Patricia Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7919274/publications.pdf

Version: 2024-02-01

84 papers

33,357 citations

54 h-index 84 g-index

86 all docs 86 docs citations

86 times ranked 13538 citing authors

#	Article	IF	CITATIONS
1	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	2.9	6,413
2	Multi-messenger Observations of a Binary Neutron Star Merger < sup > * < /sup > . Astrophysical Journal Letters, 2017, 848, L12.	3.0	2,805
3	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	2.9	2,701
4	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	3.0	2,314
5	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	2.9	1,987
6	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	2.9	1,600
7	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	2.9	1,473
8	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	2.9	1,224
9	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^¼Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	3.0	1,049
10	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	3.0	968
11	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
12	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	2.9	673
13	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	3.0	633
14	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	3.0	566
15	Illuminating gravitational waves: A concordant picture of photons from a neutron star merger. Science, 2017, 358, 1559-1565.	6.0	559
16	Simple Model of Complete Precessing Black-Hole-Binary Gravitational Waveforms. Physical Review Letters, 2014, 113, 151101.	2.9	498
17	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	2.9	466
18	Black holes, gravitational waves and fundamental physics: a roadmap. Classical and Quantum Gravity, 2019, 36, 143001.	1.5	451

#	Article	IF	CITATIONS
19	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
20	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	8.2	427
21	Scientific objectives of Einstein Telescope. Classical and Quantum Gravity, 2012, 29, 124013.	1.5	355
22	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	2.9	269
23	Towards models of gravitational waveforms from generic binaries: II. Modelling precession effects with a single effective precession parameter. Physical Review D, 2015, 91, .	1.6	250
24	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	1.5	225
25	The SXS collaboration catalog of binary black hole simulations. Classical and Quantum Gravity, 2019, 36, 195006.	1.5	217
26	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	3.0	210
27	Prospects for fundamental physics with LISA. General Relativity and Gravitation, 2020, 52, 1.	0.7	198
28	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	3.0	189
29	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	3.0	179
30	Time-domain effective-one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins, tides, and self-spin effects. Physical Review D, 2018, 98, .	1.6	168
31	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	3.0	156
32	Towards models of gravitational waveforms from generic binaries: A simple approximate mapping between precessing and nonprecessing inspiral signals. Physical Review D, 2012, 86, .	1.6	150
33	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	3.0	146
34	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	1.6	144
35	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	1.6	131
36	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	2.9	119

#	Article	IF	CITATIONS
37	Fast and accurate inference on gravitational waves from precessing compact binaries. Physical Review D, 2016, 94, .	1.6	116
38	Tracking the precession of compact binaries from their gravitational-wave signal. Physical Review D, $2011,84,\ldots$	1.6	109
39	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	1.5	98
40	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	1.6	97
41	A Surrogate model of gravitational waveforms from numerical relativity simulations of precessing binary black hole mergers. Physical Review D, 2017, 95, .	1.6	96
42	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	1.6	88
43	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	2.9	85
44	On the properties of the massive binary black hole merger GW170729. Physical Review D, 2019, 100, .	1.6	82
45	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	2.9	77
46	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	3.0	73
47	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	1.6	72
48	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	1.6	71
49	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	0.9	69
50	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	1.6	66
51	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	3.0	63
52	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	1.6	61
53	Gravitational-wave asteroseismology with fundamental modes from compact binary inspirals. Nature Communications, 2020, 11 , 2553.	5.8	57
54	Distinguishing the nature of comparable-mass neutron star binary systems with multimessenger observations: GW170817 case study. Physical Review D, 2019, 100, .	1.6	54

#	Article	IF	CITATIONS
55	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	1.6	52
56	Tight multimessenger constraints on the neutron star equation of state from GW170817 and a forward model for kilonova light-curve synthesis. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3016-3032.	1.6	49
57	Frequency domain model of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi></mml:math> -mode dynamic tides in gravitational waveforms from compact binary inspirals. Physical Review D, 2019, 100, .	1.6	47
58	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	1.6	46
59	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	3.0	44
60	Calibration of advanced Virgo and reconstruction of the gravitational wave signal <i>h</i> (<i>t</i>) Tj ETQqO O	0 rgBT/C	Overlock 10 Tf
61	Forecasts for detecting the gravitational-wave memory effect with Advanced LIGO and Virgo. Physical Review D, 2020, 101, .	1.6	41
62	Parametrized tests of the strong-field dynamics of general relativity using gravitational wave signals from coalescing binary black holes: Fast likelihood calculations and sensitivity of the method. Physical Review D, 2018, 97, .	1.6	40
63	A generalized precession parameter <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>\\display="inline"><mml:msub><mml:mi><mml:mi> o interpret gravitational-wave data. Physical Review D. 2021, 103.</mml:mi></mml:mi></mml:msub></mml:mi></mml:msub></mml:math>	1.6	38
64	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. Astrophysical Journal, 2019, 870, 134.	1.6	32
65	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	1.6	30
66	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	1.6	29
67	Validity of common modeling approximations for precessing binary black holes with higher-order modes. Physical Review D, 2020, 101, .	1.6	27
68	Measuring precession in asymmetric compact binaries. Physical Review Research, 2020, 2, .	1.3	27
69	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	1.6	26
70	Constraining the Lensing of Binary Black Holes from Their Stochastic Background. Physical Review Letters, 2020, 125, 141102.	2.9	23
71	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	20
72	Constraints on compact binary merger evolution from spin-orbit misalignment in gravitational-wave observations. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1454-1461.	1.6	18

#	Article	IF	CITATIONS
73	New effective precession spin for modeling multimodal gravitational waveforms in the strong-field regime. Physical Review D, $2021,103,.$	1.6	17
74	Prospects for distinguishing dynamical tides in inspiralling binary neutron stars with third generation gravitational-wave detectors. Physical Review D, 2022, 105, .	1.6	13
75	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	1.6	12
76	Gravitational Waves From Binary Black Hole Mergers: Modeling and Observations. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	10
77	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003.	0.1	9
78	The advanced Virgo longitudinal control system for the O2 observing run. Astroparticle Physics, 2020, 116, 102386.	1.9	9
79	Advanced Virgo Status. Journal of Physics: Conference Series, 2020, 1342, 012010.	0.3	9
80	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	0.5	6
81	Constraining the lensing of binary neutron stars from their stochastic background. Physical Review D, 2020, 102, .	1.6	6
82	Gravitational waves: search results, data analysis and parameter estimation. General Relativity and Gravitation, 2015, 47, 11.	0.7	4
83	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
84	Gravitational-Wave Observations by Advanced LIGO and Virgo. Journal of Physics: Conference Series, 2020, 1468, 012218.	0.3	0