacuoles— Where Are the Membranes, and Where Are the Holes?. Developmental Cell, 2002, 2, 257-259.	3.1	2
262	Molecular Regulation of Synaptic Release. , 2013, , 351-401.		2
263	Isolation of Synaptic Vesicles from Mammalian Brain. Methods in Molecular Biology, 2022, 2417, 131-145.	0.4	2
264	Distinguished scientists back Germany's DFG…. Nature, 2000, 404, 922-922.	13.7	1
265	Coordinated bi-directional trafficking of synaptic vesicle and active zone proteins in peripheral nerves. Biochemical and Biophysical Research Communications, 2021, 559, 92-98.	1.0	1
266	Molecular Mechanisms of Intracellular Membrane Fusion. , 2006, , 245-277.		0
267	Seeing an explosive way of NSF/SNAP-mediated SNARE-complex disassembly using single-molecule measurements. , 2015, , .		0
268	Wie Nervenzellen miteinander reden – molekulare Mechanismen der Neurotransmitter-Freisetzung. Akademie Der Wissenschaften Zu Goettingen Jahrbuch, 2016, 2015, .	0.0	0
269	Molecular Regulation of Synaptic Release. , 2016, , 423-474.		0
270	PNAâ€Hybridsequenzen als Erkennungseinheiten in SNAREâ€Proteinâ€analogen Peptiden. Angewandte Chemie, 2018, 130, 15148-15152.	1.6	0

0

#	Article	IF	CITATIONS
271	Characterization of PROPPIN–Phosphoinositide Binding by Stopped-Flow Fluorescence Spectroscopy. Methods in Molecular Biology, 2021, 2251, 205-214.	0.4	0

272 Endosome Fusion. , 2006, , 50-61.