Kristy Red-Horse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7919011/publications.pdf Version: 2024-02-01

KDISTY RED-HODSE

#	Article	IF	CITATIONS
1	Generating human artery and vein cells from pluripotent stem cells highlights the arterial tropism of Nipah and Hendra viruses. Cell, 2022, 185, 2523-2541.e30.	13.5	13
2	Targeting calcineurin induces cardiomyocyte proliferation in adult mice. , 2022, 1, 679-688.		2
3	New Research Is Shining Light on How Collateral Arteries Form in the Heart: a Future Therapeutic Direction?. Current Cardiology Reports, 2021, 23, 30.	1.3	4
4	miR-106a–363 cluster in extracellular vesicles promotes endogenous myocardial repair via Notch3 pathway in ischemic heart injury. Basic Research in Cardiology, 2021, 116, 19.	2.5	34
5	Enhancing cardiovascular research with whole-organ imaging. Current Opinion in Hematology, 2021, 28, 214-220.	1.2	5
6	Endothelial ontogeny and the establishment of vascular heterogeneity. BioEssays, 2021, 43, e2100036.	1.2	10
7	Endocardial/endothelial angiocrines regulate cardiomyocyte development and maturation and induce features of ventricular non-compaction. European Heart Journal, 2021, 42, 4264-4276.	1.0	41
8	Dach1 Extends Artery Networks and Protects Against Cardiac Injury. Circulation Research, 2021, 129, 702-716.	2.0	28
9	Coronary blood vessels from distinct origins converge to equivalent states during mouse and human development. ELife, 2021, 10, .	2.8	15
10	A molecular map of murine lymph node blood vascular endothelium at single cell resolution. Nature Communications, 2020, 11, 3798.	5.8	74
11	Single-Cell RNA Sequencing Unveils Unique Transcriptomic Signatures of Organ-Specific Endothelial Cells. Circulation, 2020, 142, 1848-1862.	1.6	157
12	Whole-body tracking of single cells via positron emission tomography. Nature Biomedical Engineering, 2020, 4, 835-844.	11.6	46
13	Wnt Activation and Reduced Cell-Cell Contact Synergistically Induce Massive Expansion of Functional Human iPSC-Derived Cardiomyocytes. Cell Stem Cell, 2020, 27, 50-63.e5.	5.2	112
14	In Vitro Model of Coronary Angiogenesis. Journal of Visualized Experiments, 2020, , .	0.2	4
15	A Unique Collateral Artery Development Program Promotes Neonatal Heart Regeneration. Cell, 2019, 176, 1128-1142.e18.	13.5	162
16	Veins and Arteries Build Hierarchical Branching Patterns Differently: Bottomâ€Up versus Topâ€Down. BioEssays, 2019, 41, e1800198.	1.2	55
17	Distinct origins and molecular mechanisms contribute to lymphatic formation during cardiac growth and regeneration. ELife, 2019, 8, .	2.8	76
18	Endothelial deletion of Ino80 disrupts coronary angiogenesis and causes congenital heart disease. Nature Communications, 2018, 9, 368.	5.8	71

KRISTY RED-HORSE

#	Article	IF	CITATIONS
19	Single-cell analysis of early progenitor cells that build coronary arteries. Nature, 2018, 559, 356-362.	13.7	190
20	Cellular plasticity in cardiovascular development and disease. Developmental Dynamics, 2017, 246, 328-335.	0.8	6
21	Coronary Artery Development: Progenitor Cells and Differentiation Pathways. Annual Review of Physiology, 2017, 79, 1-19.	5.6	77
22	Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin's glucose-lowering effects. Science Translational Medicine, 2017, 9, .	5.8	61
23	Alternative Progenitor Cells Compensate to Rebuild the Coronary Vasculature in Elabela- and Apj-Deficient Hearts. Developmental Cell, 2017, 42, 655-666.e3.	3.1	88
24	Endothelial cells respond to the direction of mechanical stimuli through SMAD signaling to regulate coronary artery size. Development (Cambridge), 2017, 144, 3241-3252.	1.2	66
25	DACH1 stimulates shear stress-guided endothelial cell migration and coronary artery growth through the CXCL12–CXCR4 signaling axis. Genes and Development, 2017, 31, 1308-1324.	2.7	77
26	MicroRNA 139-5p coordinates APLNR-CXCR4 crosstalk during vascular maturation. Nature Communications, 2016, 7, 11268.	5.8	37
27	Pericytes are progenitors for coronary artery smooth muscle. ELife, 2015, 4, .	2.8	162
28	Genetic targeting of sprouting angiogenesis using Apln-CreER. Nature Communications, 2015, 6, 6020.	5.8	111
29	The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis. Development (Cambridge), 2014, 141, 4500-4512.	1.2	173
30	Developmental Heterogeneity of Cardiac Fibroblasts Does Not Predict Pathological Proliferation and Activation. Circulation Research, 2014, 115, 625-635.	2.0	258
31	Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes as an In Vitro Model for Coxsackievirus B3–Induced Myocarditis and Antiviral Drug Screening Platform. Circulation Research, 2014, 115, 556-566.	2.0	134
32	VEGF-C and aortic cardiomyocytes guide coronary artery stem development. Journal of Clinical Investigation, 2014, 124, 4899-4914.	3.9	89
33	Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries. Cell Research, 2013, 23, 1075-1090.	5.7	176
34	Radial Construction of an Arterial Wall. Developmental Cell, 2012, 23, 482-493.	3.1	82
35	Coronary arteries form by developmental reprogramming of venous cells. Nature, 2010, 464, 549-553.	13.7	476
36	A new resource for human coronary vessel development. Cardiovascular Research, 0, , .	1.8	0