List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7918464/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Allelopathy for weed control in agricultural systems. Crop Protection, 2015, 72, 57-65.	2.1	427
2	Productivity and Sustainability of the Rice–Wheat Cropping System in the Indo-Gangetic Plains of the Indian subcontinent. Advances in Agronomy, 2012, , 315-369.	5.2	287
3	Ecology and management of weeds under conservation agriculture: A review. Crop Protection, 2012, 38, 57-65.	2.1	281
4	Weed Ecology and Weed Management Strategies for Dry-Seeded Rice in Asia. Weed Technology, 2012, 26, 1-13.	0.9	240
5	The Role of Seed Ecology in Improving Weed Management Strategies in the Tropics. Advances in Agronomy, 2010, , 221-262.	5.2	225
6	Row spacing and weed control timing affect yield of aerobic rice. Field Crops Research, 2011, 121, 226-231.	5.1	154
7	Tillage system effects on weed ecology, herbicide activity and persistence: a review. Australian Journal of Experimental Agriculture, 2006, 46, 1557.	1.0	151
8	Responses of Rapid Viscoanalyzer Profile and Other Rice Grain Qualities to Exogenously Applied Plant Growth Regulators under High Day and High Night Temperatures. PLoS ONE, 2016, 11, e0159590.	2.5	150
9	Influence of tillage systems on vertical distribution, seedling recruitment and persistence of rigid ryegrass (Lolium rigidum) seed bank. Weed Science, 2006, 54, 669-676.	1.5	145
10	Weeds in a Changing Climate: Vulnerabilities, Consequences, and Implications for Future Weed Management. Frontiers in Plant Science, 2017, 8, 95.	3.6	141
11	Nonconventional Weed Management Strategies for Modern Agriculture. Weed Science, 2015, 63, 723-747.	1.5	139
12	Crop performance and water- and nitrogen-use efficiencies in dry-seeded rice in response to irrigation and fertilizer amounts in northwest India. Field Crops Research, 2012, 134, 59-70.	5.1	134
13	What do we really know about alien plant invasion? A review of the invasion mechanism of one of the world's worst weeds. Planta, 2016, 244, 39-57.	3.2	130
14	Strategies to manage weedy rice in Asia. Crop Protection, 2013, 48, 51-56.	2.1	126
15	Grand Challenges in Weed Management. Frontiers in Agronomy, 2020, 1, .	3.3	121
16	Implications of narrow crop row spacing and delayed Echinochloa colona and Echinochloa crus-galli emergence for weed growth and crop yield loss in aerobic rice. Field Crops Research, 2010, 117, 177-182.	5.1	105
17	Weed management in rice using crop competition-a review. Crop Protection, 2017, 95, 45-52.	2.1	105
18	Factors affecting seed germination of annual sowthistle (Sonchus oleraceus) in southern Australia. Weed Science, 2006, 54, 854-860.	1.5	104

#	Article	IF	CITATIONS
19	Effect of tillage systems and herbicides on weed emergence, weed growth, and grain yield in dry-seeded rice systems. Field Crops Research, 2012, 137, 56-69.	5.1	99
20	Seed Germination Ecology of Junglerice (<i>Echinochloa colona</i>): A Major Weed of Rice. Weed Science, 2009, 57, 235-240.	1.5	94
21	Relations of rice seeding rates to crop and weed growth in aerobic rice. Field Crops Research, 2011, 121, 105-115.	5.1	94
22	Weed Management in Aerobic Rice in Northwestern Indo-Gangetic Plains. Journal of Crop Improvement, 2009, 23, 366-382.	1.7	92
23	Understanding crop-weed-fertilizer-water interactions and their implications for weed management in agricultural systems. Crop Protection, 2018, 103, 65-72.	2.1	88
24	Ecological studies on Echinochloa crus-galli and the implications for weed management in direct-seeded rice. Crop Protection, 2011, 30, 1385-1391.	2.1	87
25	Influence of Environmental Factors on Seed Germination and Seedling Emergence of Eclipta (<i>Eclipta prostrata</i>) in a Tropical Environment. Weed Science, 2008, 56, 383-388.	1.5	85
26	Global Warming and Its Possible Impact on Agriculture in India. Advances in Agronomy, 2014, 123, 65-121.	5.2	85
27	Germination Ecology of Goosegrass (<i>Eleusine indica</i>): An Important Grass Weed of Rainfed Rice. Weed Science, 2008, 56, 699-706.	1.5	83
28	Weed growth and crop yield loss in wheat as influenced by row spacing and weed emergence times. Crop Protection, 2015, 71, 101-108.	2.1	82
29	Influence of tillage systems on weed seedling emergence pattern in rainfed rice. Soil and Tillage Research, 2009, 106, 15-21.	5.6	80
30	Role of competition in managing weeds: An introduction to the special issue. Crop Protection, 2017, 95, 1-7.	2.1	79
31	Influence of environmental factors on seed germination and seedling emergence of rigid ryegrass (Lolium rigidum). Weed Science, 2006, 54, 1004-1012.	1.5	78
32	Seedling recruitment pattern and depth of recruitment of 10 weed species in minimum tillage and no-till seeding systems. Weed Science, 2006, 54, 658-668.	1.5	76
33	Yield and yield-attributing traits of rice (Oryza sativa L.) under lowland drought and suitability of early vigor as a selection criterion. Field Crops Research, 2009, 114, 99-107.	5.1	75
34	Global distribution of rice weeds $\hat{a} \in \hat{A}$ review. Crop Protection, 2016, 80, 73-86.	2.1	75
35	Post-dispersal predation of weed seeds in rice fields. Weed Research, 2010, 50, 553-560.	1.7	73
36	Mulching Improves Water Productivity, Yield and Quality of Fine Rice under Waterâ€saving Rice Production Systems. Journal of Agronomy and Crop Science, 2015, 201, 389-400.	3.5	73

BHAGIRATH S CHAUHAN

#	Article	IF	CITATIONS
37	Determining the uniformity and consistency of droplet size across spray drift reducing nozzles in a wind tunnel. Crop Protection, 2015, 76, 1-6.	2.1	73
38	Environment polluting conventional chemical control compared to an environmentally friendly IPM approach for control of diamondback moth, Plutella xylostella (L.), in China: a review. Environmental Science and Pollution Research, 2017, 24, 14537-14550.	5.3	73
39	The role of cultivars in managing weeds in dry-seeded rice production systems. Crop Protection, 2013, 49, 52-57.	2.1	71
40	Dry-seeded rice culture in Punjab State of India: Lessons learned from farmers. Field Crops Research, 2013, 144, 89-99.	5.1	71
41	African mustard (Brassica tournefortii) germination in southern Australia. Weed Science, 2006, 54, 891-897.	1.5	69
42	Eco-biology and management of Echinochloa crus-galli. Crop Protection, 2015, 75, 151-162.	2.1	69
43	Ecological studies on <i>Cyperus difformis</i> , <i>Cyperus iria </i> and <i>Fimbristylis miliacea</i> : three troublesome annual sedge weeds of rice. Annals of Applied Biology, 2009, 155, 103-112.	2.5	68
44	Assessing the deposition and canopy penetration of nozzles with different spray qualities in an oat () Tj ETQq0) 0 0 rgBT /C	Overlock 10 T
45	A review of weed management in wheat using crop competition. Crop Protection, 2017, 95, 38-44.	2.1	68
46	Germination Ecology of Chinese Sprangletop (Leptochloa chinensis) in the Philippines. Weed Science, 2008, 56, 820-825.	1.5	66
47	Weed management in maize using crop competition: A review. Crop Protection, 2016, 88, 28-36.	2.1	64
48	Impact of sowing date on yield, dry matter and nitrogen accumulation, and nitrogen translocation in dry-seeded rice in North-West India. Field Crops Research, 2017, 206, 138-148.	5.1	62
49	Effect of crop establishment methods and weed control treatments on weed management, and rice yield. Field Crops Research, 2015, 172, 72-84.	5.1	61
50	Biology and management of two important Conyza weeds: a global review. Environmental Science and Pollution Research, 2016, 23, 24694-24710.	5.3	60
51	Weed management in aerobic rice systems. Crop Protection, 2015, 78, 151-163.	2.1	59
52	Germination Ecology of Southern Crabgrass (<i>Digitaria ciliaris</i>) and India Crabgrass (<i>Digitaria longiflora</i>): Two Important Weeds of Rice in Tropics. Weed Science, 2008, 56, 722-728.	1.5	57
53	Emerging Challenges and Opportunities for Education and Research in Weed Science. Frontiers in Plant Science, 2017, 8, 1537.	3.6	57

54Weed management using crop competition in the United States: A review. Crop Protection, 2017, 95,
31-37.2.156

#	Article	IF	CITATIONS
55	Seed Germination and Seedling Emergence of Giant Sensitiveplant (Mimosa Invisa). Weed Science, 2008, 56, 244-248.	1.5	55
56	Growth Response of Direct-Seeded Rice to Oxadiazon and Bispyribac-Sodium in Aerobic and Saturated Soils. Weed Science, 2011, 59, 119-122.	1.5	54
57	Growth and Reproduction of Junglerice (<i>Echinochloa colona</i>) in Response to Water Stress. Weed Science, 2010, 58, 132-135.	1.5	53
58	Weed management using crop competition in Australia. Crop Protection, 2017, 95, 8-13.	2.1	53
59	Germination Ecology of Spiny (<i>Amaranthus spinosus</i>) and Slender Amaranth (<i>A. viridis</i>): Troublesome Weeds of Direct-Seeded Rice. Weed Science, 2009, 57, 379-385.	1.5	52
60	Herbicide Options for Weed Control in Dry-Seeded Aromatic Rice in India. Weed Technology, 2013, 27, 682-689.	0.9	52
61	Weeds of Direct-Seeded Rice in Asia: Problems and Opportunities. Advances in Agronomy, 2015, 130, 291-336.	5.2	52
62	Herbicide options for effective weed management in dry direct-seeded rice under scented rice-wheat rotation of western Indo-Gangetic Plains. Crop Protection, 2016, 81, 168-176.	2.1	52
63	Optimal Nitrogen Fertilization Timing and Rate in Dry‣eeded Rice in Northwest India. Agronomy Journal, 2011, 103, 1676-1682.	1.8	50
64	Germination Ecology of Two Troublesome Asteraceae Species of Rainfed Rice: Siam Weed (<i>Chromolaena odorata</i>) and Coat Buttons (<i>Tridax procumbens</i>). Weed Science, 2008, 56, 567-573.	1.5	49
65	Influence of tillage, cover cropping, and herbicides on weeds and productivity of dry direct-seeded rice. Soil and Tillage Research, 2015, 147, 39-49.	5.6	47
66	Managing weeds using crop competition in soybean [Glycine max (L.) Merr.]. Crop Protection, 2017, 95, 60-68.	2.1	46
67	Effect of Seeding Systems and Dinitroaniline Herbicides on Emergence and Control of Rigid Ryegrass (Lolium Rigidum) in Wheat. Weed Technology, 2007, 21, 53-58.	0.9	45
68	Relative Importance of Shoot and Root Competition in Dry-Seeded Rice Growing with Junglerice (Echinochloa colona) and Ludwigia (Ludwigia hyssopifolia). Weed Science, 2010, 58, 295-299.	1.5	45
69	Germination Ecology of Two Australian Biotypes of Ragweed Parthenium (<i>Parthenium) Tj ETQq1 1 0.78431</i>	4 rgBT_/Ove	erlock 10 Tf 50
70	Effect of Weed Management and Seed Rate on Crop Growth under Direct Dry Seeded Rice Systems in Bangladesh. PLoS ONE, 2014, 9, e101919.	2.5	45
71	Seed germination ecology of <i>Portulaca oleracea </i> L.: an important weed of rice and upland crops. Annals of Applied Biology, 2009, 155, 61-69.	2.5	44
72	Effects of Planting Pattern and Cultivar on Weed and Crop Growth in Aerobic Rice System. Weed Technology, 2011, 25, 521-525.	0.9	44

#	Article	IF	CITATIONS
73	Can hormesis of plant-released phytotoxins be used to boost and sustain crop production?. Crop Protection, 2017, 93, 69-76.	2.1	44
74	The critical period for weed control in three corn (Zea mays L.) types. Crop Protection, 2016, 90, 59-65.	2.1	43
75	Performance of drip-irrigated dry-seeded rice (Oryza sativa L.) in South Asia. Paddy and Water Environment, 2017, 15, 93-100.	1.8	43
76	Morphological, physiological and biochemical responses of two Australian biotypes of Parthenium hysterophorus to different soil moisture regimes. Environmental Science and Pollution Research, 2017, 24, 16186-16194.	5.3	42
77	Modelling crop-weed competition: Why, what, how and what lies ahead?. Crop Protection, 2017, 95, 101-108.	2.1	42
78	An assessment of weed flora 14 years after the introduction of glyphosate-tolerant cotton in Australia. Crop and Pasture Science, 2017, 68, 773.	1.5	41
79	Weed management and grain yield of rice sown at low seeding rates in mechanized dry-seeded systems. Field Crops Research, 2013, 141, 9-15.	5.1	40
80	Impact of invasive plant species on the livelihoods of farming households: evidence from Parthenium hysterophorus invasion in rural Punjab, Pakistan. Biological Invasions, 2019, 21, 3285-3304.	2.4	40
81	Interference and management of parthenium: The world's most important invasive weed. Crop Protection, 2015, 68, 49-59.	2.1	39
82	Growth, yield and nitrogen use efficiency of dry-seeded rice as influenced by nitrogen and seed rates in Bangladesh. Field Crops Research, 2016, 186, 18-31.	5.1	39
83	Germination, emergence, and dormancy of <i>Mimosa pudica</i> . Weed Biology and Management, 2009, 9, 38-45.	1.4	38
84	Seed Germination Ecology of Itchgrass (<i>Rottboellia cochinchinensis</i>). Weed Science, 2011, 59, 182-187.	1.5	38
85	Effects of water regime, nitrogen fertilization, and rice plant density on growth and reproduction of lowland weed Echinochloa crus-galli. Crop Protection, 2013, 54, 142-147.	2.1	38
86	Seed bank dynamics and emergence pattern of weeds as affected by tillage systems in dry direct-seeded rice. Crop Protection, 2015, 67, 168-177.	2.1	38
87	Influence of environmental factors on seed germination and seedling emergence of Oriental mustard (Sisymbrium orientale). Weed Science, 2006, 54, 1025-1031.	1.5	35
88	Seed Germination Ecology of Doveweed (<i>Murdannia nudiflora)</i> and Its Implication for Management in Dry-Seeded Rice. Weed Science, 2015, 63, 491-501.	1.5	35
89	The critical period for weed control in dry-seeded rice. Crop Protection, 2014, 66, 80-85.	2.1	34
90	Factors Affecting Seed Germination of Feather Fingergrass (<i>Chloris virgata</i>). Weed Science, 2016, 64, 605-612.	1.5	34

#	Article	IF	CITATIONS
91	Weed Management in Dry Direct-Seeded Rice: A Review on Challenges and Opportunities for Sustainable Rice Production. Agronomy, 2020, 10, 1264.	3.0	34
92	Weedy Rice (<i>Oryza sativa</i>) I. Grain Characteristics and Growth Response to Competition of Weedy Rice Variants from Five Asian Countries. Weed Science, 2010, 58, 374-380.	1.5	33
93	Influence of Various Environmental Factors on Seed Germination and Seedling Emergence of a Noxious Environmental Weed: Green Galenia (<i>Galenia pubescens</i>). Weed Science, 2016, 64, 486-494.	1.5	33
94	Responses of Rice Flatsedge (Cyperus iria) and Barnyardgrass (Echinochloa crus-galli) to Rice Interference. Weed Science, 2010, 58, 204-208.	1.5	32
95	Effect of Crop Residue on Seedling Emergence and Growth of Selected Weed Species in a Sprinkler-Irrigated Zero-Till Dry-Seeded Rice System. Weed Science, 2013, 61, 403-409.	1.5	32
96	WATER SAVING, WATER PRODUCTIVITY AND YIELD OUTPUTS OF FINE-GRAIN RICE CULTIVARS UNDER CONVENTIONAL AND WATER-SAVING RICE PRODUCTION SYSTEMS. Experimental Agriculture, 2015, 51, 567-581.	0.9	32
97	Weed management in sorghum [Sorghum bicolor (L.) Moench] using crop competition: A review. Crop Protection, 2017, 95, 74-80.	2.1	32
98	Factors affecting seed germination of threehorn bedstraw (Galium tricornutum) in Australia. Weed Science, 2006, 54, 471-477.	1.5	31
99	Integrated weed management approach to improve weed control efficiencies for sustainable rice production in dry-seeded systems. Crop Protection, 2015, 71, 19-24.	2.1	31
100	Threelobe Morningglory (<i>Ipomoea triloba</i>) Germination and Response to Herbicides. Weed Science, 2012, 60, 199-204.	1.5	30
101	Seed Germination Ecology of Echinochloa glabrescens and Its Implication for Management in Rice (Oryza sativa L.). PLoS ONE, 2014, 9, e92261.	2.5	30
102	Optimizing Hill Seeding Density for High-Yielding Hybrid Rice in a Single Rice Cropping System in South China. PLoS ONE, 2014, 9, e109417.	2.5	30
103	Germination of Spotted Spurge (<i>Chamaesyce maculata</i>) Seeds in Response to Different Environmental Factors. Weed Science, 2015, 63, 502-510.	1.5	30
104	Environmental factors effecting the germination and seedling emergence of two populations of an aggressive agricultural weed; Nassella trichotoma. PLoS ONE, 2018, 13, e0199491.	2.5	30
105	Factors affecting seed germination of little mallow (Malva parviflora) in southern Australia. Weed Science, 2006, 54, 1045-1050.	1.5	29
106	Factors affecting turnipweed (Rapistrum rugosum) seed germination in southern Australia. Weed Science, 2006, 54, 1032-1036.	1.5	29
107	Ludwigia hyssopifolia emergence and growth as affected by light, burial depth and water management. Crop Protection, 2009, 28, 887-890.	2.1	29
108	Effect of Growth Stage on the Efficacy of Postemergence Herbicides on Four Weed Species of Direct-Seeded Rice. Scientific World Journal, The, 2012, 2012, 1-7.	2.1	29

#	Article	IF	CITATIONS
109	15 N tracer-based analysis of genotypic differences in the uptake and partitioning of N applied at different growth stages in transplanted rice. Field Crops Research, 2017, 211, 27-36.	5.1	29
110	Weed management in cotton (Gossypium hirsutum L.) through weed-crop competition: A review. Crop Protection, 2017, 95, 53-59.	2.1	29
111	Mechanized Transplanting of Rice (<i>Oryza sativa</i> L.) in Nonpuddled and No-Till Conditions in the Rice-Wheat Cropping System in Haryana, India. American Journal of Plant Sciences, 2013, 04, 2409-2413.	0.8	29
112	Competitive interactions between weedy rice and cultivated rice as a function of added nitrogen and the level of competition. Weed Biology and Management, 2011, 11, 202-209.	1.4	28
113	Growth Response of Itchgrass (<i>Rottboellia cochinchinensis</i>) to Water Stress. Weed Science, 2013, 61, 98-103.	1.5	28
114	Shade reduces growth and seed production of Echinochloa colona, Echinochloa crus-galli, and Echinochloa glabrescens. Crop Protection, 2013, 43, 241-245.	2.1	28
115	Effect of elevated carbon dioxide concentration on growth, productivity and glyphosate response of parthenium weed (Parthenium hysterophorus L.). Pest Management Science, 2019, 75, 2934-2941.	3.4	28
116	A global perspective on the biology, impact and management of Chenopodium album and Chenopodium murale: two troublesome agricultural and environmental weeds. Environmental Science and Pollution Research, 2019, 26, 5357-5371.	5.3	28
117	An Overview of the Characteristics and Potential of Calotropis procera From Botanical, Ecological, and Economic Perspectives. Frontiers in Plant Science, 2021, 12, 690806.	3.6	28
118	Rice Production in India. , 2017, , 53-91.		28
119	Agronomic indices, growth, yield-contributing traits, and yield of dry-seeded rice under varying herbicides. Field Crops Research, 2015, 177, 15-25.	5.1	27
120	Biology and management of Avena fatua and Avena ludoviciana: two noxious weed species of agro-ecosystems. Environmental Science and Pollution Research, 2017, 24, 19465-19479.	5.3	27
121	Effect of spray droplet size on herbicide efficacy on four winter annual grasses. Crop Protection, 2018, 112, 118-124.	2.1	27
122	The Influence of Environmental Factors on Germination of Burcucumber (<i>Sicyos angulatus</i>) Seeds: Implications for Range Expansion and Management. Weed Science, 2018, 66, 494-501.	1.5	27
123	Tillage systems affect trifluralin bioavailability in soil. Weed Science, 2006, 54, 941-947.	1.5	26
124	Seed Germination and Seedling Emergence of Synedrella (<i>Synedrella nodiflora</i>) in a Tropical Environment. Weed Science, 2009, 57, 36-42.	1.5	26
125	Weedy rice (<i>Oryza sativa</i>) II. Response of Weedy Rice to Seed Burial and Flooding Depth. Weed Science, 2012, 60, 385-388.	1.5	26
126	Weed control in dry direct-seeded rice using tank mixtures of herbicides in South Asia. Crop Protection, 2015, 72, 90-96.	2.1	26

#	Article	IF	CITATIONS
127	Glyphosate Resistance of C3 and C4 Weeds under Rising Atmospheric CO2. Frontiers in Plant Science, 2016, 7, 910.	3.6	26
128	Weed management challenges in rice (Oryza sativa L.) for food security in Bhutan: A review. Crop Protection, 2016, 90, 117-124.	2.1	26
129	Biology, impact, and management of Echinochloa colona (L.) Link. Crop Protection, 2016, 83, 56-66.	2.1	26
130	Intercropping as an effective component of integrated weed management in tropical root and tuber crops: A review. Crop Protection, 2017, 95, 89-100.	2.1	26
131	Weed Management in Dry-Seeded Fine Rice under Varying Row Spacing in the Rice-Wheat System of Punjab, Pakistan. Plant Production Science, 2014, 17, 321-332.	2.0	25
132	Performance of Dry Directâ€5eeded Rice in Response to Genotype and Seeding Rate. Agronomy Journal, 2016, 108, 257-265.	1.8	25
133	Assessing a novel smartphone application – SnapCard, compared to five imaging systems to quantify droplet deposition on artificial collectors. Computers and Electronics in Agriculture, 2016, 128, 193-198.	7.7	25
134	Water-saving technologies affect the grain characteristics and recovery of fine-grain rice cultivars in semi-arid environment. Environmental Science and Pollution Research, 2017, 24, 12971-12981.	5.3	25
135	Influence of soil moisture regimes on growth, photosynthetic capacity, leaf biochemistry and reproductive capabilities of the invasive agronomic weed; Lactuca serriola. PLoS ONE, 2019, 14, e0218191.	2.5	25
136	Seed Germination Ecology of Feather Lovegrass [Eragrostis tenella (L.) Beauv. Ex Roemer & J.A. Schultes]. PLoS ONE, 2013, 8, e79398.	2.5	24
137	Role of crop competition in managing weeds in rice, wheat, and maize in India: A review. Crop Protection, 2017, 95, 14-21.	2.1	24
138	Germination of Fresh Horse Purslane (<i>Trianthema portulacastrum</i>) Seeds in Response to Different Environmental Factors. Weed Science, 2011, 59, 495-499.	1.5	23
139	Effect of tillage systems, seeding rates, and herbicides on weed growth and grain yield in dry-seeded rice systems in the Philippines. Crop Protection, 2013, 54, 244-250.	2.1	23
140	Performance of Different Herbicides in Dry-Seeded Rice in Bangladesh. Scientific World Journal, The, 2014, 2014, 1-14.	2.1	23
141	Weed dynamics as influenced by tillage system, sowing time and weed competition duration in dry-seeded rice. Crop Protection, 2015, 71, 25-38.	2.1	23
142	Germination biology of Hibiscus tridactylites in Australia and the implications for weed management. Scientific Reports, 2016, 6, 26006.	3.3	23
143	Environmental Factors Affecting Seed Germination and Seedling Emergence of Foxtail Sophora (<i>Sophora alopecuroides</i>). Weed Science, 2018, 66, 71-77.	1.5	23
144	Germination ecology of Chloris truncata and its implication for weed management. PLoS ONE, 2018, 13, e0199949.	2.5	23

#	Article	IF	CITATIONS
145	Effect of Water Stress on the Growth and Development of <i>Amaranthus spinosus, Leptochloa chinensis</i> , and Rice. American Journal of Plant Sciences, 2013, 04, 989-998.	0.8	23
146	Crowfootgrass (<i>Dactyloctenium aegyptium</i>) Germination and Response to Herbicides in the Philippines. Weed Science, 2011, 59, 512-516.	1.5	22
147	Management of herbicide-resistant Phalaris minor in wheat by sequential or tank-mix applications of pre- and post-emergence herbicides in north-western Indo-Gangetic Plains. Crop Protection, 2016, 89, 239-247.	2.1	22
148	Implications of narrow crop row spacing in managing weeds in mungbean (Vigna radiata). Crop Protection, 2017, 95, 116-119.	2.1	22
149	Implications of plant geometry and weed control options in designing a low-seeding seed-drill for dry-seeded rice systems. Field Crops Research, 2013, 144, 225-231.	5.1	21
150	Genotypic Differences for Water-Use Efficiency and Weed Competitiveness in Dry Direct-Seeded Rice. Agronomy Journal, 2015, 107, 1573-1583.	1.8	21
151	Influence of selected environmental factors on seed germination and seedling survival of the arid zone invasive species tobacco bush (Nicotiana glauca R. Graham). Rangeland Journal, 2016, 38, 417.	0.9	21
152	Characterization of functional trait diversity among Indian cultivated and weedy rice populations. Scientific Reports, 2016, 6, 24176.	3.3	21
153	Weed emergence as affected by maize (Zea mays L.)-cover crop rotations in contrasting arable soils of Zimbabwe under conservation agriculture. Crop Protection, 2016, 81, 47-56.	2.1	21
154	Crop establishment techniques affect productivity, sustainability, and soil health under mustard-based cropping systems of Indian semi-arid regions. Soil and Tillage Research, 2016, 158, 137-146.	5.6	21
155	Optimizing Sowing and Flooding Depth for Anaerobic Germination-Tolerant Genotypes to Enhance Crop Establishment, Early Growth, and Weed Management in Dry-Seeded Rice (Oryza sativa L.). Frontiers in Plant Science, 2018, 9, 1654.	3.6	21
156	Tillage, crop establishment, residue management and herbicide applications for effective weed control in direct seeded rice of eastern Indo–Gangetic Plains of South Asia. Crop Protection, 2019, 123, 12-20.	2.1	21
157	Influence of Environmental Factors on the Germination of Urena lobata L. and Its Response to Herbicides. PLoS ONE, 2014, 9, e90305.	2.5	21
158	Interaction of Rice Residue and PRE Herbicides on Emergence and Biomass of Four Weed Species. Weed Technology, 2012, 26, 627-632.	0.9	20
159	Productivity, Weed Dynamics, Nutrient Mining, and Monetary Advantage of Maize-Legume Intercropping in the Eastern Himalayan Region of India. Plant Production Science, 2014, 17, 342-352.	2.0	20
160	Integrated effect of allelochemicals and herbicides on weed suppression and soil microbial activity in wheat (Triticum aestivum L.). Crop Protection, 2016, 90, 34-39.	2.1	20
161	Alternative Options to Glyphosate for Control of Large Echinochloa colona and Chloris virgata Plants in Cropping Fallows. Plants, 2019, 8, 245.	3.5	20
162	Physiological and Morphological Responses of Ischaemum rugosum Salisb. (Wrinkled Grass) to Different Nitrogen Rates and Rice Seeding Rates. PLoS ONE, 2014, 9, e98255.	2.5	20

#	Article	IF	CITATIONS
163	Factors Affecting Seed Germination of Perennial Wall Rocket (<i>Diplotaxis tenuifolia</i>) in Southern Australia. Weed Science, 2007, 55, 481-485.	1.5	19
164	Weed Management in Mechanized-Sown, Zero-Till Dry-Seeded Rice. Weed Technology, 2013, 27, 28-33.	0.9	19
165	Response of Rice Genotypes to Weed Competition in Dry Direct-Seeded Rice in India. Scientific World Journal, The, 2014, 2014, 1-8.	2.1	19
166	Effect of rice establishment methods on weedy rice (Oryza sativa L.) infestation and grain yield of cultivated rice (O. sativa L.) in Sri Lanka. Crop Protection, 2014, 55, 42-49.	2.1	19
167	Efficacy and phytotoxicity of different rates of oxadiargyl and pendimethalin in dry-seeded rice (Oryza) Tj ETQq1	0.784314	4 rgBT /Ove
168	Weed management using crop competition in Pakistan: A review. Crop Protection, 2017, 95, 22-30.	2.1	19
169	Germination ecology of hairy fleabane (<i>Conyza bonariensis</i>) and its implications for weed management. Weed Science, 2020, 68, 411-417.	1.5	19
170	Seed Germination and Seedling Emergence of Nalta Jute (Corchorus olitorius) and Redweed (Melochia) Tj ETQq0	0 0 rgBT /0 1.5gBT /0	Dverlock 10
171	Performance of Different Herbicides in a Dry-Seeded Rice System in Sri Lanka. Weed Technology, 2013, 27, 459-462.	0.9	18
172	Optimizing sowing management for short duration dry seeded aman rice on the High Ganges River Floodplain of Bangladesh. Field Crops Research, 2014, 169, 77-88.	5.1	18
173	Can herbicide safeners allow selective control of weedy rice infesting rice crops?. Pest Management Science, 2017, 73, 71-77.	3.4	18
174	Investigation of alternate herbicides for effective weed management in glyphosate-tolerant cotton. Archives of Agronomy and Soil Science, 2019, 65, 1885-1899.	2.6	18
175	Seed germination and seedling emergence of threehorn bedstraw (Galium tricornutum). Weed Science, 2006, 54, 867-872.	1.5	17
176	Effect of Salinity on Growth of Barnyardgrass (<i>Echinochloa crus-galli</i>), Horse Purslane (<i>Trianthema portulacastrum</i>), Junglerice (<i>Echinochloa colona</i>), and Rice. Weed Science, 2013, 61, 244-248.	1.5	17
177	Management of complex weed flora in dry-seeded rice. Crop Protection, 2016, 83, 20-26.	2.1	17
178	Review. Wetlands, 2018, 38, 1067-1079.	1.5	17
179	Seed germination ecology of Bidens pilosa and its implications for weed management. Scientific Reports, 2019, 9, 16004.	3.3	17
180	Target-Site Resistance to Glyphosate in Chloris Virgata Biotypes and Alternative Herbicide Options for its Control. Agronomy, 2020, 10, 1266.	3.0	17

#	Article	IF	CITATIONS
181	Response of glyphosate-resistant and susceptible biotypes of Echinochloa colona to low doses of glyphosate in different soil moisture conditions. PLoS ONE, 2020, 15, e0233428.	2.5	17
182	Regeneration capacity after exposure to freezing in wild oat (Avena ludoviciana Durieu.) and turnipweed (Rapistrum rugosum (L.) All.) in comparison with winter wheat. Environmental and Experimental Botany, 2021, 181, 104271.	4.2	17
183	Emerging Issues and Potential Opportunities in the Rice–Wheat Cropping System of North-Western India. Frontiers in Plant Science, 2022, 13, 832683.	3.6	17
184	Effect of nitrogen application timings and varieties on growth and yield of wheat grown on raised beds. Archives of Agronomy and Soil Science, 2010, 56, 211-222.	2.6	16
185	Effect of herbicides on weed management in dry-seeded rice sown under different tillage systems. Crop Protection, 2016, 80, 118-126.	2.1	16
186	Eco-biology, impact, and management of Sorghum halepense (L.) Pers Biological Invasions, 2023, 25, 955-973.	2.4	16
187	Integrated Weed Management Using Planting Pattern, Cultivar, and Herbicide in Dry-Seeded Rice in Northwest India. Weed Science, 2014, 62, 350-359.	1.5	15
188	Does intercropping play a role in alleviating weeds in cassava as a non-chemical tool of weed management? $\hat{a} \in A$ review. Crop Protection, 2017, 95, 81-88.	2.1	15
189	Effect of Soil Moisture Regimes on Growth and Seed Production of Two Australian Biotypes of Sisymbrium thellungii O. E. Schulz. Frontiers in Plant Science, 2018, 9, 1241.	3.6	15
190	Germination ecology of turnip weed (Rapistrum rugosum (L.) All.) in the northern regions of Australia. PLoS ONE, 2018, 13, e0201023.	2.5	15
191	Seed longevity and seedling emergence behavior of wild oat (<i>Avena fatua</i>) and sterile oat (<i>Avena sterilis</i> ssp. <i>ludoviciana</i>) in response to burial depth in eastern Australia. Weed Science, 2021, 69, 362-371.	1.5	15
192	Compensatory Growth of Ludwigia (<i>Ludwigia hyssopifolia</i>) in Response to Interference of Direct-Seeded Rice. Weed Science, 2011, 59, 177-181.	1.5	14
193	Comparison of photoperiod-sensitive and photoperiod-insensitive basmati cultivars for grain yield, water productivity, and quality traits under varied transplanting dates in Northwest India. Crop and Pasture Science, 2015, 66, 793.	1.5	14
194	Ecological significance of rice (Oryza sativa) planting density and nitrogen rates in managing the growth and competitive ability of itchgrass (Rottboellia cochinchinensis) in direct-seeded rice systems. Journal of Pest Science, 2015, 88, 427-438.	3.7	14
195	Effect of pre-emergence herbicides and timing of soil saturation on the control of six major rice weeds and their phytotoxic effects on rice seedlings. Crop Protection, 2016, 83, 37-47.	2.1	14
196	Gene expression in response to glyphosate treatment in fleabane (<scp><i>Conyza) Tj ETQq0 0 0 rgBT /Overlock Science, 2018, 74, 2346-2355.</i></scp>	10 Tf 50 3.4	147 Td (bona 14
197	Basmati Rice in the Indian Subcontinent: Strategies to Boost Production and Quality Traits. Advances in Agronomy, 2018, 151, 159-213.	5.2	14
198	Influence of soil moisture levels on the growth and reproductive behaviour of Avena fatua and Avena ludoviciana. PLoS ONE, 2020, 15, e0234648.	2.5	14

#	Article	IF	CITATIONS
199	Effect of Environmental Factors on Germination of Salsola foetida : Potential Species for Rehabilitation of Degraded Rangelands. Rangeland Ecology and Management, 2017, 70, 638-643.	2.3	13
200	Germination Ecology of Two Australian Populations of African turnipweed (<i>Sisymbrium) Tj ETQq0 0 0 rgBT /C</i>)verlock 10	0 Tf 50 702 To
201	Seed-germination ecology of glyphosate-resistant and glyphosate-susceptible biotypes of Echinochloa colona in Australia. Crop and Pasture Science, 2019, 70, 367.	1.5	13
202	Environmental factors affecting the germination and seedling emergence of two populations of an emerging agricultural weed: wild lettuce (Lactuca serriola). Crop and Pasture Science, 2019, 70, 709.	1.5	13
203	The efficacy of chemical options to control Echinochloa crus-galli in dry-seeded rice under alternative irrigation management and field layout. Crop Protection, 2019, 118, 72-78.	2.1	13
204	Phenotypic Plasticity of Chinese Sprangletop (<i>Leptochloa chinensis</i>) in Competition with Seeded Rice. Weed Technology, 2011, 25, 652-658.	0.9	12
205	Growth Plasticity of Junglerice (<i>Echinochloa colona</i>) for Resource Use When Grown with Different Rice (<i>Oryza sativa</i>) Planting Densities and Nitrogen Rates in Dry-Seeded Conditions. Weed Science, 2014, 62, 571-587.	1.5	12
206	Seed germination response of a noxious agricultural weed Echium plantagineum to temperature, light, pH, drought stress, salinity, heat and smoke. Crop and Pasture Science, 2018, 69, 326.	1.5	12
207	Evaluation of dormancy breaking methods for enhanced germination in four biotypes of Brassica tournefortii. Scientific Reports, 2018, 8, 17103.	3.3	12
208	Chemical control of parthenium weed (Parthenium hysterophorus L.) in two contrasting cultivars of rice under direct-seeded conditions. Crop Protection, 2019, 117, 26-36.	2.1	12
209	Effect of planting time and row spacing on growth and seed production of junglerice (<i>Echinochloa colona</i>) and feather fingergrass (<i>Chloris virgata</i>) in sorghum. Weed Technology, 2021, 35, 974-979.	0.9	12
210	Competitiveness of windmill grass (Chloris truncata) and feathertop Rhodes grass (Chloris virgata) in mungbean (Vigna radiata). Crop and Pasture Science, 2020, 71, 916.	1.5	12
211	Weedy Rice: An Emerging Threat for Direct-seeded Rice Production Systems in India. Rice Research Open Access, 2016, 4, .	0.4	12
212	Effect of Plant Spacing on Growth and Grain Yield of Soybean. American Journal of Plant Sciences, 2013, 04, 2011-2014.	0.8	12
213	Integrated Weed Management in Rice. , 2014, , 125-153.		11
214	Weed population dynamics, herbicide efficacies, and crop performance in a sprinkler-irrigated maize-rice cropping system. Field Crops Research, 2014, 167, 119-130.	5.1	11
215	Germination ecology of Sonchus oleraceus L. in the northern region of Australia. Crop and Pasture Science, 2018, 69, 926.	1.5	11
216	The response of glyphosate-resistant and glyphosate-susceptible biotypes of annual sowthistle (<i>Sonchus oleraceus</i>) to mungbean density. Weed Science, 2019, 67, 642-648.	1.5	11

BHAGIRATH S CHAUHAN

#	Article	IF	CITATIONS
217	The response of glyphosate-resistant and glyphosate-susceptible biotypes of junglerice (<i>Echinochloa colona</i>) to mungbean interference. Weed Science, 2019, 67, 419-425.	1.5	11
218	Seed Germination Ecology of Soldier Thistle (<i>Picnomon acarna</i>): An Invasive Weed of Rainfed Crops in Iran. Weed Science, 2019, 67, 261-266.	1.5	11
219	Junglerice (<i>Echinochloa colona</i>) and feather fingergrass (<i>Chloris virgata</i>) seed production and retention at sorghum maturity. Weed Technology, 2020, 34, 272-276.	0.9	11
220	Glyphosate Resistance in Sonchus oleraceus and Alternative Herbicide Options for Its Control in Southeast Australia. Sustainability, 2020, 12, 8311.	3.2	11
221	Response of Barley Genotypes to Weed Interference in Australia. Agronomy, 2020, 10, 99.	3.0	11
222	The response of glyphosate-resistant and glyphosate-susceptible biotypes of Echinochloa colona to carbon dioxide, soil moisture and glyphosate. Scientific Reports, 2020, 10, 329.	3.3	11
223	Biological traits of six sterile oat biotypes in response to planting time. Agronomy Journal, 2021, 113, 42-51.	1.8	11
224	Medicinal Value of Three Agricultural Weed Species of the Asteraceae Family: A Review. Pharmacognosy Journal, 2021, 13, 264-277.	0.8	11
225	Amaranthus retroflexus L. (Redroot Pigweed): Effects of Elevated CO2 and Soil Moisture on Growth and Biomass and the Effect of Radiant Heat on Seed Germination. Agronomy, 2021, 11, 728.	3.0	11
226	Fertilizer Placement Affects Weed Growth and Grain Yield in Dry-Seeded Rice (<i>Oryza) Tj ETQq0</i>	0.0 rgBT / 0.8	Oyerlock 10
227	Growth analysis and biomass partitioning of Cyperus iria in response to rice planting density and nitrogen rate. Crop Protection, 2015, 74, 92-102.	2.1	10
228	Weedy rice (Oryza sativa f. spontanea) problems and management in wet direct-seeded rice (O.Âsativa L.) in the Mekong Delta of Vietnam. Crop Protection, 2015, 78, 40-47.	2.1	10
229	Resource-use maximisation through legume intercropping with maize in the eastern Himalayan region of India. Crop and Pasture Science, 2016, 67, 508.	1.5	10
230	Effect of emergence time, inter- and intra-specific competition on growth and fecundity of Echinochloa crus-galli in dry-seeded rice. Crop Protection, 2016, 87, 98-107.	2.1	10
231	Relative time of weed and crop emergence is crucial for managing weed seed production: A study under an aerobic rice system. Crop Protection, 2017, 99, 33-38.	2.1	10
232	Complete chloroplast genome of glyphosate resistant Conyza bonariensis (L.) Cronquist from Australia. Mitochondrial DNA Part B: Resources, 2017, 2, 444-445.	0.4	10
233	Screening of water-efficient rice genotypes for dry direct seeding in South Asia. Archives of Agronomy and Soil Science, 2018, 64, 103-115.	2.6	10

Interference of turnipweed (<i>Rapistrum rugosum </i>) and Mexican pricklepoppy (<i>Argemone) Tj ETQq0 0 0 rg $BT_{.5}$ /Overlock 10 Tf 50 IO Tf 50

#	Article	IF	CITATIONS
235	Annual ryegrass (Lolium rigidum Gaud) competition altered wheat grain quality: A study under elevated atmospheric CO2 levels and drought conditions. Food Chemistry, 2019, 276, 285-290.	8.2	10
236	Growth behavior and glyphosate resistance level in 10 populations of Echinochloa colona in Australia. PLoS ONE, 2020, 15, e0221382.	2.5	10
237	Crop Establishment and Weed Control Options for Sustaining Dry Direct Seeded Rice Production in Eastern India. Agronomy, 2021, 11, 389.	3.0	10
238	Interference of wild oat (Avena fatua) and sterile oat (Avena sterilis ssp. ludoviciana) in wheat. Weed Science, 0, , 1-7.	1.5	10
239	Germination and seed persistence of Amaranthus retroflexus and Amaranthus viridis: Two emerging weeds in Australian cotton and other summer crops. PLoS ONE, 2022, 17, e0263798.	2.5	10
240	Seed Germination Ecology of Purple-Leaf Button Weed (Borreria ocymoides) and Indian Heliotrope (Heliotropium indicum): Two Common Weeds of Rain-Fed Rice. Weed Science, 2008, 56, 670-675.	1.5	9
241	Responses of Super Rice (Oryza sativa L.) to Different Planting Methods for Grain Yield and Nitrogen-Use Efficiency in the Single Cropping Season. PLoS ONE, 2014, 9, e104950.	2.5	9
242	Influence of Environmental Factors, Cultural Practices, and Herbicide Application on Seed Germination and Emergence Ecology of Ischaemum rugosum Salisb. PLoS ONE, 2015, 10, e0137256.	2.5	9
243	Optimum sowing date and cultivar duration of dry-seeded boro on the High Ganges River Floodplain of Bangladesh. Field Crops Research, 2016, 190, 91-102.	5.1	9
244	Overview and Significance of Non-Chemical Weed Control. , 2018, , 1-8.		9
245	Germination Biology of Sesbania (Sesbania cannabina): An Emerging Weed in the Australian Cotton Agro-environment. Weed Science, 2019, 67, 68-76.	1.5	9
246	Effect of different densities of parthenium weed (<i>Parthenium hysterophorus</i> L.) on the performance of direct-seeded rice under aerobic conditions. Archives of Agronomy and Soil Science, 2019, 65, 796-808.	2.6	9
247	Seed Germination Ecology of South Eastern Australian Rigid Ryegrass (<i>Lolium rigidum</i>) Populations. Weed Science, 0, , 1-30.	1.5	9
248	Ecologically Based Weed Management Strategies. , 2014, , 1-11.		9
249	Management options for large plants of glyphosate-resistant feather fingergrass (Chloris virgata) in Australian fallow conditions. PLoS ONE, 2021, 16, e0261788.	2.5	9
250	Growth of Purple Nutsedge (Cyperus rotundus) in Response to Interference with Direct-Seeded Rice. Weed Technology, 2012, 26, 506-509.	0.9	8
251	Phenotypic Plasticity of Spiny Amaranth (<i>Amaranthus spinosus</i>) and Longfruited Primrose-Willow (<i>Ludwigia octovalvis</i>) in Response to Rice Interference. Weed Science, 2012, 60, 411-415.	1.5	8
252	Response of 10 Elite "Green Super Rice―Genotypes to Weed Infestation in Aerobic Rice Systems. Plant Production Science, 2015, 18, 228-233.	2.0	8

#	Article	IF	CITATIONS
253	Efficacy and economics of different herbicides, their weed species selectivity, and the productivity of mechanized dry-seeded rice. Crop Protection, 2015, 78, 239-246.	2.1	8
254	Weed menace and management strategies for enhancing oilseed brassicas production in the Indian sub-continent: A review. Crop Protection, 2017, 96, 245-257.	2.1	8
255	Thermal Weed Control: History, Mechanisms, and Impacts. , 2018, , 9-31.		8
256	Environmental factors affecting the germination and emergence of white horehound (Marrubium) Tj ETQq0 0 C	rgBT /Ove	rloçk 10 Tf 50
257	Influence of selected environmental factors on seed germination and seedling emergence of Dinebra panicea var. brachiata (Steud.). Crop Protection, 2019, 117, 121-127.	2.1	8
258	Competition dynamics of Parthenium hysterophorus in direct-seeded aerobic rice fields. Experimental Agriculture, 2020, 56, 196-203.	0.9	8
259	Influence of different environmental factors on the germination and seedling emergence of Ipomoea eriocarpa R. Br Crop Protection, 2020, 130, 105070.	2.1	8
260	Glyphosate-induced hormesis: impact on seedling growth and reproductive potential of common sowthistle (<i>Sonchus oleraceus</i>). Weed Science, 2020, 68, 605-611.	1.5	8
261	Enhanced weedâ€crop competition effects on growth and seed production of herbicideâ€resistant and herbicideâ€susceptible annual sowthistle (Sonchus oleraceus). Weed Biology and Management, 2020, 20, 38-46.	1.4	8
262	Seed germination ecology of Sumatran fleabane (Conyza sumatrensis) in relations to various environmental parameters. Weed Science, 0, , 1-8.	1.5	8
263	Environmental factors affecting seed germination and seedling emergence of three Phalaris species. Crop Protection, 2021, 148, 105743.	2.1	8
264	Evaluation Of Current Policies on the use of Unmanned Aerial Vehicles in Indian Agriculture. Current Science, 2019, 117, 25.	0.8	8
265	Integrated Use of Herbicide and Crop Mulch in Suppressing Weed Growth in a Dry-Seeded Rice System. American Journal of Plant Sciences, 2013, 04, 1611-1616.	0.8	8
266	History and perspective of herbicide use in Australia and New Zealand. Advances in Weed Science, 2022, 40, .	1.2	8
267	Timing and Dose of Metolachlor Affect Rigid Ryegrass (Lolium rigidum) Control in Wheat. Weed Technology, 2007, 21, 225-229.	0.9	7
268	Effect of Pretilachlor on Weedy Rice and Other Weeds in Wet-Seeded Rice Cultivation in South Vietnam. Plant Production Science, 2014, 17, 315-320.	2.0	7
269	Performance of sequential herbicides in dry-seeded rice in the Philippines. Crop Protection, 2015, 74, 124-130.	2.1	7
270	Row spacing is more important than seeding rate for increasing Rhodes grass (Chloris gayana) control and grain yield in soybean (Glycine max). Crop and Pasture Science, 2017, 68, 620.	1.5	7

#	Article	IF	CITATIONS
271	Complete chloroplast genome of glyphosate resistant <i>Sonchus oleraceus</i> L. from Australia, with notes on the small single copy (SSC) region orientation. Mitochondrial DNA Part B: Resources, 2018, 3, 363-364.	0.4	7
272	Weed Control Using Ground Cover Systems. , 2018, , 61-71.		7
273	Effect of varied soil moisture regimes on the growth and reproduction of two Australian biotypes of junglerice (Echinochloa colona). Weed Science, 2019, 67, 552-559.	1.5	7
274	Biology and management of Echinochloa colona and E. crus-galli in the northern grain regions of Australia. Crop and Pasture Science, 2019, 70, 917.	1.5	7
275	Parthenium weed (<i>Parthenium hysterophorus</i>) competition with grain sorghum under arid conditions. Experimental Agriculture, 2020, 56, 387-396.	0.9	7
276	Phenotypic Plasticity of Blistering Ammannia (Ammannia baccifera) in Competition with Direct-Seeded Rice. Weed Technology, 2013, 27, 373-377.	0.9	6
277	Environmental factors affect seed germination and seedling emergence of invasive Centaurea balsamita. Crop and Pasture Science, 2017, 68, 583.	1.5	6
278	Management of Cleome rutidosperma DC. using high crop density in dry-seeded rice. Crop Protection, 2017, 95, 120-128.	2.1	6
279	Herbicide resistance evolution can be tamed by diversity in irrigated Australian cotton: a multiâ€species, multiâ€herbicide modelling approach. Pest Management Science, 2018, 74, 2363-2375.	3.4	6
280	Response of Chloris truncata to moisture stress, elevated carbon dioxide and herbicide application. Scientific Reports, 2019, 9, 10721.	3.3	6
281	Glyphosate-tolerant cotton in Australia: successes and failures. Archives of Agronomy and Soil Science, 2019, 65, 1536-1553.	2.6	6
282	Influence of row spacing and cultivar selection on annual ryegrass (Lolium rigidum) control and grain yield in chickpea (Cicer arietinum). Crop and Pasture Science, 2019, 70, 140.	1.5	6
283	Tillage based, site-specific weed control for conservation cropping systems. Weed Technology, 2020, 34, 704-710.	0.9	6
284	Effects of sorghum residue in presence of pre-emergence herbicides on emergence and biomass of Echinochloa colonaÂand Chloris virgata. PLoS ONE, 2020, 15, e0229817.	2.5	6
285	Differential germination characteristics of glyphosate-resistant and glyphosate-susceptible Chloris virgata populations under different temperature and moisture stress regimes. PLoS ONE, 2021, 16, e0253346.	2.5	6
286	Challenges and Opportunities for Weed Management in No-Till Farming Systems. , 2020, , 107-125.		6
287	Seedbank persistence of four summer grass weed species in the northeast cropping region of Australia. PLoS ONE, 2022, 17, e0262288.	2.5	6
288	Glyphosate resistance in junglerice (<i>Echinochloa colona</i>) and alternative herbicide options for its effective control. Weed Technology, 2022, 36, 38-47.	0.9	6

#	Article	IF	CITATIONS
289	Current status of herbicide-resistant weeds and their management in the rice-wheat cropping system of South Asia. Advances in Agronomy, 2022, , 307-354.	5.2	6
290	Weed Growth and Grain Yield, as Affected by Herbicides, in Dry-seeded Rice in Sri Lanka. Journal of Crop Improvement, 2013, 27, 419-429.	1.7	5
291	Effect of Shade on Growth and Yield of Weedy Rice (<i>Oryza sativa</i> L.) Biotypes and a Rice (<i>Oryza sativa</i> L.) Cultivar from Asia. Journal of Crop Improvement, 2013, 27, 272-280.	1.7	5
292	Management of Rottboellia cochinchinensis and other weeds through sequential application of herbicides in dry direct-seeded rice in the Philippines. Crop Protection, 2015, 78, 131-136.	2.1	5
293	Effect of Nitrogen Application, Rice Planting Density, and Water Regime on the Morphological Plasticity and Biomass Partitioning of Chinese Sprangletop (<i>Leptochloa chinensis</i>). Weed Science, 2015, 63, 448-460.	1.5	5
294	Rice Production in Australia. , 2017, , 169-184.		5
295	Seeding rate and genotype effects on weeds and yield of dry-seeded rice. Crop Protection, 2017, 96, 68-76.	2.1	5
296	Germination Ecology of Brachiaria eruciformis in Australia and Its Implications for Weed Management. Agronomy, 2020, 10, 30.	3.0	5
297	The problem of <i>Orobanche</i> spp. and <i>Phelipanche</i> spp. and their management in Iran. Weed Science, 2020, 68, 555-564.	1.5	5
298	Effect of emergence time on growth and fecundity of Rapistrum rugosum and Brassica tournefortii in the northern region of Australia. Scientific Reports, 2020, 10, 15979.	3.3	5
299	Biology, ecology and management of Raphanus raphanistrum L.: a noxious agricultural and environmental weed. Environmental Science and Pollution Research, 2020, 27, 17692-17705.	5.3	5
300	Germination ecology of four African mustard (Brassica tournefortii Gouan) populations in the eastern region of Australia. Weed Science, 0, , 1-7.	1.5	5
301	Seedbank persistence and emergence pattern of Argemone mexicana, Rapistrum rugosum and Sonchus oleraceus in the eastern grain region of Australia. Scientific Reports, 2021, 11, 18095.	3.3	5
302	Germination ecology of wild mustard (<i>Sinapis arvensis</i>) and its implications for weed management. Weed Science, 2022, 70, 103-111.	1.5	5
303	Sustainable Weed Management. , 2019, , 249-286.		5
304	Domestication and Development of Rice Cultivars. , 2017, , 207-216.		5
305	Rice Husk Biochar Influences Seedling Emergence of Junglerice (<i>Echinochloa colona</i>) and Herbicide Efficacy. American Journal of Plant Sciences, 2013, 04, 1345-1350.	0.8	5

306 Weed Interference Models. , 2020, , 117-142.

#	Article	lF	CITATIONS
307	The world's first glyphosate-resistant case of Avena fatua L. and Avena sterilis ssp. ludoviciana (Durieu) Gillet & Magne and alternative herbicide options for their control. PLoS ONE, 2022, 17, e0262494.	2.5	5
308	<i>Cenchrus biflorus</i> Roxb. (Indian sandbur) <i>,</i> a blessing or curse in arid ecosystems: a review. Grass and Forage Science, 2017, 72, 179-192.	2.9	4
309	CHALLENGES AND PROSPECTS OF WHEAT PRODUCTION IN BHUTAN: A REVIEW. Experimental Agriculture, 2018, 54, 428-442.	0.9	4
310	Droplet-Size Effects on Control of <i>Chloris</i> spp. with Six POST Herbicides. Weed Technology, 2019, 33, 153-158.	0.9	4
311	Interference of Annual Sowthistle (Sonchus oleraceus) in Wheat. Weed Science, 2019, , 1-21.	1.5	4
312	Emergence and germination response of Sonchus oleraceus and Rapistrum rugosum to different temperatures and moisture stress regimes. Plant Species Biology, 2020, 35, 16-23.	1.0	4
313	Effect of narrow row-spacing and weed crop competition duration on cotton productivity. Archives of Agronomy and Soil Science, 2020, , 1-13.	2.6	4
314	Impacts of Climate Change on Weeds, Insect Pests, Plant Diseases and Crop Yields: Synthesis. , 2020, , 189-195.		4
315	Crop residue retention suppresses seedling emergence and biomass of winter and summer Australian weed species. Weed Biology and Management, 2020, 20, 118-128.	1.4	4
316	Performance of Dry-Seeded Rice Genotypes under Varied Soil Moisture Regimes and Foliar-Applied Hormones. Plants, 2020, 9, 539.	3.5	4
317	Effectiveness of glufosinate, dicamba, and clethodim on glyphosate-resistant and -susceptible populations of five key weeds in Australian cotton systems. Weed Technology, 0, , 1-7.	0.9	4
318	Unravelling the genetic potential of untapped crop wild genetic resources for crop improvement. Conservation Genetics Resources, 2022, 14, 109-124.	0.8	4
319	Seed germination ecology of leucaena (<i>Leucaena leucocephala</i>) as influenced by various environmental parameters. Weed Science, 2022, 70, 335-340.	1.5	4
320	Interference of junglerice (<i>Echinochloa colona</i>) in mung bean. Weed Science, 2022, 70, 481-487.	1.5	4
321	Screening of Herbicides for Rice Seedling Safety and Echinochloa colona Management under Australian Conditions. Agronomy, 2022, 12, 1273.	3.0	4
322	Growth of <i>Echinochloa glabrescens</i> in Response to Rice Cultivar and Density. Journal of Crop Improvement, 2013, 27, 391-405.	1.7	3
323	Seed Germination, Seedling Emergence, and Response to Herbicides of Wild Bushbean (<i>Macroptilium) Tj ETQ</i>	2q1_1_0.78 1.5	4314 rgBT /○
324	The need for speed: Timely prevention of the dispersal of noxious weeds in relief fodder using	2.1	3

efficient sampling procedures. Crop Protection, 2015, 70, 21-27. 324

2.1 3

#	Article	IF	CITATIONS
325	Grain Quality of Dry-Seeded Rice in Response to Sowing Dates and Genotypes. International Journal of Plant Production, 2018, 12, 95-106.	2.2	3
326	Biology and management of two Hordeum weedy species: A review. Crop Protection, 2019, 125, 104908.	2.1	3
327	Effect of emergence time on growth and fecundity of redroot pigweed (Amaranthus retroflexus) and slender amaranth (Amaranthus viridis): emerging problem weeds in Australian summer crops. Weed Science, 2021, 69, 333-340.	1.5	3
328	Biology of Brassica tournefortii in the northern grains region of Australia. Crop and Pasture Science, 2020, 71, 268.	1.5	3
329	Effect of Plant Geometry on Growth and Yield of Corn in the Rice-Corn Cropping System. American Journal of Plant Sciences, 2013, 04, 1928-1931.	0.8	3
330	Weedy Rice (<i>Oryza sativa</i> L.) Problem in Rice (<i>Oryza) Tj ET Sciences, 2013, 04, 2359-2366.</i>	7Qq0 0 0 r 0.8	gBT /Overloo 3
331	Weed management and herbicide resistant weeds: a case study from wheat growing areas of Pakistan. Pakistan Journal of Botany, 2019, 51, .	0.5	3
332	Genetic diversity and population structure analysis to study the evolution of herbicide resistance in Echinochloa colona ecotypes in Australia. Acta Physiologiae Plantarum, 2022, 44, 1.	2.1	3
333	Performance of different herbicides on pondweed (<i>Potamogeton nodosus</i>) in rice. Weed Technology, 2022, 36, 270-275.	0.9	3
334	Biotechnological Road Map for Innovative Weed Management. Frontiers in Plant Science, 2022, 13, 887723.	3.6	3
335	Changing Seasonality of Lolium rigidum (Annual Ryegrass) in Southeastern Australia. Frontiers in Agronomy, 0, 4, .	3.3	3
336	Weed Management in Rainfed Upland Rice Fields under Varied Agro-Ecologies in Nigeria. Rice Science, 2022, 29, 328-339.	3.9	3
337	Detecting the Seeds of Nassella neesiana in Large Round Hay Bales, by Means of Non-Destructive Core Sampling. PLoS ONE, 2015, 10, e0137343.	2.5	2
338	Complete chloroplast genome sequences of six lines of Echinochloa colona (L.) link. Mitochondrial DNA Part B: Resources, 2016, 1, 945-946.	0.4	2
339	Rice Weeds and Their Management. , 2017, , 361-392.		2
340	Germination Ecology of Two Troublesome Weeds of Arid Chickpea: Euphorbia dracunculoides and Astragalus Species. Planta Daninha, 2019, 37, .	0.5	2
341	Integrated weed management using row arrangements and herbicides in pigeonpea (Cajanus cajan) in Australia. Crop and Pasture Science, 2019, 70, 676.	1.5	2
342	Differential germination response of Navua sedge (Cyperus aromaticus) populations to environmental factors. Weed Science, 0, , 1-24.	1.5	2

#	Article	IF	CITATIONS
343	Utilization of the neighborhood design to evaluate suitable cover crops and their density for Echinochloa colona management. PLoS ONE, 2021, 16, e0254584.	2.5	2
344	Seed germination biology of sweet acacia (Vachellia farnesiana) and response of its seedlings to herbicides. Weed Science, 0, , 1-6.	1.5	2
345	Evaluation of Preemergent Herbicides for Chloris virgata Control in Mungbean. Plants, 2021, 10, 1632.	3.5	2
346	Influence of Echinochloa crus-galli density and emergence time on growth, productivity and critical period of competition with dry-seeded rice. International Journal of Pest Management, 0, , 1-13.	1.8	2
347	Effects of various ecological factors on the germination of two crop and pasture weed species, Vulpia bromoides and Vulpia myuros. New Zealand Plant Protection, 0, 72, 135-146.	0.3	2
348	Effect of soil moisture regimes on the growth and fecundity of slender amaranth (<i>Amaranthus) Tj ETQq0 0 0 r</i>	gBT_/Overl	oçk 10 Tf 50
349	Next-Generation Sequencing Technologies and Their Implications for Efficient Utilization of Genetic Resources. , 2020, , 239-250.		2
350	Influence of Seeding Rate, Nitrogen Rate and Weed Regimes on Productivity and Nitrogen Efficiency of Dry Direct-Seeded Rice. International Journal of Plant Production, 2022, 16, 163-180.	2.2	2
351	Revisiting the concept of the critical period of weed control. Journal of Agricultural Science, 0, , 1-7.	1.3	2
352	Integrated use of the stale seedbed technique with preemergence herbicides to control weedy rice in wet seeded rice. Weed Technology, 2022, 36, 373-378.	0.9	2
353	Cyperus iria Weed Growth, Survival, and Fecundity in Response to Varying Weed Emergence Times and Densities in Dry-Seeded Rice Systems. Agronomy, 2022, 12, 1006.	3.0	2

354	Physiological and biochemical indicators for assessing nitrogen-use efficiency in rice (Oryza sativa) genotypes under dry direct seeding. Crop and Pasture Science, 2016, 67, 1158.	1.5	1
355	Complete chloroplast genome sequences of two species of Chloris grass, Chloris truncata Sw. and Chloris virgata R.Br. Mitochondrial DNA Part B: Resources, 2016, 1, 960-961.	0.4	1

356 The response of glyphosate-resistant and glyphosate-susceptible biotypes of junglerice (Echinochloa) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 10 rgBT /Overlock 10 Tf

 $_{357}$ Response of glyphosate-resistant and glyphosate-susceptible biotypes of annual sowthistle (Sonchus) Tj ETQq1 1 $_{1.5}^{0.784314}$ rgBT /Over

358	Chloris truncata and Chloris virgata. , 2021, , 113-129.		1
359	Parthenium hysterophorus. , 2021, , 311-333.		1
360	Effect of Different Climate Change Variables on the Ecology and Management of Sesbania cannabina through Glyphosate. Plants, 2021, 10, 910.	3.5	1

#	Article	IF	CITATIONS
361	Editorial: Weed Biology and Ecology in Agroecosystems. Frontiers in Agronomy, 2021, 3, .	3.3	1

The First Report of Target-Site Resistance to Clyphosate in Sweet Summer Grass (Moorochloa) Tj ETQq0 0 0 rgBT $\frac{10}{3.5}$ Tf 50 702

363	Integrated weed management techniques in rice. Burleigh Dodds Series in Agricultural Science, 2017, , 377-398.	0.2	1
364	Exploring alternatives for assessing and improving herbicide use in intensive agroecosystems of South Asia: A review. Advances in Weed Science, 2022, 40, .	1.2	1
365	Distinctive germination attributes of feather fingergrass (<i>Chloris virgata</i>) biotypes in response to different thermal conditions. Weed Science, 2022, 70, 473-480.	1.5	1
366	Agriculture and Crop Protection; Its Global Importance and Relationship with Climate Change. , 2020, , 1-16.		0
367	Ecological studies for plant characteristics of Fimbristylis miliacea under multiple resource limitations in dry-seeded upland ecosystems. International Journal of Pest Management, 2020, , 1-11.	1.8	0
368	Horse purslane (Trianthema portulacastrum) control in pigeonpea with PRE and POST herbicides. Weed Technology, 2020, 34, 764-769.	0.9	0
369	Sonchus oleraceus. , 2021, , 375-389.		0
370	Impact of PRE- and POST herbicide on purple nut sedge (Cyperus rotundus L.) control and plasticulture tomato yields. Chilean Journal of Agricultural Research, 2021, 81, 46-52.	1.1	0
371	Phalaris minor and Phalaris paradoxa. , 2021, , 335-356.		0
			Ŭ
372	Erigeron bonariensis, Erigeron canadensis, and Erigeron sumatrensis. , 2021, , 131-149.		0
372 373	Erigeron bonariensis, Erigeron canadensis, and Erigeron sumatrensis. , 2021, , 131-149. Management of Volunteer Corn Seedlings in Dry-Seeded Rice. American Journal of Plant Sciences, 2013, 04, 2381-2385.	0.8	0
372 373 374	Erigeron bonariensis, Erigeron canadensis, and Erigeron sumatrensis. , 2021, , 131-149. Management of Volunteer Corn Seedlings in Dry-Seeded Rice. American Journal of Plant Sciences, 2013, 04, 2381-2385. Comparison of genomic DNA extraction methods to obtain high DNA quality from barnyard grass (Echinochloa colona). Trends in Research, 2020, 3, .	0.8	0 0 0
372 373 374 375	Erigeron bonariensis, Erigeron canadensis, and Erigeron sumatrensis., 2021, 131-149. Management of Volunteer Corn Seedlings in Dry-Seeded Rice. American Journal of Plant Sciences, 2013, 04, 2381-2385. Comparison of genomic DNA extraction methods to obtain high DNA quality from barnyard grass (Echinochloa colona). Trends in Research, 2020, 3, . Assuring Crop Protection in the Face of Climate Change Through an Understanding of Herbicide Metabolisms and Enhanced Weed Control Strategies., 2020,, 17-56.	0.8	0 0 0 0
372 373 374 375 376	Erigeron bonariensis, Erigeron canadensis, and Erigeron sumatrensis. , 2021, , 131-149. Management of Volunteer Corn Seedlings in Dry-Seeded Rice. American Journal of Plant Sciences, 2013, 04, 2381-2385. Comparison of genomic DNA extraction methods to obtain high DNA quality from barnyard grass (Echinochloa colona). Trends in Research, 2020, 3, . Assuring Crop Protection in the Face of Climate Change Through an Understanding of Herbicide Metabolisms and Enhanced Weed Control Strategies. , 2020, , 17-56. Title is missing!. , 2020, 15, e0221382.	0.8	0 0 0 0 0
372 373 374 375 376	Erigeron bonariensis, Erigeron canadensis, and Erigeron sumatrensis. , 2021, , 131-149. Management of Volunteer Corn Seedlings in Dry-Seeded Rice. American Journal of Plant Sciences, 2013, 04, 2381-2385. Comparison of genomic DNA extraction methods to obtain high DNA quality from barnyard grass (Echinochloa colona). Trends in Research, 2020, 3, . Assuring Crop Protection in the Face of Climate Change Through an Understanding of Herbicide Metabolisms and Enhanced Weed Control Strategies. , 2020, , 17-56. Title is missing!. , 2020, 15, e0221382.	0.8	0 0 0 0 0 0

#	Article	IF	CITATIONS
379	Title is missing!. , 2020, 15, e0221382.		0
380	Title is missing!. , 2020, 15, e0221382.		0
381	Title is missing!. , 2020, 15, e0221382.		0
382	Title is missing!. , 2020, 15, e0234648.		0
383	Title is missing!. , 2020, 15, e0234648.		0
384	Title is missing!. , 2020, 15, e0234648.		0
385	Title is missing!. , 2020, 15, e0234648.		0
386	Title is missing!. , 2020, 15, e0234648.		0
387	Title is missing!. , 2020, 15, e0234648.		0
388	Quantifying cardinal temperatures and thermal time for seed germination of <i>Papaver dubium</i> and <i>P. rhoeas</i> . Plant Ecology and Diversity, 0, , 1-10.	2.4	0
389	Weed management in rainfed lowland rice ecology in Nigeria – challenges and opportunities. Weed Technology, 2022, 36, 583-591.	0.9	Ο